Skip to main content

Cortical patterns and gamma genesis are modulated by reversal potentials and gap-junction diffusion

  • Chapter
  • First Online:

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 4))

Abstract

In this chapter we describe a continuum model for the cortex that includes both axon-to-dendrite chemical synapses and direct neuron-to-neuron gap-junction diffusive synapses. The effectiveness of chemical synapses is determined by the voltage of the receiving dendrite V relative to its Nernst reversal potential \(V^{\rm rev}{}\). Here we explore two alternative strategies for incorporating dendritic reversal potentials, and uncover surprising differences in their stability properties and model dynamics. In the “slow-soma” variant, the \((V^{\rm rev} - V)\) weighting is applied after the input flux has been integrated at the dendrite, while for “fast-soma”, the weighting is applied directly to the input flux, prior to dendritic integration. For the slow-soma case, we find that–-provided the inhibitory diffusion (via gap-junctions) is sufficiently strong–-the cortex generates stationary Turing patterns of cortical activity. In contrast, the fast-soma destabilizes in favor of standing-wave spatial structures that oscillate at low-gamma frequency (\(\sim\)30-Hz); these spatial patterns broaden and weaken as diffusive coupling increases, and disappear altogether at moderate levels of diffusion. We speculate that the slow- and fast-soma models might correspond respectively to the idling and active modes of the cortex, with slow-soma patterns providing the default background state, and emergence of gamma oscillations in the fast-soma case signaling the transition into the cognitive state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Our prior modeling of anesthetic induction [24,25,32] and state transitions in natural sleep [23,33,34] assumed a slow-soma limit; gap-junction effects were not included.

  2. 2.

    Later we simplify the subscripting notation for diffusion so that (D ee , D ii) \(\equiv\) (D 1, D 2).

  3. 3.

    The 2-D circular convolution algorithm was written by David Young, Department of Informatics, University of Sussex, UK. His convolve2() matlab function can be downloaded from The MathWorks File Exchange, www.mathworks.com/matlabcentral/fileexchange.

References

  1. Alvarez-Maubecin, V., García-Hernández, F., Williams, J.T., Van Bockstaele, E.J.: Functional coupling between neurons and glia. J. Neurosci. 20, 4091–4098 (2000)

    CAS  PubMed  Google Scholar 

  2. Bennett, M.V., Zukin, R.S.: Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Bluhm, R.L., Miller, J., Lanius, R.A., Osuch, E.A., Boksman, K., Neufeld, R.W.J., Théberge, J., Schaefer, B., Williamson, P.: Spontaneous low frequency fluctuations in the BOLD signal in schizophrenic patients: Anomalies in the default network. Schizophrenia Bulletin 33(4), 1004–1012 (2007)

    Article  PubMed  Google Scholar 

  4. Bressloff, P.C.: New mechanism for neural pattern formation. Phys. Rev. Lett. 76(24), 4644–4647 (1996), doi:10.1103/PhysRevLett.76.4644

    Article  CAS  Google Scholar 

  5. Coombes, S., Lord, G.J., Owen, M.R.: Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Physica D 178, 219–241 (2003), doi: 10.1016/S0167-2789(03)00002-2

    Article  Google Scholar 

  6. Ermentrout, G.B., Cowan, J.D.: Temporal oscillations in neuronal nets. Journal of Mathematical Biology 7, 265–280 (1979)

    Article  CAS  PubMed  Google Scholar 

  7. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102(27), 9673–9678 (2005), doi:10.1073/pnas.0504136102

    Article  CAS  Google Scholar 

  8. Fransson, P.: Human spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005), doi:10.1002/hbm.20113

    Article  PubMed  Google Scholar 

  9. Freeman, W.J.: Mass Action in the Nervous System. Academic Press, New York (1975)

    Google Scholar 

  10. Fukuda, T., Kosaka, T., Singer, W., Galuske, R.A.W.: Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J. Neurosci. 26, 3434–3443 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Haken, H.: Brain Dynamics: Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise. Springer, Berlin (2002)

    Google Scholar 

  12. Hampson, E.C.G.M., Vaney, D.I., Weile, R.: Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J. Neurosci. 12, 4911–4922 (1992)

    CAS  PubMed  Google Scholar 

  13. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    CAS  Google Scholar 

  14. Hutt, A., Bestehorn, M., Wennekers, T.: Pattern formation in intracortical neuronal fields. Network: Computation in Neural Systems 14, 351–368 (2003)

    Article  Google Scholar 

  15. Laing, C.R., Troy, W.C., Gutkins, B., Ermentrout, G.B.: Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math. 63(1), 62–97 (2002), doi:10.1137/S0036139901389495

    Article  Google Scholar 

  16. Liley, D.T.J., Cadusch, P.J., Wright, J.J.: A continuum theory of electro-cortical activity. Neurocomputing 26–27, 795–800 (1999)

    Article  Google Scholar 

  17. Nadarajah, B., Thomaidou, D., Evans, W.H., Parnavelas, J.G.: Gap junctions in the adult cerebral cortex; Regional differences in their distribution and cellular expression of connexins. Journal of Comparative Neurology 376, 326–342 (1996)

    Article  CAS  PubMed  Google Scholar 

  18. Nunez, P.L.: The brain wave function: A model for the EEG. Mathematical Biosciences 21, 279–297 (1974)

    Article  Google Scholar 

  19. Ouyang, L., Deng, W., Zeng, L., Li, D., Gao, Q., Jiang, L., Zou, L., Cui, L., Ma, X., Huang, X.: Decreased spontaneous low-frequency BOLD signal fluctuation in first-episode treatment-naive schizophrenia. Int. J. Magn. Reson. Imaging 1(1), 61–64 (2007)

    Google Scholar 

  20. Rennie, C.J., Wright, J.J., Robinson, P.A.: Mechanisms for cortical electrical activity and emergence of gamma rhythm. J. Theor. Biol. 205, 17–35 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997)

    Article  CAS  Google Scholar 

  22. Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., Varela, F.J.: Perception’s shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., Wright, J.J.: The sleep cycle modelled as a cortical phase transition. Journal of Biological Physics 31, 547–569 (2005)

    Article  Google Scholar 

  24. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Modelling general anaesthesia as a first-order phase transition in the cortex. Progress in Biophysics and Molecular Biology 85, 369–385 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J.: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Phys. Rev. E 60, 7299–7311 (1999)

    Article  CAS  Google Scholar 

  26. Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W.: Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise. Phys. Rev. E 76, 011916 (2007), doi:10.1103/PhysRevE.76.011916

    Google Scholar 

  27. Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W.: Modeling brain activation patterns for the default and cognitive states. NeuroImage 45, 298–311 (2009), doi:10.1016/j.neuroimage.2008.11.036

    Article  PubMed  Google Scholar 

  28. Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W.: Interacting Turing and Hopf instabilities drive pattern formation in a noise-driven model cortex. In: R. Wang, F. Gu, E. Shen (eds.), Advances in Cognitive Neurodynamics ICCN 2007, chap. 40, pp. 227–232, Springer (2008)

    Google Scholar 

  29. Uhlhaas, P.J., Linden, D.E.J., Singer, W., Haenschel, C., Lindner, M., Maurer, K., Rodriguez, E.: Dysfunctional long-range coordination of neural activity during gestalt perception in schizophrenia. J. Neurosci. 26, 8168–8175 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Uhlhaas, P.J., Singer, W.: Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1), 155–168 (2006), doi:10.1016/j.neuron.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  31. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, M.T., Sleigh, J.W., Steyn-Ross, D.A., Steyn-Ross, M.L.: General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology 104, 588–593 (2006)

    Article  PubMed  Google Scholar 

  33. Wilson, M.T., Steyn-Ross, D.A., Sleigh, J.W., Steyn-Ross, M.L., Wilcocks, L.C., Gillies, I.P.: The slow oscillation and K-complex in terms of a mean-field cortical model. Journal of Computational Neuroscience 21, 243–257 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Wilson, M.T., Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Predictions and simulations of cortical dynamics during natural sleep using a continuum approach. Phys. Rev. E 72, 051910 (2005)

    Google Scholar 

  35. Wright, J.J., Liley, D.T.J.: A millimetric-scale simulation of electrocortical wave dynamics based on anatomical estimates of cortical synaptic density. Network: Comput. Neural Syst. 5, 191–202 (1994), doi:10.1088/0954-898X/5/2/005

    Article  Google Scholar 

  36. Wright, J.J., Robinson, P.A., Rennie, C.J., Gordon, E., Bourke, P.D., Chapman, C.L., Hawthorn, N., Lees, G.J., Alexander, D.: Toward an integrated continuum model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical stability. BioSystems 73, 71–88 (2001)

    Article  Google Scholar 

Download references

Acknowledgment

We thank Chris Rennie for helpful discussions on convolution formulations for the cortex. This research was supported by the Royal Society of New Zealand Marsden Fund, contract 07-UOW-037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.L. Steyn-Ross .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 12.4 Standard values for the neural model. Subscript label b means destination cell can be either of type e (excitatory) or i (inhibitory). Most of these values are drawn from Rennie et al [20].

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Steyn-Ross, M., Steyn-Ross, D., Wilson, M., Sleigh, J. (2010). Cortical patterns and gamma genesis are modulated by reversal potentials and gap-junction diffusion. In: Steyn-Ross, D., Steyn-Ross, M. (eds) Modeling Phase Transitions in the Brain. Springer Series in Computational Neuroscience, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0796-7_12

Download citation

Publish with us

Policies and ethics