Skip to main content

HIV Latency and Reactivation: Role in Neuropathogenesis

  • Chapter
  • First Online:
Book cover Chemokine Receptors and NeuroAIDS

Abstract

Human immunodeficiency virus type 1 (HIV-1) over the past 25 years has become a chronic disease in the developed world that is treatable by antiretroviral therapy but is incapable of being eradicated due to a subpopulation of cells that escape the immune system and therapies and become latently infected. This chapter discusses molecular mechanisms surrounding the development of latency, both pre- and post-integration of the proviral genome and the maintenance of latency, including the role of nucleotide levels, adenosine triphosphate (ATP), levels of certain host transcription factors (NF-κB and NFAT) as well as viral proteins (Vif and Tat), and the chromatin architecture. Also discussed are the cellular reservoirs involved in latency, including the memory CD4+ T cells, which have been proposed as one of the main latent cellular reservoirs, the monocyte–macrophage cell lineage and its role in both HIV-1 latency in the bone marrow, peripheral blood, and CNS, and other cells of the CNS such as the microglial cells and the astrocytes. Finally, the role of latency in neuropathogenesis and reseeding of the peripheral blood from these viral reservoirs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams M, Sharmeen L, Kimpton J, Romeo JM, Garcia JV, Peterlin BM, Groudine M, Emerman M (1994) Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc Natl Acad Sci USA 91(9):3862–3866

    Article  PubMed  CAS  Google Scholar 

  • Aiuti A, Turchetto L, Cota M, Cipponi A, Brambilla A, Arcelloni C, Paroni R, Vicenzi E, Bordignon C, Poli G (1999) Human CD34(+) cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus. Blood 94(1):62–73

    PubMed  CAS  Google Scholar 

  • Alberts B et al (2002) Molecular biology of the cell, 4th edn. Garland Publishing, New York

    Google Scholar 

  • Albright AV, Vos RM, Gonzalez-Scarano F (2004) Low-level HIV replication in mixed glial cultures is associated with alterations in the processing of p55(Gag). Virology 325(2):328–339

    Article  PubMed  CAS  Google Scholar 

  • Alce TM, Popik W (2004) APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 279(33):34083–34086

    Article  PubMed  CAS  Google Scholar 

  • Alexaki A, Quiterio SJ, Liu Y, Irish B, Kilareski E, Nonnemacher MR, Wigdahl B (2007) PMA-induced differentiation of a bone marrow progenitor cell line activates HIV-1 LTR-driven transcription. DNA Cell Biol 26(6):387–394

    Article  PubMed  CAS  Google Scholar 

  • An SF, Groves M, Gray F, Scaravilli F (1999) Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol 58(11):1156–1162

    Article  PubMed  CAS  Google Scholar 

  • Bailey JR, Sedaghat AR, Kieffer T, Brennan T, Lee PK, Wind-Rotolo M, Haggerty CM, Kamireddi AR, Liu Y, Lee J, Persaud D, Gallant JE, Cofrancesco J Jr, Quinn TC, Wilke CO, Ray SC, Siliciano JD, Nettles RE, Siliciano RF (2006) Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J Virol 80(13):6441–6457

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    Article  PubMed  CAS  Google Scholar 

  • Benkirane M, Chun RF, Xiao H, Ogryzko VV, Howard BH, Nakatani Y, Jeang KT (1998) Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J Biol Chem 273(38):24898–24905

    Article  PubMed  CAS  Google Scholar 

  • Bennasser Y, Yeung ML, Jeang KT (2006) HIV-1 TAR RNA subverts RNA interference in transfected cells through sequestration of TAR RNA-binding protein, TRBP. J Biol Chem 281(38):27674–27678

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12(2):142–148

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, Silverman RH, Jeang KT (1989) Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59(2):273–282

    Article  PubMed  CAS  Google Scholar 

  • Brack-Werner R, Kleinschmidt A, Ludvigsen A, Mellert W, Neumann M, Herrmann R, Khim MC, Burny A, Muller-Lantzsch N, Stavrou D et al (1992) Infection of human brain cells by HIV-1: restricted virus production in chronically infected human glial cell lines. AIDS 6(3):273–285

    Article  PubMed  CAS  Google Scholar 

  • Bres V, Kiernan R, Emiliani S, Benkirane M (2002a) Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J Biol Chem 277(25):22215–22221

    Article  PubMed  CAS  Google Scholar 

  • Bres V, Tagami H, Peloponese JM, Loret E, Jeang KT, Nakatani Y, Emiliani S, Benkirane M, Kiernan RE (2002b) Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 21(24):6811–6819

    Article  PubMed  CAS  Google Scholar 

  • Brooks DG, Hamer DH, Arlen PA, Gao L, Bristol G, Kitchen CM, Berger EA, Zack JA (2003) Molecular characterization, reactivation, and depletion of latent HIV. Immunity 19(3):413–423

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Stanwick TL, Dempsey MP, Stevenson M (1991) Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254(5030):423–427

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 89(14):6580–6584

    Article  PubMed  CAS  Google Scholar 

  • Burdo TH, Gartner S, Mauger D, Wigdahl B (2004) Region-specific distribution of human immunodeficiency virus type 1 long terminal repeats containing specific configurations of CCAAT/enhancer-binding protein site II in brains derived from demented and nondemented patients. J Neurovirol 10(Suppl 1):7–14

    PubMed  CAS  Google Scholar 

  • Byrn RA, Kiessling AA (1998) Analysis of human immunodeficiency virus in semen: indications of a genetically distinct virus reservoir. J Reprod Immunol 41(1–2):161–176

    Article  PubMed  CAS  Google Scholar 

  • Carr JM, Hocking H, Li P, Burrell CJ (1999) Rapid and efficient cell-to-cell transmission of human immunodeficiency virus infection from monocyte-derived macrophages to peripheral blood lymphocytes. Virology 265(2):319–329

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Jozwiak R, Wang B, Ng T, Ge YC, Bolton W, Dwyer DE, Randle C, Osborn R, Cunningham AL, Saksena NK (1998) Unique HIV type 1 V3 region sequences derived from six different regions of brain: region-specific evolution within host-determined quasispecies. AIDS Res Hum Retroviruses 14(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, Misteli T (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299(5607):721–725

    Article  PubMed  CAS  Google Scholar 

  • Chiu YL, Coronel E, Ho CK, Shuman S, Rana TM (2001) HIV-1 Tat protein interacts with mammalian capping enzyme and stimulates capping of TAR RNA. J Biol Chem 276(16):12959–12966

    Article  PubMed  CAS  Google Scholar 

  • Chiu YL, Ho CK, Saha N, Schwer B, Shuman S, Rana TM (2002) Tat stimulates cotranscriptional capping of HIV mRNA. Mol Cell 10(3):585–597

    Article  PubMed  CAS  Google Scholar 

  • Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC (2005) Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435(7038):108–114

    Article  PubMed  CAS  Google Scholar 

  • Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF (1995) In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med 1(12):1284–1290

    Article  PubMed  CAS  Google Scholar 

  • Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, Kuo YH, Brookmeyer R, Zeiger MA, Barditch-Crovo P, Siliciano RF (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387(6629):183–188

    Article  PubMed  CAS  Google Scholar 

  • Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS (1998) Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci USA 95(15):8869–8873

    Article  PubMed  CAS  Google Scholar 

  • Chun TW, Davey RT Jr, Ostrowski M, Shawn Justement J, Engel D, Mullins JI, Fauci AS (2000) Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med 6(7):757–761

    Article  PubMed  CAS  Google Scholar 

  • Churcher MJ, Lamont C, Hamy F, Dingwall C, Green SM, Lowe AD, Butler JG, Gait MJ, Karn J (1993) High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol 230(1):90–110

    Article  PubMed  CAS  Google Scholar 

  • Clarke JR, White NC, Weber JN (2000) HIV compartmentalization: pathogenesis and clinical implications. AIDS Rev 2:15–22

    Google Scholar 

  • Cosenza MA, Zhao ML, Si Q, Lee SC (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12(4):442–455

    Article  PubMed  CAS  Google Scholar 

  • Cosma MP (2002) Ordered recruitment: gene-specific mechanism of transcription activation. Mol Cell 10(2):227–236

    Article  PubMed  CAS  Google Scholar 

  • Coull JJ, Romerio F, Sun JM, Volker JL, Galvin KM, Davie JR, Shi Y, Hansen U, Margolis DM (2000) The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J Virol 74(15):6790–6799

    Article  PubMed  CAS  Google Scholar 

  • Crowe SM, Mills J, Kirihara J, Boothman J, Marshall JA, McGrath MS (1990) Full-length recombinant CD4 and recombinant gp120 inhibit fusion between HIV infected macrophages and uninfected CD4-expressing T-lymphoblastoid cells. AIDS Res Hum Retroviruses 6(8):1031–1037

    PubMed  CAS  Google Scholar 

  • Crowe SM, Mills J, Elbeik T, Lifson JD, Kosek J, Marshall JA, Engleman EG, McGrath MS (1992) Human immunodeficiency virus-infected monocyte-derived macrophages express surface gp120 and fuse with CD4 lymphoid cells in vitro: a possible mechanism of T lymphocyte depletion in vivo. Clin Immunol Immunopathol 65(2):143–151

    Article  PubMed  CAS  Google Scholar 

  • Cujec TP, Okamoto H, Fujinaga K, Meyer J, Chamberlin H, Morgan DO, Peterlin BM (1997) The HIV transactivator TAT binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes Dev 11(20):2645–2657

    Article  PubMed  CAS  Google Scholar 

  • Cullen BR (2003) Nuclear mRNA export: insights from virology. Trends Biochem Sci 28(8):419–424

    Article  PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Marzio G, Gutierrez MI, Kang LY, Falaschi A, Giacca M (1995) Molecular and functional interactions of transcription factor USF with the long terminal repeat of human immunodeficiency virus type 1. J Virol 69(5):2765–2775

    PubMed  Google Scholar 

  • Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42(9):1736–1739

    Article  PubMed  CAS  Google Scholar 

  • Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA (1986) The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell 44(6):941–947

    Article  PubMed  CAS  Google Scholar 

  • Demarchi F, D’Agaro P, Falaschi A, Giacca M (1993) In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. J Virol 67(12):7450–7460

    PubMed  CAS  Google Scholar 

  • Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li H, Lee CG, Kashanchi F (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277(2):278–295

    Article  PubMed  CAS  Google Scholar 

  • Diamond TL, Roshal M, Jamburuthugoda VK, Reynolds HM, Merriam AR, Lee KY, Balakrishnan M, Bambara RA, Planelles V, Dewhurst S, Kim B (2004) Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J Biol Chem 279(49):51545–51553

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Janas AM, Wang JH, Olson WJ, Wu L (2007) Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virol 81(20):11352–11362

    Article  PubMed  CAS  Google Scholar 

  • Dornadula G, Zhang H, VanUitert B, Stern J, Livornese L Jr, Ingerman MJ, Witek J, Kedanis RJ, Natkin J, DeSimone J, Pomerantz RJ (1999) Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA 282(17):1627–1632

    Article  PubMed  CAS  Google Scholar 

  • du Chene I, Basyuk E, Lin YL, Triboulet R, Knezevich A, Chable-Bessia C, Mettling C, Baillat V, Reynes J, Corbeau P, Bertrand E, Marcello A, Emiliani S, Kiernan R, Benkirane M (2007) Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 26(2):424–435

    Article  PubMed  CAS  Google Scholar 

  • Duh EJ, Maury WJ, Folks TM, Fauci AS, Rabson AB (1989) Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci USA 86(15):5974–5978

    Article  PubMed  CAS  Google Scholar 

  • el Kharroubi A, Martin MA (1996) cis-acting sequences located downstream of the human immunodeficiency virus type 1 promoter affect its chromatin structure and transcriptional activity. Mol Cell Biol 16(6):2958–2966

    PubMed  CAS  Google Scholar 

  • Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, Lewin SR, Gorry PR, Jaworowski A, Greene WC, Sonza S, Crowe SM (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol 178(10):6581–6589

    PubMed  CAS  Google Scholar 

  • Emiliani S, Van Lint C, Fischle W, Paras P Jr, Ott M, Brady J, Verdin E (1996) A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency. Proc Natl Acad Sci USA 93(13):6377–6381

    Article  PubMed  CAS  Google Scholar 

  • Emiliani S, Fischle W, Ott M, Van Lint C, Amella CA, Verdin E (1998) Mutations in the tat gene are responsible for human immunodeficiency virus type 1 postintegration latency in the U1 cell line. J Virol 72(2):1666–1670

    PubMed  CAS  Google Scholar 

  • Fan L, Peden K (1992) Cell-free transmission of Vif mutants of HIV-1. Virology 190(1):19–29

    Article  PubMed  CAS  Google Scholar 

  • Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278(5341):1295–1300

    Article  PubMed  CAS  Google Scholar 

  • Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5(5):512–517

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L’Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol 7(6):528–541

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Smith T, Croul S, Adeniyi A, Rybicka K, Morgello S, Khalili K, Rappaport J (2004) Macrophage/microglial accumulation and proliferating cell nuclear antigen expression in the central nervous system in human immunodeficiency virus encephalopathy. Am J Pathol 164(6):2089–2099

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W, Verdin E (1999) A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem 274(17):11713–11720

    Article  PubMed  CAS  Google Scholar 

  • Fisher AG, Feinberg MB, Josephs SF, Harper ME, Marselle LM, Reyes G, Gonda MA, Aldovini A, Debouk C, Gallo RC et al (1986) The trans-activator gene of HTLV-III is essential for virus replication. Nature 320(6060):367–371

    Article  PubMed  CAS  Google Scholar 

  • Furia B, Deng L, Wu K, Baylor S, Kehn K, Li H, Donnelly R, Coleman T, Kashanchi F (2002) Enhancement of nuclear factor-kappa B acetylation by coactivator p300 and HIV-1 Tat proteins. J Biol Chem 277(7):4973–4980

    Article  PubMed  CAS  Google Scholar 

  • Furlini G, Vignoli M, Ramazzotti E, Re MC, Visani G, La P (1996) A concurrent human herpesvirus-6 infection renders two human hematopoietic progenitor (TF-1 and KG-1) cell lines susceptible to human immunodeficiency virus type-1. Blood 87(11):4737–4745

    PubMed  CAS  Google Scholar 

  • Ganesh L, Burstein E, Guha-Niyogi A, Louder MK, Mascola JR, Klomp LW, Wijmenga C, Duckett CS, Nabel GJ (2003) The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426(6968):853–857

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez LF, Mavankal G, Neveu JM, Lane WS, Ivanov D, Gaynor RB (1997) Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. EMBO J 16(10):2836–2850

    Article  PubMed  CAS  Google Scholar 

  • Garden GA (2002) Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 40(2):240–251

    Article  PubMed  Google Scholar 

  • Gartner S (2000) HIV infection and dementia. Science 287(5453):602–604

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5):587–597

    Article  PubMed  CAS  Google Scholar 

  • Ghose R, Liou LY, Herrmann CH, Rice AP (2001) Induction of TAK (cyclin T1/P-TEFb) in purified resting CD4(+) T lymphocytes by combination of cytokines. J Virol 75(23):11336–11343

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Selby MJ, Peterlin BM (1993) Synergism between Tat and VP16 in trans-activation of HIV-1 LTR. J Mol Biol 234(3):610–619

    Article  PubMed  CAS  Google Scholar 

  • Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38(5):755–762

    Article  PubMed  CAS  Google Scholar 

  • Goff SP (2001) Retroviridae: the retroviruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1871–1940

    Google Scholar 

  • Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301(5634):798–802

    Article  PubMed  CAS  Google Scholar 

  • Groot F, Welsch S, Sattentau QJ (2008) Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood 111(9):4660–4663

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Cen S, Niu M, Yang Y, Gorelick RJ, Kleiman L (2007) The interaction of APOBEC3G with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3Lys annealing to viral RNA. J Virol 81(20):11322–11331

    Article  PubMed  CAS  Google Scholar 

  • Haase AT (1986) The AIDS lentivirus connection. Microb Pathog 1(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu X, Pierson TC, Margolick JB, Siliciano RF, Siliciano JD (2004) Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol 78(12):6122–6133

    Article  PubMed  CAS  Google Scholar 

  • Harbol AW, Liesveld JL, Simpson-Haidaris PJ, Abboud CN (1994) Mechanisms of cytopenia in human immunodeficiency virus infection. Blood Rev 8(4):241–251

    Article  PubMed  CAS  Google Scholar 

  • Harris RS, Sheehy AM, Craig HM, Malim MH, Neuberger MS (2003) DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses. Nat Immunol 4(7):641–643

    Article  PubMed  CAS  Google Scholar 

  • He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Busciglio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski J, Gabuzda D (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385(6617):645–649

    Article  PubMed  CAS  Google Scholar 

  • Henderson A, Holloway A, Reeves R, Tremethick DJ (2004) Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter. Mol Cell Biol 24(1):389–397

    Article  PubMed  CAS  Google Scholar 

  • Hermankova M, Ray SC, Ruff C, Powell-Davis M, Ingersoll R, D’Aquila RT, Quinn TC, Siliciano JD, Siliciano RF, Persaud D (2001) HIV-1 drug resistance profiles in children and adults with viral load of <50 copies/ml receiving combination therapy. JAMA 286(2):196–207

    Article  PubMed  CAS  Google Scholar 

  • Hermankova M, Siliciano JD, Zhou Y, Monie D, Chadwick K, Margolick JB, Quinn TC, Siliciano RF (2003) Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J Virol 77(13):7383–7392

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Vass K, Lassmann H (1992) Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol 51(3):246–256

    Article  PubMed  CAS  Google Scholar 

  • Ho DD, Rota TR, Hirsch MS (1986) Infection of monocyte/macrophages by human T lymphotropic virus type III. J Clin Invest 77(5):1712–1715

    Article  PubMed  CAS  Google Scholar 

  • Hogan TH, Stauff DL, Krebs FC, Gartner S, Quiterio SJ, Wigdahl B (2003) Structural and functional evolution of human immunodeficiency virus type 1 long terminal repeat CCAAT/enhancer binding protein sites and their use as molecular markers for central nervous system disease progression. J Neurovirol 9(1):55–68

    PubMed  CAS  Google Scholar 

  • Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H (2007) Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13(10):1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Nagano K, Kawakami K (1993) Possible implications of Sp1-induced bending of DNA on synergistic activation of transcription. Gene 136(1–2):341–343

    PubMed  CAS  Google Scholar 

  • Ishida T, Hamano A, Koiwa T, Watanabe T (2006) 5′ long terminal repeat (LTR)-selective methylation of latently infected HIV-1 provirus that is demethylated by reactivation signals. Retrovirology 3:69

    Article  PubMed  CAS  Google Scholar 

  • Jenkins M, Hanley MB, Moreno MB, Wieder E, McCune JM (1998) Human immunodeficiency virus-1 infection interrupts thymopoiesis and multilineage hematopoiesis in vivo. Blood 91(8):2672–2678

    PubMed  CAS  Google Scholar 

  • Jones KA, Peterlin BM (1994) Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem 63:717–743

    Article  PubMed  CAS  Google Scholar 

  • Kao SY, Calman AF, Luciw PA, Peterlin BM (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330(6147):489–493

    Article  PubMed  CAS  Google Scholar 

  • Kieffer TL, Finucane MM, Nettles RE, Quinn TC, Broman KW, Ray SC, Persaud D, Siliciano RF (2004) Genotypic analysis of HIV-1 drug resistance at the limit of detection: virus production without evolution in treated adults with undetectable HIV loads. J Infect Dis 189(8):1452–1465

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita S, Su L, Amano M, Timmerman LA, Kaneshima H, Nolan GP (1997) The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 6(3):235–244

    Article  PubMed  CAS  Google Scholar 

  • Klase Z, Kale P, Winograd R, Gupta MV, Heydarian M, Berro R, McCaffrey T, Kashanchi F (2007) HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 8:63

    Article  PubMed  CAS  Google Scholar 

  • Koka PS, Fraser JK, Bryson Y, Bristol GC, Aldrovandi GM, Daar ES, Zack JA (1998) Human immunodeficiency virus inhibits multilineage hematopoiesis in vivo. J Virol 72(6):5121–5127

    PubMed  CAS  Google Scholar 

  • Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111(2):194–213

    Article  PubMed  CAS  Google Scholar 

  • Kravcik S, Gallicano K, Roth V, Cassol S, Hawley-Foss N, Badley A, Cameron DW (1999) Cerebrospinal fluid HIV RNA and drug levels with combination ritonavir and saquinavir. J Acquir Immune Defic Syndr 21(5):371–375

    PubMed  CAS  Google Scholar 

  • Krebs FC, Miller SR, Catalone BJ, Fichorova R, Anderson D, Malamud D, Howett MK, Wigdahl B (2002) Comparative in vitro sensitivities of human immune cell lines, vaginal and cervical epithelial cell lines, and primary cells to candidate microbicides nonoxynol 9, C31G, and sodium dodecyl sulfate. Antimicrob Agents Chemother 46(7):2292–2298

    Article  PubMed  CAS  Google Scholar 

  • Lambotte O, Taoufik Y, de Goer MG, Wallon C, Goujard C, Delfraissy JF (2000) Detection of infectious HIV in circulating monocytes from patients on prolonged highly active antiretroviral therapy. J Acquir Immune Defic Syndr 23(2):114–119

    PubMed  CAS  Google Scholar 

  • Laspia MF, Rice AP, Mathews MB (1990) Synergy between HIV-1 Tat and adenovirus E1A is principally due to stabilization of transcriptional elongation. Genes Dev 4(12B):2397–2408

    Article  PubMed  CAS  Google Scholar 

  • Lassen K, Han Y, Zhou Y, Siliciano J, Siliciano RF (2004a) The multifactorial nature of HIV-1 latency. Trends Mol Med 10(11):525–531

    Article  PubMed  CAS  Google Scholar 

  • Lassen KG, Bailey JR, Siliciano RF (2004b) Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J Virol 78(17):9105–9114

    Article  PubMed  CAS  Google Scholar 

  • Lassen KG, Ramyar KX, Bailey JR, Zhou Y, Siliciano RF (2006) Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog 2(7):e68

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Schmied M, Vass K, Hickey WF (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7(1):19–24

    Article  PubMed  CAS  Google Scholar 

  • Lavi E, Strizki JM, Ulrich AM, Zhang W, Fu L, Wang Q, O’Connor M, Hoxie JA, Gonzalez-Scarano F (1997) CXCR-4 (Fusin), a co-receptor for the type 1 human immunodeficiency virus (HIV-1), is expressed in the human brain in a variety of cell types, including microglia and neurons. Am J Pathol 151(4):1035–1042

    PubMed  CAS  Google Scholar 

  • Lawrence DM, Durham LC, Schwartz L, Seth P, Maric D, Major EO (2004) Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J Virol 78(14):7319–7328

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Guo F, Zhang L, Kleiman L, Cen S (2007) APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 282(44):32065–32074

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Cullen BR (2007) Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J Virol 81(22):12218–12226

    Article  PubMed  CAS  Google Scholar 

  • Liu JO (2005) The yins of T cell activation. Sci STKE 2005(265):re1

    PubMed  Google Scholar 

  • Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000) Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J Neurovirol 6(Suppl 1):S70–S81

    PubMed  CAS  Google Scholar 

  • Liu H, Dow EC, Arora R, Kimata JT, Bull LM, Arduino RC, Rice AP (2006) Integration of human immunodeficiency virus type 1 in untreated infection occurs preferentially within genes. J Virol 80(15):7765–7768

    Article  PubMed  CAS  Google Scholar 

  • Lore K, Smed-Sorensen A, Vasudevan J, Mascola JR, Koup RA (2005) Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201(12):2023–2033

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Wang T, Liu B, Tian C, Xiao Z, Kappes J, Yu XF (2007) Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 81(13):7238–7248

    Article  PubMed  CAS  Google Scholar 

  • Madani N, Kabat D (2000) Cellular and viral specificities of human immunodeficiency virus type 1 vif protein. J Virol 74(13):5982–5987

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi T, Parra M, Vries RG, Kauder SE, Verrijzer CP, Ott M, Verdin E (2006) The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem 281(29):19960–19968

    Article  PubMed  CAS  Google Scholar 

  • Majka M, Rozmyslowicz T, Lee B, Murphy SL, Pietrzkowski Z, Gaulton GN, Silberstein L, Ratajczak MZ (1999) Bone marrow CD34(+) cells and megakaryoblasts secrete beta-chemokines that block infection of hematopoietic cells by M-tropic R5 HIV. J Clin Invest 104(12):1739–1749

    Article  PubMed  CAS  Google Scholar 

  • Majka M, Rozmyslowicz T, Ratajczak J, Dobrowsky A, Pietrzkowski Z, Gaulton GN, Janowska-Wieczorek A, Ratajczak MZ (2000) The limited infectability by R5 HIV of CD34(+) cells from thymus, cord, and peripheral blood and bone marrow is explained by their ability to produce beta-chemokines. Exp Hematol 28(12):1334–1342

    Article  PubMed  CAS  Google Scholar 

  • Maldarelli F, Palmer S, King MS, Wiegand A, Polis MA, Mican J, Kovacs JA, Davey RT, Rock-Kress D, Dewar R, Liu S, Metcalf JA, Rehm C, Brun SC, Hanna GJ, Kempf DJ, Coffin JM, Mellors JW (2007) ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog 3(4):e46

    Article  PubMed  CAS  Google Scholar 

  • Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, Peng J, Blau C, Hazuda D, Price D, Flores O (1997) P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 11(20):2633–2644

    Article  PubMed  CAS  Google Scholar 

  • Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424(6944):99–103

    Article  PubMed  CAS  Google Scholar 

  • Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, Aunis D, Rohr O (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26(2):412–423

    Article  PubMed  CAS  Google Scholar 

  • Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci USA 95(23):13519–13524

    Article  PubMed  CAS  Google Scholar 

  • Mbisa JL, Barr R, Thomas JA, Vandegraaff N, Dorweiler IJ, Svarovskaia ES, Brown WL, Mansky LM, Gorelick RJ, Harris RS, Engelman A, Pathak VK (2007) Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 81(13):7099–7110

    Article  PubMed  CAS  Google Scholar 

  • McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NM, McArthur JH, Selnes OA, Jacobson LP et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43(11):2245–2252

    Article  PubMed  CAS  Google Scholar 

  • McElrath MJ, Pruett JE, Cohn ZA (1989) Mononuclear phagocytes of blood and bone marrow: comparative roles as viral reservoirs in human immunodeficiency virus type 1 infections. Proc Natl Acad Sci USA 86(2):675–679

    Article  PubMed  CAS  Google Scholar 

  • McElrath MJ, Steinman RM, Cohn ZA (1991) Latent HIV-1 infection in enriched populations of blood monocytes and T cells from seropositive patients. J Clin Invest 87(1):27–30

    Article  PubMed  CAS  Google Scholar 

  • Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabuzda D (2004) Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem 279(9):7792–7798

    Article  PubMed  CAS  Google Scholar 

  • Meyerhans A, Vartanian JP, Hultgren C, Plikat U, Karlsson A, Wang L, Eriksson S, Wain-Hobson S (1994) Restriction and enhancement of human immunodeficiency virus type 1 replication by modulation of intracellular deoxynucleoside triphosphate pools. J Virol 68(1):535–540

    PubMed  CAS  Google Scholar 

  • Misteli T (2004) Spatial positioning; a new dimension in genome function. Cell 119(2):153–156

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2(8):E234

    Article  PubMed  CAS  Google Scholar 

  • Muesing MA, Smith DH, Capon DJ (1987) Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48(4):691–701

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Cross GD, Callaway CS, McDougal JS (1986) In vitro infection of human monocytes with human T lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). J Immunol 137(1):323–329

    PubMed  CAS  Google Scholar 

  • O’Brien WA (1994) HIV-1 entry and reverse transcription in macrophages. J Leukoc Biol 56(3):273–277

    PubMed  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87(5):953–959

    Article  PubMed  CAS  Google Scholar 

  • Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94(1):35–44

    Article  PubMed  CAS  Google Scholar 

  • Omoto S, Ito M, Tsutsumi Y, Ichikawa Y, Okuyama H, Brisibe EA, Saksena NK, Fujii YR (2004) HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1:44

    Article  PubMed  CAS  Google Scholar 

  • Otero M, Nunnari G, Leto D, Sullivan J, Wang FX, Frank I, Xu Y, Patel C, Dornadula G, Kulkosky J, Pomerantz RJ (2003) Peripheral blood Dendritic cells are not a major reservoir for HIV type 1 in infected individuals on virally suppressive HAART. AIDS Res Hum Retroviruses 19(12):1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, Dewar RL, Planta A, Liu S, Metcalf JA, Mellors JW, Coffin JM (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41(10):4531–4536

    Article  PubMed  CAS  Google Scholar 

  • Parada CA, Roeder RG (1996) Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384(6607):375–378

    Article  PubMed  CAS  Google Scholar 

  • Peluso R, Haase A, Stowring L, Edwards M, Ventura P (1985) A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology 147(1):231–236

    Article  PubMed  CAS  Google Scholar 

  • Peng G, Greenwell-Wild T, Nares S, Jin W, Lei KJ, Rangel ZG, Munson PJ, Wahl SM (2007) Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110(1):393–400

    Article  PubMed  CAS  Google Scholar 

  • Pereira LA, Bentley K, Peeters A, Churchill MJ, Deacon NJ (2000) A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res 28(3):663–668

    Article  PubMed  CAS  Google Scholar 

  • Persaud D, Zhou Y, Siliciano JM, Siliciano RF (2003) Latency in human immunodeficiency virus type 1 infection: no easy answers. J Virol 77(3):1659–1665

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Tamkun JW (1995) The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Sci 20(4):143–146

    Article  PubMed  CAS  Google Scholar 

  • Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, Siliciano RF (2002) Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J Virol 76(17):8518–8531

    Article  PubMed  CAS  Google Scholar 

  • Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997) Unique monocyte subset in patients with AIDS dementia. Lancet 349(9053):692–695

    Article  PubMed  CAS  Google Scholar 

  • Pulliam L, Sun B, Rempel H (2004) Invasive chronic inflammatory monocyte phenotype in subjects with high HIV-1 viral load. J Neuroimmunol 157(1–2):93–98

    Article  PubMed  CAS  Google Scholar 

  • Quiterio S, Grant C, Hogan TH, Krebs FC, Wigdahl B (2003) C/EBP- and Tat-mediated activation of the HIV-1 LTR in CD34+ hematopoietic progenitor cells. Biomed Pharmacother 57(1):49–56

    Article  PubMed  CAS  Google Scholar 

  • Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG, Gartner S (2006) Bone marrow diffusion measures correlate with dementia severity in HIV patients. AJNR Am J Neuroradiol 27(3):589–592

    PubMed  CAS  Google Scholar 

  • Rana TM, Jeang KT (1999) Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys 365(2):175–185

    Article  PubMed  CAS  Google Scholar 

  • Regez RM, Kleipool AE, Speekenbrink RG, Frissen PH (2005) The risk of needle stick accidents during surgical procedures: HIV-1 viral load in blood and bone marrow. Int J STD AIDS 16(10):671–672

    Article  PubMed  Google Scholar 

  • Rohr O, Marban C, Aunis D, Schaeffer E (2003) Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 74(5):736–749

    Article  PubMed  CAS  Google Scholar 

  • Rolinski B, Bogner JR, Sadri I, Wintergerst U, Goebel FD (1997) Absorption and elimination kinetics of zidovudine in the cerebrospinal fluid in HIV-1-infected patients. J Acquir Immune Defic Syndr Hum Retrovirol 15(3):192–197

    Article  PubMed  CAS  Google Scholar 

  • Ruff CT, Ray SC, Kwon P, Zinn R, Pendleton A, Hutton N, Ashworth R, Gange S, Quinn TC, Siliciano RF, Persaud D (2002) Persistence of wild-type virus and lack of temporal structure in the latent reservoir for human immunodeficiency virus type 1 in pediatric patients with extensive antiretroviral exposure. J Virol 76(18):9481–9492

    Article  PubMed  CAS  Google Scholar 

  • Ruiz ME, Cicala C, Arthos J, Kinter A, Catanzaro AT, Adelsberger J, Holmes KL, Cohen OJ, Fauci AS (1998) Peripheral blood-derived CD34+ progenitor cells: CXC chemokine receptor 4 and CC chemokine receptor 5 expression and infection by HIV. J Immunol 161(8):4169–4176

    PubMed  CAS  Google Scholar 

  • Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4):521–529

    Article  PubMed  CAS  Google Scholar 

  • Sharova N, Swingler C, Sharkey M, Stevenson M (2005) Macrophages archive HIV-1 virions for dissemination in trans. EMBO J 24(13):2481–2489

    Article  PubMed  CAS  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650

    Article  PubMed  CAS  Google Scholar 

  • Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9(11):1404–1407

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Siliciano RF (2008) Viral reservoirs, residual viremia, and the potential of highly active antiretroviral therapy to eradicate HIV infection. J Allergy Clin Immunol 122(1):22–28

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299(5603):112–114

    Article  PubMed  CAS  Google Scholar 

  • Simon JH, Gaddis NC, Fouchier RA, Malim MH (1998) Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med 4(12):1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Smed-Sorensen A, Lore K, Vasudevan J, Louder MK, Andersson J, Mascola JR, Spetz AL, Koup RA (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 79(14):8861–8869

    Article  PubMed  CAS  Google Scholar 

  • Spira AI, Marx PA, Patterson BK, Mahoney J, Koup RA, Wolinsky SM, Ho DD (1996) Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med 183(1):215–225

    Article  PubMed  CAS  Google Scholar 

  • Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299(5603):114–116

    Article  PubMed  CAS  Google Scholar 

  • Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA (1990) HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9(5):1551–1560

    PubMed  CAS  Google Scholar 

  • Stopak K, de Noronha C, Yonemoto W, Greene WC (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12(3):591–601

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom JB, Little DM, Villinger F, Ellis JE, Ansari AA (2004) Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells. J Immunol 172(7):4391–4401

    PubMed  CAS  Google Scholar 

  • Suspene R, Sommer P, Henry M, Ferris S, Guetard D, Pochet S, Chester A, Navaratnam N, Wain-Hobson S, Vartanian JP (2004) APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32(8):2421–2429

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD (1996) Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 39(6):705–711

    Article  PubMed  CAS  Google Scholar 

  • Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N (1995) CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol 25(12):3418–3424

    Article  PubMed  CAS  Google Scholar 

  • Tong-Starksen SE, Luciw PA, Peterlin BM (1987) Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc Natl Acad Sci USA 84(19):6845–6849

    Article  PubMed  CAS  Google Scholar 

  • Tornatore C, Chandra R, Berger JR, Major EO (1994) HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 44(3 Pt 1):481–487

    Google Scholar 

  • Treand C, du Chene I, Bres V, Kiernan R, Benarous R, Benkirane M, Emiliani S (2006) Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO J 25(8):1690–1699

    Article  PubMed  CAS  Google Scholar 

  • Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, Cardinaud B, Maurin T, Barbry P, Baillat V, Reynes J, Corbeau P, Jeang KT, Benkirane M (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315(5818):1579–1582

    Article  PubMed  CAS  Google Scholar 

  • Trillo-Pazos G, Diamanturos A, Rislove L, Menza T, Chao W, Belem P, Sadiq S, Morgello S, Sharer L, Volsky DJ (2003) Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol 13(2):144–154

    Article  PubMed  CAS  Google Scholar 

  • Van Lint C, Emiliani S, Ott M, Verdin E (1996) Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15(5):1112–1120

    PubMed  Google Scholar 

  • Van Lint C, Amella CA, Emiliani S, John M, Jie T, Verdin E (1997) Transcription factor binding sites downstream of the human immunodeficiency virus type 1 transcription start site are important for virus infectivity. J Virol 71(8):6113–6127

    PubMed  Google Scholar 

  • Verdin E (1991) DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol 65(12):6790–6799

    PubMed  CAS  Google Scholar 

  • Verdin E, Paras P Jr, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12(8):3249–3259

    PubMed  CAS  Google Scholar 

  • Verhofstede C, Noe A, Demecheleer E, De Cabooter N, Van Wanzeele F, Van Der Gucht B, Vogelaers D, Plum J (2004) Drug-resistant variants that evolve during nonsuppressive therapy persist in HIV-1-infected peripheral blood mononuclear cells after long-term highly active antiretroviral therapy. J Acquir Immune Defic Syndr 35(5):473–483

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Trillo-Pazos G, Kim SY, Canki M, Morgello S, Sharer LR, Gelbard HA, Su ZZ, Kang DC, Brooks AI, Fisher PB, Volsky DJ (2004) Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: potential role in neuropathogenesis. J Neurovirol 10(Suppl 1):25–32

    PubMed  Google Scholar 

  • Watkins BA, Dorn HH, Kelly WB, Armstrong RC, Potts BJ, Michaels F, Kufta CV, Dubois-Dalcq M (1990) Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 249(4968):549–553

    Article  PubMed  CAS  Google Scholar 

  • Weeks KM, Crothers DM (1991) RNA recognition by Tat-derived peptides: interaction in the major groove? Cell 66(3):577–588

    Article  PubMed  CAS  Google Scholar 

  • Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92(4):451–462

    Article  PubMed  CAS  Google Scholar 

  • Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 83(18):7089–7093

    Article  PubMed  CAS  Google Scholar 

  • Williams KC, Hickey WF (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25:537–562

    Article  PubMed  CAS  Google Scholar 

  • Williams K, Alvarez X, Lackner AA (2001a) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36(2):156–164

    Article  PubMed  CAS  Google Scholar 

  • Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001b) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193(8):905–915

    Article  PubMed  CAS  Google Scholar 

  • Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25(1):139–149

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Chao DM, Imbalzano AN, Schnitzler GR, Kingston RE, Young RA (1996) RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84(2):235–244

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Marsh JW (2003) Gene transcription in HIV infection. Microbes Infect 5(11):1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300(5626):1749–1751

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302(5647):1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Konig R, Pillai S, Chiles K, Kearney M, Palmer S, Richman D, Coffin JM, Landau NR (2004a) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11(5):435–442

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Xiao Z, Ehrlich ES, Yu X, Yu XF (2004b) Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev 18(23):2867–2872

    Article  PubMed  CAS  Google Scholar 

  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61(2):213–222

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Chung C, Hu BS, He T, Guo Y, Kim AJ, Skulsky E, Jin X, Hurley A, Ramratnam B, Markowitz M, Ho DD (2000) Genetic characterization of rebounding HIV-1 after cessation of highly active antiretroviral therapy. J Clin Invest 106(7):839–845

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95(5):625–636

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Chen D, Pierstorff E, Luo K (1998) Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. EMBO J 17(13):3681–3691

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Zhang H, Siliciano JD, Siliciano RF (2005) Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol 79(4):2199–2210

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Pe’ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, Amendt B, Mathews MB, Price DH (1997) Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 11(20):2622–2632

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Muthui D, Holte S, Nickle D, Feng F, Brodie S, Hwangbo Y, Mullins JI, Corey L (2002) Evidence for human immunodeficiency virus type 1 replication in vivo in CD14(+) monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy. J Virol 76(2):707–716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were funded in part by the Public Health Service, National Institutes of Health through grants (B. Wigdahl, Principal Investigator) from the National Institute of Neurological Disorders and Stroke, NS32092 and NS46263, and the National Institute of Drug Abuse, DA19807

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Wigdahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Banerjee, A., Nonnemacher, M.R., Wigdahl, B. (2010). HIV Latency and Reactivation: Role in Neuropathogenesis. In: Meucci, O. (eds) Chemokine Receptors and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0793-6_5

Download citation

Publish with us

Policies and ethics