Skip to main content

Spatiotemporal instabilities in neural fields and the effects of additive noise

  • Chapter
  • First Online:
Modeling Phase Transitions in the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 4))

Abstract

The spatiotemporal activity of neural populations may be measured by various experimental techniques. To understand the underlying dynamics of such an observed activity, it is important to study neural population models extended in space. A well-studied mesoscopic population model is the neural field, which assumes a continuous space and may involve various spatial axonal interactions, axonal temporal and spatiotemporal delays, various synaptic time-scales and external inputs. This chapter shows the analysis steps of such a neural field model, allowing deeper insight into the activity of neural populations. After the derivation of the model and its relation to physiology, the first analysis step investigates the linear stability of the system activity about a stationary state. In this context, time-independent and time-dependent phase transitions subject to axonal conduction delay are discussed analytically and numerically. In a subsequent analysis step, the stability and linear response theory in the presence of noisy inputs is discussed. Finally, the linear study of noisy phase transistions is extended to a nonlinear treatment, and nonlinear effects of additive noise are discussed analytically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit, D.J.: Modeling brain function: The world of attactor neural networks. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  2. Arieli, A., Shoham, D., Hildesheim, R., Grinvald, A.: Coherent spatiotemporal pattern of on-going activity revealed by real-time optical imaging coupled with single unit recording in the cat visual cortex. J. Neurophysiol. 73, 2072–2093 (1995)

    CAS  PubMed  Google Scholar 

  3. Atay, F.M., Hutt, A.: Stability and bifurcations in neural fields with finite propagation speed and general connectivity. SIAM J. Appl. Math. 65(2), 644–666 (2005), doi:10.1137/S0036139903430884

    Article  Google Scholar 

  4. Atay, F.M., Hutt, A.: Neural fields with distributed transmission speeds and constant feedback delays. SIAM J. Appl. Dyn. Syst. 5(4), 670–698 (2006), doi:10.1137/050629367

    Article  Google Scholar 

  5. Berglund, N., Gentz, B.: Geometric singular perturbation theory for stochastic differential equations. J. Diff. Eq. 191, 1–54 (2003), doi:10.1016/S0022-0396(03)00020-2

    Article  Google Scholar 

  6. Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach. Springer, Berlin (2006)

    Google Scholar 

  7. Blomquist, P., Wyller, J., Einevoll, G.T.: Localized activity patterns in two-population neuronal networks. Physica D 206, 180–212 (2005), doi:10.1016/j.physd.2005.05.004

    Article  Google Scholar 

  8. Bojak, I., Liley, D.: Modeling the effects of anesthesia on the electroencephalogram. Phys. Rev. E 71, 041902 (2005), doi:10.1103/PhysRevE.71.041902

    Google Scholar 

  9. Boxler, P.: A stochastic version of the center manifold theorem. Probab. Theory. Rel. 83, 509–545 (1989), doi:10.1007/BF01845701

    Article  Google Scholar 

  10. Bressloff, P.C.: Synaptically generated wave propagation in excitable neural media. Phys. Rev. Lett. 82(14), 2979–2982 (1999), doi:10.1103/PhysRevLett.82.2979

    Article  CAS  Google Scholar 

  11. Chacron, M.J., Longtin, A., Maler, L.: The effects of spontaneous activity, background noise and the stimulus ensemble on information transfer in neurons. Network-Comp. Neural 14, 803–824 (2003), doi:10.1088/0954-898X/14/4/010

    Article  Google Scholar 

  12. Coombes, S., Lord, G., Owen, M.: Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Physica D 178, 219–241 (2003), doi:10.1016/S0167-2789(03)00002-2

    Article  Google Scholar 

  13. Coombes, S., Venkov, N., Shiau, L., Bojak, I., Liley, D., Laing, C.: Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 76, 051901–8 (2007), doi:10.1103/PhysRevE.76.051901

    Article  Google Scholar 

  14. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851–1114 (1993), doi:10.1103/RevModPhys.65.851

    Article  CAS  Google Scholar 

  15. Destexhe, A., Contreras, D.: Neuronal computations with stochastic network states. Science 314, 85–90 (2006), doi:10.1126/science.1127241

    Article  CAS  PubMed  Google Scholar 

  16. Doiron, B., Chacron, M., L. Maler, Longtin, A., Bastian, J.: Inhibitory feedback required for network burst responses to communication but not to prey stimuli. Nature 421, 539–543 (2003), doi:10.1038/nature01360

    Article  CAS  PubMed  Google Scholar 

  17. Doiron, B., Lindner, B., Longtin, A., L. Maler, Bastian, J.: Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. Phys. Rev. Lett. 93, 048101 (2004), doi:10.1103/PhysRevLett.93.048101

    Google Scholar 

  18. Drolet, F., Vinals, J.: Adiabatic reduction near a bifurcation in stochastically modulated systems. Phys. Rev. E 57(5), 5036–5043 (1998), doi:10.1103/PhysRevE.57.5036

    Article  CAS  Google Scholar 

  19. Drolet, F., Vinals, J.: Adiabatic elimination and reduced probability distribution functions in spatially extended systems with a fluctuating control parameter. Phys. Rev. E 64, 026120 (2001), doi:10.1103/PhysRevE.64.026120

    Google Scholar 

  20. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.: Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol. Cybern. 60, 121–130 (1988), doi:10.1007/BF00202899

    Article  CAS  PubMed  Google Scholar 

  21. Eggert, J., van Hemmen, J.L.: Modeling neuronal assemblies: Theory and implementation. Neural Comput. 13(9), 1923–1974 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Feller, W.: An introduction to probability theory and its applications. Wiley, New York (1966)

    Google Scholar 

  23. Folias, S., Bressloff, P.: Breathers in two-dimensional excitable neural media. Phys. Rev. Lett. 95, 208107 (2005), doi:10.1103/PhysRevLett.95.208107

    Google Scholar 

  24. Freeman, W.J.: Mass Action in the Nervous System. Academic Press, New York (1975)

    Google Scholar 

  25. Freeman, W.: Tutorial on neurobiology: from single neurons to brain chaos. Int. J. Bifurcat. Chaos 2(3), 451–482 (1992), doi:10.1142/S0218127492000653

    Article  Google Scholar 

  26. Gerstner, W.: Time structure of the activity in neural network models. Phys. Rev. E 51(1), 738–758 (1995), doi:10.1103/PhysRevE.51.738

    Article  CAS  Google Scholar 

  27. Haken, H.: Synergetics. Springer, Berlin (2004)

    Google Scholar 

  28. Horsthemke, W., Lefever, R.: Noise-induced transitions. Springer, Berlin (1984)

    Google Scholar 

  29. Huang, X., Troy, W., Schiff, S., Yang, Q., Ma, H., Laing, C., Wu, J.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24(44), 9897–9902 (2004), doi:10.1523/JNEUROSCI.2705-04.2004

    Article  CAS  PubMed  Google Scholar 

  30. Hubel, D.H., Wiesel, T.N.: Receptive fields of cells in striate cortex of very young, visually unexperienced kittens. J. Physiol 26, 994–1002 (1963)

    CAS  Google Scholar 

  31. Hutt, A.: Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds. Phys. Rev. E 75, 026214 (2007), doi:10.1103/PhysRevE.75.026214

    Google Scholar 

  32. Hutt, A.: Additive noise may change the stability of nonlinear systems. Europhys. Lett. 84, 34003 (2008), doi:10.1209/0295-5075/84/34003

    Google Scholar 

  33. Hutt, A.: Local excitation-lateral inhibition interaction yields oscillatory instabilities in nonlocally interacting systems involving finite propagation delay. Phys. Lett. A 372, 541–546 (2008), doi:10.1016/j.physleta.2007.08.018

    Article  CAS  Google Scholar 

  34. Hutt, A., Atay, F.M.: Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Physica D 203, 30–54 (2005), doi:10.1016/j.physd.2005.03.002

    Article  Google Scholar 

  35. Hutt, A., Atay, F.M.: Spontaneous and evoked activity in extended neural populations with gamma-distributed spatial interactions and transmission delay. Chaos Solitons Fract 32, 547–560 (2007), doi:10.1016/j.chaos.2005.10.091

    Article  Google Scholar 

  36. Hutt, A., Bestehorn, M., Wennekers, T.: Pattern formation in intracortical neuronal fields. Network-Comp. Neural 14, 351–368 (2003), doi:10.1088/0954-898X/14/2/310

    Article  Google Scholar 

  37. Hutt, A., Frank, T.D.: Critical fluctuations and 1/f -activity of neural fields involving transmission delays. Acta Phys. Pol. A 108(6), 1021 (2005)

    Google Scholar 

  38. Hutt, A., Longtin, A., Schimansky-Geier, L.: Additive global noise delays Turing bifurcations. Phys. Rev. Lett. 98, 230601 (2007), doi:10.1103/PhysRevLett.98.230601

    Google Scholar 

  39. Hutt, A., Longtin, A., Schimansky-Geier, L.: Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift-Hohenberg equation. Physica D 237, 755–773 (2008), doi:10.1016/j.physd.2007.10.013

    Article  Google Scholar 

  40. Hutt, A., Schimansky-Geier, L.: Anesthetic-induced transitions by propofol modeled by nonlocal neural populations involving two neuron types. J. Biol. Phys. 34(3-4), 433–440 (2008), doi:10.1007/s10867-008-9065-4

    Article  PubMed  Google Scholar 

  41. Jirsa, V., Jantzen, K., Fuchs, A., Kelso, J.: Spatiotemporal forward solution of the EEG and MEG using network modelling. IEEE Trans. Med. Imag. 21(5), 493–504 (2002), doi:10.1109/TMI.2002.1009385

    Article  Google Scholar 

  42. Kaschube, M., Schnabel, M., Wolf, F.: Self-organization and the selection of pinwheel density in visual cortical development. New J. Phys. 10, 015009 (2008), doi:10.1088/1367-2630/10/1/015009

    Google Scholar 

  43. Katz, B. (ed.): Nerve, Muscle and Synapse. McGraw-Hill, New York (1966)

    Google Scholar 

  44. Knobloch, E., Wiesenfeld, K.: Bifurcations in fluctuating systems: The center-manifold approach. J. Stat. Phys. 33(3), 611–637 (1983), doi:10.1007/BF01018837

    Article  Google Scholar 

  45. Koch, C.: Biophysics of Computation. Oxford University Press, Oxford (1999)

    Google Scholar 

  46. Kozin, F.: A survey of stability of stochastic systems. Automatica 5, 95–112 (1969)

    Article  Google Scholar 

  47. Laing, C.: Spiral waves in nonlocal equations. SIAM J. Appl. Dyn. Syst. 4(3), 588–606 (2005), doi:10.1137/040612890

    Article  Google Scholar 

  48. Laing, C., Coombes, S.: The importance of different timings of excitatory and inhibitory models. Network: Comput. Neur. Syst. 17(2), 151–172 (2006), doi:10.1080/09548980500533461

    Article  Google Scholar 

  49. Laing, C., Troy, W.: PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst. 2(3), 487–516 (2003), doi:10.1137/030600040

    Article  Google Scholar 

  50. Liley, D., Wright, J.: Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry. Network-Comp. Neural 5, 175–189 (1994), doi:10.1088/0954-898X/5/2/004

    Article  Google Scholar 

  51. Lindner, B., Schimansky-Geier, L.: Transmission of noise coded versus additive signals through a neuronal ensemble. Phys. Rev. Lett. 86, 2934–2937 (2001), doi:10.1103/PhysRevLett.86.2934

    Article  CAS  PubMed  Google Scholar 

  52. Longtin, A., Moss, F., Bulsara, A.: Time interval sequences in bistable systems and noise induced transmission of neural information. Phys. Rev. Lett. 67, 656–659 (1991), doi:10.1103/PhysRevLett.67.656

    Article  PubMed  Google Scholar 

  53. Masuda, N., Okada, M., Aihara, K.: Filtering of spatial bias and noise inputs by spatially structured neural networks. Neural Comp. 19, 1854–1870 (2007)

    Article  Google Scholar 

  54. Mountcastle, V.B.: Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Neurophysiol. 20, 408–434 (1957)

    CAS  Google Scholar 

  55. Nunez, P.: The brain wave equation: A model for the EEG. Math. Biosc. 21, 279–291 (1974)

    Article  Google Scholar 

  56. Nunez, P.: Neocortical dynamics and human EEG rhythms. Oxford University Press, New York - Oxford (1995)

    Google Scholar 

  57. Owen, M.R., Laing, C.R., Coombes, S.: Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities. New J. Phys. 9, 378 (2007), doi:10.1088/1367-2630/9/10/378

    Google Scholar 

  58. Perko, L.: Differential Equations and Dynamical Systems. Springer, Berlin (1998)

    Google Scholar 

  59. Rennie, C., Robinson, P., Wright, J.: Unified neurophysical model of EEG spectra and evoked potentials. Biol. Cybern. 86, 457–471 (2002), doi:10.1007/s00422-002-0310-9

    Article  CAS  PubMed  Google Scholar 

  60. Risken, H.: The Fokker-Planck equation Methods of solution and applications. Springer, Berlin (1989)

    Google Scholar 

  61. R.Z.Khasminskij: Stochastic stability of differential equations. Alphen aan den Rijn (1980)

    Google Scholar 

  62. Sanderson, K.: The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J. Comp. Neurol. 143, 101–118 (1971)

    Article  CAS  PubMed  Google Scholar 

  63. Schimansky-Geier, L., Tolstopjatenko, A., Ebeling, W.: Noise-induced transitions due to external additive noise. Phys. Lett. A 108(7), 329–332 (1985), doi:10.1016/0375-9601(85)90107-0

    Article  Google Scholar 

  64. Somers, D., Nelson, S., Sur, M.: An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15(8), 5448–5465 (1995)

    CAS  PubMed  Google Scholar 

  65. Steyn-Ross, M., Steyn-Ross, D., Wilson, M., Sleigh, J.: Gap junctions mediate large-scale turing structures in a mean-field cortex driven by subcortical noise. Phys. Rev. E 76, 011916 (2007), doi:10.1103/PhysRevE.76.011916

    Google Scholar 

  66. Tamas, G., Buhl, E.H., Somogyi, P.: Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. J. Neurosci. 17(16), 6352–6364 (1997)

    CAS  PubMed  Google Scholar 

  67. Thomson, J.R., Zhang, Z., Cowan, W., Grant, M., Hertz, J.A., Zuckermann, M.J.: A simple model for pattern formation in primate visual cortex for the case of monocular deprivation. Phys. Scr. T33, 102–109 (1990)

    Article  Google Scholar 

  68. Venkov, N.A., Coombes, S., Matthews, P.C.: Dynamic instabilities in scalar neural field equations with space-dependent delays. Physica D 232, 1–15 (2007), doi:10.1016/j.physd.2007.04.011

    Article  Google Scholar 

  69. Wennekers, T.: Orientation tuning properties of simple cells in area V1 derived from an approximate analysis of nonlinear neural field models. Neural Comput. 13, 1721–1747 (2001)

    Article  CAS  PubMed  Google Scholar 

  70. Wilson, H., Cowan, J.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  CAS  PubMed  Google Scholar 

  71. Wolf, F.: Symmetry, multistability, and long-range interactions in brain development. Phys. Rev. Lett. 95, 208701 (2005), doi:10.1103/PhysRevLett.95.208701

    Google Scholar 

  72. Wright, J.J.: Simulation of EEG: dynamic changes in synaptic efficacy, cerebral rhythms, and dissipative and generative activity in cortex. Biol. Cybern. 81, 131–147 (1999)

    Article  CAS  PubMed  Google Scholar 

  73. Wright, J., Liley, D.: A millimetric-scale simulation of electrocortical wave dynamics based on anatomical estimates of cortical synaptic density. Network-Comp. Neural 5(2), 191–202 (1994), doi:10.1088/0954-898X/5/2/005

    Article  Google Scholar 

  74. Xu, C., Roberts, A.: On the low-dimensional modelling of Stratonovich stochastic differential equations. Physica A 225, 62–80 (1996), doi:10.1016/0378-4371(95)00387-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hutt, A. (2010). Spatiotemporal instabilities in neural fields and the effects of additive noise. In: Steyn-Ross, D., Steyn-Ross, M. (eds) Modeling Phase Transitions in the Brain. Springer Series in Computational Neuroscience, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0796-7_3

Download citation

Publish with us

Policies and ethics