HIV Neuroinvasion: Early Events, Late Manifestations

  • Maria F. Chen
  • Samantha Soldan
  • Dennis L. Kolson


Human immunodeficiency virus type 1 (HIV-1) infection affects more that 32 million people worldwide (2007) and is associated with central nervous system (CNS) dysfunction in at least 30% of infected individuals, despite treatment with highly active antiretroviral therapy (HAART). The spectrum of cognitive disorders ranges from mild impairment of higher cortical functions to dementia (HIV associated dementia, HAD) and HIV-associated neurocognitive disorders (HAND). The use of HAART has lessened the severity but not the prevalence of HAND, and improving neurological outcomes will require more effective antiviral drug effects in the CNS and adjunctive therapies directed toward mechanisms and pathways of HIV-induced neurodegeneration. Identifying such targets requires understanding the events preceding irreversible neuronal damage in the CNS: HIV entry, replication in cellular reservoirs, neuroimmune activation, production of neurotoxins (HIV proteins and cellular factors), and neuronal repair responses. Studies of HIV infected individuals and simian immunodeficiency virus (SIV)–infected macaques, and numerous in vitro model systems of HIV neurodegeneration have suggested a central role for chemokines and their receptors in modulating these pathogenic processes during the course of CNS infection. This chapter addresses selected aspects of our current understanding of HIV neuropathogenesis, based on in vivo and in vitro studies, which are modulated directly and indirectly through chemokine/chemokine receptor interactions. Some of these associations are firmly established through published studies, and others are more speculative. Without doubt, many of the steps in HIV neuropathogenesis apply to other neurodegenerative diseases, and common approaches for neuroprotection will most likely emerge.


Chemokine Receptor Simian Immunodeficiency Virus Quinolinic Acid Simian Immunodeficiency Virus Infection Excitotoxic Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achim CL, Heyes MP, Wiley CA (1993) Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. J Clin Invest 91(6):2769–2775PubMedCrossRefGoogle Scholar
  2. Achim CL, Wang R, Miners DK, Wiley CA (1994) Brain viral burden in HIV infection. J Neuropathol Exp Neurol 53(3):284–294PubMedCrossRefGoogle Scholar
  3. Alirezaei M, Watry DD, Flynn CF, Kiosses WB, Masliah E, Williams BR, Kaul M, Lipton SA, Fox HS (2007) Human immunodeficiency virus-1/surface glycoprotein 120 induces apoptosis through RNA-activated protein kinase signaling in neurons. J Neurosci 27(41):11047–11055PubMedCrossRefGoogle Scholar
  4. Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 27(1):86–92PubMedCrossRefGoogle Scholar
  5. Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, Zaman T, Stone D, Mefford M, Morgello S, Singer EJ, Wolinsky SM, Gabuzda D (2008) Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS ONE 3(6):e2516PubMedCrossRefGoogle Scholar
  6. Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, Luscinskas FW, Gabuzda D (2003) Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med 197(12):1701–1707PubMedCrossRefGoogle Scholar
  7. Andjelkovic AV, Kerkovich D, Pachter JS (2000) Monocyte:astrocyte interactions regulate MCP-1 expression in both cell types. J Leukoc Biol 68(4):545–552PubMedGoogle Scholar
  8. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799PubMedCrossRefGoogle Scholar
  9. Archibald SL, Masliah E, Fennema-Notestine C, Marcotte TD, Ellis RJ, McCutchan JA, Heaton RK, Grant I, Mallory M, Miller A, Jernigan TL (2004) Correlation of in vivo neuroimaging abnormalities with postmortem human immunodeficiency virus encephalitis and dendritic loss. Arch Neurol 61(3):369–376PubMedCrossRefGoogle Scholar
  10. Asare E, Dunn G, Glass J, McArthur J, Luthert P, Lantos P, Everall I (1996) Neuronal pattern correlates with the severity of human immunodeficiency virus-associated dementia complex. Usefulness of spatial pattern analysis in clinicopathological studies. Am J Pathol 148(1):31–38PubMedGoogle Scholar
  11. Bachis A, Mocchetti I (2004) The chemokine receptor CXCR4 and not the N-methyl-D-aspartate receptor mediates gp120 neurotoxicity in cerebellar granule cells. J Neurosci Res 75(1):75–82PubMedCrossRefGoogle Scholar
  12. Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ (1996) Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. Aids 10(6):573–585PubMedCrossRefGoogle Scholar
  13. Bandaru VV, McArthur JC, Sacktor N, Cutler RG, Knapp EL, Mattson MP, Haughey NJ (2007) Associative and predictive biomarkers of dementia in HIV-1-infected patients. Neurology 68(18):1481–1487PubMedCrossRefGoogle Scholar
  14. Barillari G, Gendelman R, Gallo RC, Ensoli B (1993) The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci U S A 90(17):7941–7945PubMedCrossRefGoogle Scholar
  15. Baumheter S, Singer MS, Henzel W, Hemmerich S, Renz M, Rosen SD, Lasky LA (1993) Binding of L-selectin to the vascular sialomucin CD34. Science 262(5132):436–438PubMedCrossRefGoogle Scholar
  16. Becker JT, Lopez OL, Dew MA, Aizenstein HJ (2004) Prevalence of cognitive disorders differs as a function of age in HIV virus infection. Aids 18(Suppl 1):S11–S18PubMedGoogle Scholar
  17. Bennett BA, Rusyniak DE, Hollingsworth CK (1995) HIV-1 gp120-induced neurotoxicity to midbrain dopamine cultures. Brain Res 705(1–2):168–176PubMedCrossRefGoogle Scholar
  18. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4(7):702–710PubMedCrossRefGoogle Scholar
  19. Bhaskaran K, Mussini C, Antinori A, Walker AS, Dorrucci M, Sabin C, Phillips A, Porter K (2008) Changes in the incidence and predictors of human immunodeficiency virus-associated dementia in the era of highly active antiretroviral therapy. Ann Neurol 63(2):213–221PubMedCrossRefGoogle Scholar
  20. Birdsall HH, Trial J, Hallum JA, de Jong AL, Green LK, Bandres JC, Smole SC, Laughter AH, Rossen RD (1994) Phenotypic and functional activation of monocytes in HIV-1 infection: interactions with neural cells. J Leukoc Biol 56(3):310–317PubMedGoogle Scholar
  21. Bonneh-Barkay D, Bissel SJ, Wang G, Fish KN, Nicholl GC, Darko SW, Medina-Flores R, Murphey-Corb M, Rajakumar PA, Nyaundi J, Mellors JW, Bowser R, Wiley CA (2008) YKL-40, a marker of simian immunodeficiency virus encephalitis, modulates the biological activity of basic fibroblast growth factor. Am J Pathol 173(1):130–143PubMedCrossRefGoogle Scholar
  22. Borsetti A, Parolin C, Ridolfi B, Sernicola L, Geraci A, Ensoli B, Titti F (2000) CD4-independent infection of two CD4(-)/CCR5(-)/CXCR4(+) pre-T-cell lines by human and simian immunodeficiency viruses. J Virol 74(14):6689–6694PubMedCrossRefGoogle Scholar
  23. Brenneman DE, Westbrook GL, Fitzgerald SP, Ennist DL, Elkins KL, Ruff MR, Pert CB (1988) Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 335(6191):639–642PubMedCrossRefGoogle Scholar
  24. Brew BJ (2004) Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. Aids 18(Suppl 1):S75–S78PubMedGoogle Scholar
  25. Brew BJ, Corbeil J, Pemberton L, Evans L, Saito K, Penny R, Cooper DA, Heyes MP (1995) Quinolinic acid production is related to macrophage tropic isolates of HIV-1. J Neurovirol 1(5–6):369–374PubMedCrossRefGoogle Scholar
  26. Brew BJ, Halman M, Catalan J, Sacktor N, Price RW, Brown S, Atkinson H, Clifford DB, Simpson D, Torres G, Hall C, Power C, Marder K, Mc Arthur JC, Symonds W, Romero C (2007) Factors in AIDS dementia complex trial design: results and lessons from the abacavir trial. PLoS Clin Trials 2(3):e13PubMedCrossRefGoogle Scholar
  27. Budka H (1989) Human immunodeficiency virus (HIV)-induced disease of the central nervous system: pathology and implications for pathogenesis. Acta Neuropathol 77(3):225–236PubMedCrossRefGoogle Scholar
  28. Budka H (1991) Neuropathology of human immunodeficiency virus infection. Brain Pathol 1(3):163–175PubMedCrossRefGoogle Scholar
  29. Chakrabarti L, Hurtrel M, Maire MA, Vazeux R, Dormont D, Montagnier L, Hurtrel B (1991) Early viral replication in the brain of SIV-infected rhesus monkeys. Am J Pathol 139(6):1273–1280PubMedGoogle Scholar
  30. Chang HC, Samaniego F, Nair BC, Buonaguro L, Ensoli B (1997) HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. Aids 11(12):1421–1431PubMedCrossRefGoogle Scholar
  31. Chang L, Ernst T, Leonido-Yee M, Walot I, Singer E (1999a) Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology 52(1):100–108PubMedCrossRefGoogle Scholar
  32. Chang L, Ernst T, Leonido-Yee M, Witt M, Speck O, Walot I, Miller EN (1999b) Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 53(4):782–789PubMedCrossRefGoogle Scholar
  33. Chang L, Ernst T, Witt MD, Ames N, Walot I, Jovicich J, DeSilva M, Trivedi N, Speck O, Miller EN (2003) Persistent brain abnormalities in antiretroviral-naive HIV patients 3 months after HAART. Antivir Ther 8(1):17–26PubMedGoogle Scholar
  34. Cherner M, Masliah E, Ellis RJ, Marcotte TD, Moore DJ, Grant I, Heaton RK (2002) Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology 59(10):1563–1567PubMedCrossRefGoogle Scholar
  35. Cherry CL, Wesselingh SL (2003) Nucleoside analogues and HIV: the combined cost to mitochondria. J Antimicrob Chemother 51(5):1091–1093PubMedCrossRefGoogle Scholar
  36. Cinque P, Bestetti A, Marenzi R, Sala S, Gisslen M, Hagberg L, Price RW (2005) Cerebrospinal fluid interferon-gamma-inducible protein 10 (IP-10, CXCL10) in HIV-1 infection. J Neuroimmunol 168(1–2):154–163PubMedCrossRefGoogle Scholar
  37. Clifford DB (2008) HIV-associated Neurocognitive Disease Continues in the Antiretroviral Era. Top HIV Med 16(2):94–98PubMedGoogle Scholar
  38. Collman RG, Yi Y (1999) Cofactors for human immunodeficiency virus entry into primary macrophages. J Infect Dis 179(Suppl 3):S422–S426PubMedCrossRefGoogle Scholar
  39. Conti F, Barbaresi P, Melone M, Ducati A (1999) Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex. Cereb Cortex 9(2):110–120PubMedCrossRefGoogle Scholar
  40. Coughlan CM, McManus CM, Sharron M, Gao Z, Murphy D, Jaffer S, Choe W, Chen W, Hesselgesser J, Gaylord H, Kalyuzhny A, Lee VM, Wolf B, Doms RW, Kolson DL (2000) Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons. Neuroscience 97(3):591–600PubMedCrossRefGoogle Scholar
  41. Croitoru-Lamoury J, Guillemin GJ, Dormont D, Brew BJ (2003) Quinolinic acid up-regulates chemokine production and chemokine receptor expression in astrocytes. Adv Exp Med Biol 527:37–45PubMedCrossRefGoogle Scholar
  42. d’Arminio Monforte A, Cinque P, Mocroft A, Goebel FD, Antunes F, Katlama C, Justesen US, Vella S, Kirk O, Lundgren J (2004) Changing incidence of central nervous system diseases in the EuroSIDA cohort. Ann Neurol 55(3):320–328PubMedCrossRefGoogle Scholar
  43. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42(9):1736–1739PubMedCrossRefGoogle Scholar
  44. Dawson VL, Dawson TM, Uhl GR, Snyder SH (1993) Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc Natl Acad Sci U S A 90(8):3256–3259PubMedCrossRefGoogle Scholar
  45. Deiva K, Geeraerts T, Salim H, Leclerc P, Hery C, Hugel B, Freyssinet JM, Tardieu M (2004) Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur J Neurosci 20(12):3222–3232PubMedCrossRefGoogle Scholar
  46. Doms RW (2000) Beyond receptor expression: the influence of receptor conformation, density, and affinity in HIV-1 infection. Virology 276(2):229–237PubMedCrossRefGoogle Scholar
  47. Doms RW (2004) Unwelcome guests with master keys: how HIV enters cells and how it can be stopped. Top HIV Med 12(4):100–103PubMedGoogle Scholar
  48. Dore GJ, McDonald A, Li Y, Kaldor JM, Brew BJ (2003) Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy. Aids 17(10):1539–1545PubMedCrossRefGoogle Scholar
  49. Dreyer EB, Kaiser PK, Offermann JT, Lipton SA (1990) HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248(4953):364–367PubMedCrossRefGoogle Scholar
  50. Dreyer EB, Zurakowski D, Gorla M, Vorwerk CK, Lipton SA (1999) The contribution of various NOS gene products to HIV-1 coat protein (gp120)-mediated retinal ganglion cell injury. Invest Ophthalmol Vis Sci 40(5):983–989PubMedGoogle Scholar
  51. Ebnet K, Kaldjian EP, Anderson AO, Shaw S (1996) Orchestrated information transfer underlying leukocyte endothelial interactions. Annu Rev Immunol 14:155–177PubMedCrossRefGoogle Scholar
  52. Edinger AL, Blanpain C, Kunstman KJ, Wolinsky SM, Parmentier M, Doms RW (1999) Functional dissection of CCR5 coreceptor function through the use of CD4-independent simian immunodeficiency virus strains. J Virol 73(5):4062–4073PubMedGoogle Scholar
  53. Edwards TG, Hoffman TL, Baribaud F, Wyss S, LaBranche CC, Romano J, Adkinson J, Sharron M, Hoxie JA, Doms RW (2001) Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J Virol 75(11):5230–5239PubMedCrossRefGoogle Scholar
  54. Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8(1):33–44PubMedCrossRefGoogle Scholar
  55. Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR, Abramson I, Atkinson JH, Grant I, McCutchan JA (1997) Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol 42(5):679–688PubMedCrossRefGoogle Scholar
  56. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345(6270):84–86PubMedCrossRefGoogle Scholar
  57. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67(1):277–287PubMedGoogle Scholar
  58. Espey MG, Basile AS, Heaton RK, Ellis RJ (2002) Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 58(9):1439; author reply 1439–1440Google Scholar
  59. Espey MG, Ellis RJ, Heaton RK, Basile AS (1999) Relevance of glutamate levels in the CSF of patients with HIV-1-associated dementia complex. Neurology 53(5):1144–1145PubMedCrossRefGoogle Scholar
  60. Eugenin EA, D’Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85(5):1299–1311PubMedCrossRefGoogle Scholar
  61. Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MV, Berman JW (2007) HIV-tat induces formation of an LRP-PSD-95- NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci U S A 104(9):3438–3443PubMedCrossRefGoogle Scholar
  62. Evans SR, Yeh TM, Sacktor N, Clifford DB, Simpson D, Miller EN, Ellis RJ, Valcour V, Marra CM, Millar L, Schifitto G (2007) Selegiline transdermal system (STS) for HIV-associated cognitive impairment: open-label report of ACTG 5090. HIV Clin Trials 8(6):437–446PubMedCrossRefGoogle Scholar
  63. Everall IP, Glass JD, McArthur J, Spargo E, Lantos P (1994) Neuronal density in the superior frontal and temporal gyri does not correlate with the degree of human immunodeficiency virus-associated dementia. Acta Neuropathol 88(6):538–544PubMedCrossRefGoogle Scholar
  64. Everall IP, Heaton RK, Marcotte TD, Ellis RJ, McCutchan JA, Atkinson JH, Grant I, Mallory M, Masliah E (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center. Brain Pathol 9(2):209–217PubMedCrossRefGoogle Scholar
  65. Ferrarese C, Aliprandi A, Tremolizzo L, Stanzani L, De Micheli A, Dolara A, Frattola L (2001) Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 57(4):671–675PubMedCrossRefGoogle Scholar
  66. Fontana G, Valenti L, Raiteri M (1997) Gp120 can revert antagonism at the glycine site of NMDA receptors mediating GABA release from cultured hippocampal neurons. J Neurosci Res 49(6):732–738PubMedCrossRefGoogle Scholar
  67. Fox L, Alford M, Achim C, Mallory M, Masliah E (1997) Neurodegeneration of somatostatin-immunoreactive neurons in HIV encephalitis. J Neuropathol Exp Neurol 56(4):360–368PubMedCrossRefGoogle Scholar
  68. Fuller RA, Westmoreland SV, Ratai E, Greco JB, Kim JP, Lentz MR, He J, Sehgal PK, Masliah E, Halpern E, Lackner AA, Gonzalez RG (2004) A prospective longitudinal in vivo 1H MR spectroscopy study of the SIV/macaque model of neuroAIDS. BMC NeuroSci 5:10PubMedCrossRefGoogle Scholar
  69. Galasso JM, Miller MJ, Cowell RM, Harrison JK, Warren JS, Silverstein FS (2000) Acute excitotoxic injury induces expression of monocyte chemoattractant protein-1 and its receptor, CCR2, in neonatal rat brain. Exp Neurol 165(2):295–305PubMedCrossRefGoogle Scholar
  70. Gartner S (2000) HIV infection and dementia. Science 287(5453):602–604PubMedCrossRefGoogle Scholar
  71. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82PubMedCrossRefGoogle Scholar
  72. Gemignani A, Paudice P, Pittaluga A, Raiteri M (2000) The HIV-1 coat protein gp120 and some of its fragments potently activate native cerebral NMDA receptors mediating neuropeptide release. Eur J NeuroSci 12(8):2839–2846PubMedCrossRefGoogle Scholar
  73. Giulian D, Vaca K, Noonan CA (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250(4987):1593–1596PubMedCrossRefGoogle Scholar
  74. Giulian D, Wendt E, Vaca K, Noonan CA (1993) The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes. Proc Natl Acad Sci U S A 90(7):2769–2773PubMedCrossRefGoogle Scholar
  75. Giulian D, Yu J, Li X, Tom D, Li J, Wendt E, Lin SN, Schwarcz R, Noonan C (1996) Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain. J Neurosci 16(10):3139–3153PubMedGoogle Scholar
  76. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38(5):755–762PubMedCrossRefGoogle Scholar
  77. Goda S, Imai T, Yoshie O, Yoneda O, Inoue H, Nagano Y, Okazaki T, Imai H, Bloom ET, Domae N, Umehara H (2000) CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms. J Immunol 164(8):4313–4320PubMedGoogle Scholar
  78. Goebel SM, Alvestad RM, Coultrap SJ, Browning MD (2005) Tyrosine phosphorylation of the N-methyl-D-aspartate receptor is enhanced in synaptic membrane fractions of the adult rat hippocampus. Brain Res Mol Brain Res 142(1):65–79PubMedCrossRefGoogle Scholar
  79. Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, Kulkarni H, Bamshad MJ, Telles V, Anderson SA, Walter EA, Stephan KT, Deucher M, Mangano A, Bologna R, Ahuja SS, Dolan MJ, Ahuja SK (2002) HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 99(21):13795–13800PubMedCrossRefGoogle Scholar
  80. Gonzalez RG, Cheng LL, Westmoreland SV, Sakaie KE, Becerra LR, Lee PL, Masliah E, Lackner AA (2000) Early brain injury in the SIV-macaque model of AIDS. Aids 14(18):2841–2849PubMedCrossRefGoogle Scholar
  81. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5(1):69–81PubMedCrossRefGoogle Scholar
  82. Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75(21):10073–10089PubMedCrossRefGoogle Scholar
  83. Gray F, Adle-Biassette H, Chretien F, Lorin de la Grandmaison G, Force G, Keohane C (2001) Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol 20(4):146–155Google Scholar
  84. Gray F, Hurtrel M, Hurtrel B (1993) Early central nervous system changes in human immunodeficiency virus (HIV)-infection. Neuropathol Appl Neurobiol 19(1):3–9PubMedCrossRefGoogle Scholar
  85. Greco JB, Westmoreland SV, Ratai EM, Lentz MR, Sakaie K, He J, Sehgal PK, Masliah E, Lackner AA, Gonzalez RG (2004) In vivo 1H MRS of brain injury and repair during acute SIV infection in the macaque model of neuroAIDS. Magn Reson Med 51(6):1108–1114PubMedCrossRefGoogle Scholar
  86. Guillemin GJ, Kerr SJ, Smythe GA, Armati PJ, Brew BJ (1999) Kynurenine pathway metabolism in human astrocytes. Adv Exp Med Biol 467:125–131PubMedCrossRefGoogle Scholar
  87. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78(4):842–853PubMedCrossRefGoogle Scholar
  88. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2, 3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23PubMedCrossRefGoogle Scholar
  89. Guyon A, Nahon JL (2007) Multiple actions of the chemokine stromal cell-derived factor-1alpha on neuronal activity. J Mol Endocrinol 38(3):365–376PubMedCrossRefGoogle Scholar
  90. Guyon A, Skrzydelsi D, Rovere C, Rostene W, Parsadaniantz SM, Nahon JL (2006) Stromal cell-derived factor-1alpha modulation of the excitability of rat substantia nigra dopaminergic neurones: presynaptic mechanisms. J Neurochem 96(6):1540–1550PubMedCrossRefGoogle Scholar
  91. Haughey NJ, Holden CP, Nath A, Geiger JD (1999) Involvement of inositol 1, 4, 5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem 73(4):1363–1374PubMedCrossRefGoogle Scholar
  92. Hesselgesser J, Taub D, Baskar P, Greenberg M, Hoxie J, Kolson DL, Horuk R (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr Biol 8(10):595–598PubMedCrossRefGoogle Scholar
  93. Heyes MP (1996) The kynurenine pathway and neurologic disease. Therapeutic strategies. Adv Exp Med Biol 398:125–129PubMedCrossRefGoogle Scholar
  94. Heyes MP, Brew BJ, Martin A, Price RW, Salazar AM, Sidtis JJ, Yergey JA, Mouradian MM, Sadler AE, Keilp J et al (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol 29(2):202–209PubMedCrossRefGoogle Scholar
  95. Heyes MP, Ellis RJ, Ryan L, Childers ME, Grant I, Wolfson T, Archibald S, Jernigan TL (2001) Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Brain 124(Pt 5):1033–1042PubMedCrossRefGoogle Scholar
  96. Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J, Parker J, Hadley TJ, Peiper SC (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol 158(6):2882–2890PubMedGoogle Scholar
  97. Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol 6(2):145–155PubMedCrossRefGoogle Scholar
  98. Hyrc K, Handran SD, Rothman SM, Goldberg MP (1997) Ionized intracellular calcium concentration predicts excitotoxic neuronal death: observations with low-affinity fluorescent calcium indicators. J Neurosci 17(17):6669–6677PubMedGoogle Scholar
  99. Jiang ZG, Piggee C, Heyes MP, Murphy C, Quearry B, Bauer M, Zheng J, Gendelman HE, Markey SP (2001) Glutamate is a mediator of neurotoxicity in secretions of activated HIV-1-infected macrophages. J Neuroimmunol 117(1–2):97–107PubMedCrossRefGoogle Scholar
  100. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410(6831):988–994PubMedCrossRefGoogle Scholar
  101. Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96(14):8212–8216PubMedCrossRefGoogle Scholar
  102. Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE (1998) Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol 44(5):831–835PubMedCrossRefGoogle Scholar
  103. Keswani SC, Pardo CA, Cherry CL, Hoke A, McArthur JC (2002) HIV-associated sensory neuropathies. Aids 16(16):2105–2117PubMedCrossRefGoogle Scholar
  104. Khan MZ, Brandimarti R, Shimizu S, Nicolai J, Crowe E, Meucci O (2008) The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein. Cell Death Differ 15(10):1663–1672Google Scholar
  105. King JE, Eugenin EA, Buckner CM, Berman JW (2006) HIV tat and neurotoxicity. Microbes Infect 8(5):1347–1357PubMedCrossRefGoogle Scholar
  106. Kleinschnitz C, Brinkhoff J, Zelenka M, Sommer C, Stoll G (2004) The extent of cytokine induction in peripheral nerve lesions depends on the mode of injury and NMDA receptor signaling. J Neuroimmunol 149(1–2):77–83PubMedCrossRefGoogle Scholar
  107. Kohr G (2006) NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 326(2):439–446PubMedCrossRefGoogle Scholar
  108. Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154(2):276–288PubMedCrossRefGoogle Scholar
  109. Kure K, Lyman WD, Weidenheim KM, Dickson DW (1990a) Cellular localization of an HIV-1 antigen in subacute AIDS encephalitis using an improved double-labeling immunohistochemical method. Am J Pathol 136(5):1085–1092PubMedGoogle Scholar
  110. Kure K, Weidenheim KM, Lyman WD, Dickson DW (1990b) Morphology and distribution of HIV-1 gp41-positive microglia in subacute AIDS encephalitis. Pattern of involvement resembling a multisystem degeneration. Acta Neuropathol 80(4):393–400PubMedCrossRefGoogle Scholar
  111. LaBranche CC, Hoffman TL, Romano J, Haggarty BS, Edwards TG, Matthews TJ, Doms RW, Hoxie JA (1999) Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. J Virol 73(12):10310–10319PubMedGoogle Scholar
  112. Lannuzel A, Lledo PM, Lamghitnia HO, Vincent JD, Tardieu M (1995) HIV-1 envelope proteins gp120 and gp160 potentiate NMDA-induced [Ca2+]i increase, alter [Ca2+]i homeostasis and induce neurotoxicity in human embryonic neurons. Eur J NeuroSci 7(11):2285–2293PubMedCrossRefGoogle Scholar
  113. Lavi E, Strizki JM, Ulrich AM, Zhang W, Fu L, Wang Q, O’Connor M, Hoxie JA, Gonzalez-Scarano F (1997) CXCR-4 (Fusin), a co-receptor for the type 1 human immunodeficiency virus (HIV-1), is expressed in the human brain in a variety of cell types, including microglia and neurons. Am J Pathol 151(4):1035–1042PubMedGoogle Scholar
  114. Lentz MR, Kim JP, Westmoreland SV, Greco JB, Fuller RA, Ratai EM, He J, Sehgal PK, Halpern EF, Lackner AA, Masliah E, Gonzalez RG (2005) Quantitative neuropathologic correlates of changes in ratio of N-acetylaspartate to creatine in macaque brain. Radiology 235(2):461–468PubMedCrossRefGoogle Scholar
  115. Lentz MR, Westmoreland SV, Lee V, Ratai EM, Halpern EF, Gonzalez RG (2008) Metabolic markers of neuronal injury correlate with SIV CNS disease severity and inoculum in the macaque model of neuroAIDS. Magn Reson Med 59(3):475–484PubMedCrossRefGoogle Scholar
  116. Letendre SL, Lanier ER, McCutchan JA (1999) Cerebrospinal fluid beta chemokine concentrations in neurocognitively impaired individuals infected with human immunodeficiency virus type 1. J Infect Dis 180(2):310–319PubMedCrossRefGoogle Scholar
  117. Letendre SL, McCutchan JA, Childers ME, Woods SP, Lazzaretto D, Heaton RK, Grant I, Ellis RJ (2004) Enhancing antiretroviral therapy for human immunodeficiency virus cognitive disorders. Ann Neurol 56(3):416–423PubMedCrossRefGoogle Scholar
  118. Li ST, Matsushita M, Moriwaki A, Saheki Y, Lu YF, Tomizawa K, Wu HY, Terada H, Matsui H (2004) HIV-1 Tat inhibits long-term potentiation and attenuates spatial learning [corrected]. Ann Neurol 55(3):362–371PubMedCrossRefGoogle Scholar
  119. Limatola C, Lauro C, Catalano M, Ciotti MT, Bertollini C, Di Angelantonio S, Ragozzino D, Eusebi F (2005) Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity. J Neuroimmunol 166(1–2):19–28PubMedCrossRefGoogle Scholar
  120. Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, Roberts J, Pushkarsky T, Bukrinsky M, Witte M, Weinand M, Fiala M (2002) Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 76(13):6689–6700PubMedCrossRefGoogle Scholar
  121. Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6(12):1380–1387PubMedCrossRefGoogle Scholar
  122. Lossinsky AS, Pluta R, Song MJ, Badmajew V, Moretz RC, Wisniewski HM (1991) Mechanisms of inflammatory cell attachment in chronic relapsing experimental allergic encephalomyelitis: a scanning and high-voltage electron microscopic study of the injured mouse blood-brain barrier. Microvasc Res 41(3):299–310PubMedCrossRefGoogle Scholar
  123. Lynch DR, Guttmann RP (2001) NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets 2(3):215–231PubMedCrossRefGoogle Scholar
  124. Lynch DR, Guttmann RP (2002) Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes. J Pharmacol Exp Ther 300(3):717–723PubMedCrossRefGoogle Scholar
  125. Magnuson DS, Knudsen BE, Geiger JD, Brownstone RM, Nath A (1995) Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol 37(3):373–380PubMedCrossRefGoogle Scholar
  126. Mamdouh Z, Chen X, Pierini LM, Maxfield FR, Muller WA (2003) Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 421(6924):748–753PubMedCrossRefGoogle Scholar
  127. Mankowski JL, Clements JE, Zink MC (2002) Searching for clues: tracking the pathogenesis of human immunodeficiency virus central nervous system disease by use of an accelerated, consistent simian immunodeficiency virus macaque model. J Infect Dis 186(Suppl 2):S199–S208PubMedCrossRefGoogle Scholar
  128. Mankowski JL, Queen SE, Clements JE, Zink MC (2004) Cerebrospinal fluid markers that predict SIV CNS disease. J Neuroimmunol 157(1–2):66–70PubMedCrossRefGoogle Scholar
  129. Marra CM, Lockhart D, Zunt JR, Perrin M, Coombs RW, Collier AC (2003) Changes in CSF and plasma HIV-1 RNA and cognition after starting potent antiretroviral therapy. Neurology 60(8):1388–1390PubMedCrossRefGoogle Scholar
  130. Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423(6936):190–193PubMedCrossRefGoogle Scholar
  131. Martin-Garcia J, Kolson DL, Gonzalez-Scarano F (2002) Chemokine receptors in the brain: their role in HIV infection and pathogenesis. Aids 16(13):1709–1730PubMedCrossRefGoogle Scholar
  132. Masliah E, Achim CL, Ge N, DeTeresa R, Terry RD, Wiley CA (1992a) Spectrum of human immunodeficiency virus-associated neocortical damage. Ann Neurol 32(3):321–329PubMedCrossRefGoogle Scholar
  133. Masliah E, Ge N, Achim CL, Hansen LA, Wiley CA (1992b) Selective neuronal vulnerability in HIV encephalitis. J Neuropathol Exp Neurol 51(6):585–593PubMedCrossRefGoogle Scholar
  134. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL, McCutchan JA, Nelson JA, Atkinson JH, Grant I (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42(6):963–972PubMedCrossRefGoogle Scholar
  135. Maslin CL, Kedzierska K, Webster NL, Muller WA, Crowe SM (2005) Transendothelial migration of monocytes: the underlying molecular mechanisms and consequences of HIV-1 infection. Curr HIV Res 3(4):303–317PubMedCrossRefGoogle Scholar
  136. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(Suppl 1):893–904PubMedCrossRefGoogle Scholar
  137. May S, Letendre S, Haubrich R, McCutchan JA, Heaton R, Capparelli E, Ellis R (2007) Meeting practical challenges of a trial involving a multitude of treatment regimens: an example of a multi-center randomized controlled clinical trial in neuroAIDS. J Neuroimmune Pharmacol 2(1):97–104PubMedCrossRefGoogle Scholar
  138. McArthur JC (2004) HIV dementia: an evolving disease. J Neuroimmunol 157(1–2):3–10PubMedCrossRefGoogle Scholar
  139. McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NM, McArthur JH, Selnes OA, Jacobson LP et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43(11):2245–2252PubMedCrossRefGoogle Scholar
  140. McManus CM, Liu JS, Hahn MT, Hua LL, Brosnan CF, Berman JW, Lee SC (2000) Differential induction of chemokines in human microglia by type I and II interferons. Glia 29(3):273–280PubMedCrossRefGoogle Scholar
  141. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, Overall CM (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276(47):43503–43508PubMedCrossRefGoogle Scholar
  142. Meager A (1999) Cytokine regulation of cellular adhesion molecule expression in inflammation. Cytokine Growth Factor Rev 10(1):27–39PubMedCrossRefGoogle Scholar
  143. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 95(24):14500–14505PubMedCrossRefGoogle Scholar
  144. Meucci O, Fatatis A, Simen AA, Miller RJ (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 97(14):8075–8080PubMedCrossRefGoogle Scholar
  145. Meucci O, Miller RJ (1996) gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci 16(13):4080–4088PubMedGoogle Scholar
  146. Meyerhoff DJ, MacKay S, Bachman L, Poole N, Dillon WP, Weiner MW, Fein G (1993) Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging. Neurology 43(3 Pt 1):509–515PubMedCrossRefGoogle Scholar
  147. Miller RJ, Meucci O (1999) AIDS and the brain: is there a chemokine connection? Trends Neurosci 22(10):471–479PubMedCrossRefGoogle Scholar
  148. Mizuno T, Kawanokuchi J, Numata K, Suzumura A (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979(1–2):65–70PubMedCrossRefGoogle Scholar
  149. Monteiro de Almeida S, Letendre S, Zimmerman J, Kolakowski S, Lazzaretto D, McCutchan JA, Ellis R (2006) Relationship of CSF leukocytosis to compartmentalized changes in MCP-1/CCL2 in the CSF of HIV-infected patients undergoing interruption of antiretroviral therapy. J Neuroimmunol 179(1–2):180–185PubMedCrossRefGoogle Scholar
  150. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540PubMedCrossRefGoogle Scholar
  151. Moore DJ, Masliah E, Rippeth JD, Gonzalez R, Carey CL, Cherner M, Ellis RJ, Achim CL, Marcotte TD, Heaton RK, Grant I (2006) Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. Aids 20(6):879–887PubMedCrossRefGoogle Scholar
  152. Nath A (2002) Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2):S193–S198PubMedCrossRefGoogle Scholar
  153. Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD (2000) Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol 47(2):186–194PubMedCrossRefGoogle Scholar
  154. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70(3):1475–1480PubMedGoogle Scholar
  155. Navia BA, Cho ES, Petito CK, Price RW (1986) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19(6):525–535PubMedCrossRefGoogle Scholar
  156. New DR, Maggirwar SB, Epstein LG, Dewhurst S, Gelbard HA (1998) HIV-1 Tat induces neuronal death via tumor necrosis factor-alpha and activation of non-N-methyl-D-aspartate receptors by a NFkappaB-independent mechanism. J Biol Chem 273(28):17852–17858PubMedCrossRefGoogle Scholar
  157. Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE (1996) Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 156(3):1284–1295PubMedGoogle Scholar
  158. O’Donnell LA, Agrawal A, Jordan-Sciutto KL, Dichter MA, Lynch DR, Kolson DL (2006) Human immunodeficiency virus (HIV)-induced neurotoxicity: roles for the NMDA receptor subtypes. J Neurosci 26(3):981–990PubMedCrossRefGoogle Scholar
  159. Ohagen A, Devitt A, Kunstman KJ, Gorry PR, Rose PP, Korber B, Taylor J, Levy R, Murphy RL, Wolinsky SM, Gabuzda D (2003) Genetic and functional analysis of full-length human immunodeficiency virus type 1 env genes derived from brain and blood of patients with AIDS. J Virol 77(22):12336–12345PubMedCrossRefGoogle Scholar
  160. Park YD, Belman AL, Kim TS, Kure K, Llena JF, Lantos G, Bernstein L, Dickson DW (1990) Stroke in pediatric acquired immunodeficiency syndrome. Ann Neurol 28(3):303–311PubMedCrossRefGoogle Scholar
  161. Pattarini R, Pittaluga A, Raiteri M (1998) The human immunodeficiency virus-1 envelope protein gp120 binds through its V3 sequence to the glycine site of N-methyl-D-aspartate receptors mediating noradrenaline release in the hippocampus. Neuroscience 87(1):147–157PubMedCrossRefGoogle Scholar
  162. Pereira CF, Middel J, Jansen G, Verhoef J, Nottet HS (2001) Enhanced expression of fractalkine in HIV-1 associated dementia. J Neuroimmunol 115(1–2):168–175PubMedCrossRefGoogle Scholar
  163. Peters PJ, Bhattacharya J, Hibbitts S, Dittmar MT, Simmons G, Bell J, Simmonds P, Clapham PR (2004) Biological analysis of human immunodeficiency virus type 1 R5 envelopes amplified from brain and lymph node tissues of AIDS patients with neuropathology reveals two distinct tropism phenotypes and identifies envelopes in the brain that confer an enhanced tropism and fusigenicity for macrophages. J Virol 78(13):6915–6926PubMedCrossRefGoogle Scholar
  164. Peters PJ, Duenas-Decamp MJ, Sullivan WM, Clapham PR (2007) Variation of macrophage tropism among HIV-1 R5 envelopes in brain and other tissues. J Neuroimmune Pharmacol 2(1):32–41PubMedCrossRefGoogle Scholar
  165. Petito CK (1988) Review of central nervous system pathology in human immunodeficiency virus infection. Ann Neurol 23(Suppl):S54–S57.Google Scholar
  166. Pittaluga A, Pattarini R, Severi P, Raiteri M (1996) Human brain N-methyl-D-aspartate receptors regulating noradrenaline release are positively modulated by HIV-1 coat protein gp120. Aids 10(5):463–468PubMedCrossRefGoogle Scholar
  167. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997) Unique monocyte subset in patients with AIDS dementia. Lancet 349(9053):692–695PubMedCrossRefGoogle Scholar
  168. Purba JS, Hofman MA, Portegies P, Troost D, Swaab DF (1993) Decreased number of oxytocin neurons in the paraventricular nucleus of the human hypothalamus in AIDS. Brain 116(Pt 4):795–809PubMedCrossRefGoogle Scholar
  169. Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG (2006) Monocyte chemoattractant protein-1 correlates with subcortical brain injury in HIV infection. Neurology 66(8):1255–1257PubMedCrossRefGoogle Scholar
  170. Rempel H, Calosing C, Sun B, Pulliam L (2008) Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS ONE 3(4):e1967PubMedCrossRefGoogle Scholar
  171. Robertson KR, Robertson WT, Ford S, Watson D, Fiscus S, Harp AG, Hall CD (2004) Highly active antiretroviral therapy improves neurocognitive functioning. J Acquir Immune Defic Syndr 36(1):562–566PubMedCrossRefGoogle Scholar
  172. Roc AC, Ances BM, Chawla S, Korczykowski M, Wolf RL, Kolson DL, Detre JA, Poptani H (2007) Detection of human immunodeficiency virus induced inflammation and oxidative stress in lenticular nuclei with magnetic resonance spectroscopy despite antiretroviral therapy. Arch Neurol 64(9):1249–1257PubMedCrossRefGoogle Scholar
  173. Rostasy K, Egles C, Chauhan A, Kneissl M, Bahrani P, Yiannoutsos C, Hunter DD, Nath A, Hedreen JC, Navia BA (2003) SDF-1alpha is expressed in astrocytes and neurons in the AIDS dementia complex: an in vivo and in vitro study. J Neuropathol Exp Neurol 62(6):617–626PubMedGoogle Scholar
  174. Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4(7):1884–1891PubMedGoogle Scholar
  175. Rottman JB, Ganley KP, Williams K, Wu L, Mackay CR, Ringler DJ (1997) Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infection. Am J Pathol 151(5):1341–1351Google Scholar
  176. Sa MJ, Madeira MD, Ruela C, Volk B, Mota-Miranda A, Paula-Barbosa MM (2004) Dendritic changes in the hippocampal formation of AIDS patients: a quantitative Golgi study. Acta Neuropathol 107(2):97–110PubMedCrossRefGoogle Scholar
  177. Sacktor N (2002) The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol 8(Suppl 2):115–121PubMedCrossRefGoogle Scholar
  178. Sacktor N, Lyles RH, Skolasky R, Kleeberger C, Selnes OA, Miller EN, Becker JT, Cohen B, McArthur JC (2001) HIV-associated neurologic disease incidence changes: Multicenter AIDS Cohort Study, 1990–1998. Neurology 56(2):257–260PubMedCrossRefGoogle Scholar
  179. Sacktor N, Nakasujja N, Skolasky R, Robertson K, Wong M, Musisi S, Ronald A, Katabira E (2006) Antiretroviral therapy improves cognitive impairment in HIV+ individuals in sub-Saharan Africa. Neurology 67(2):311–314PubMedCrossRefGoogle Scholar
  180. Sacktor N, Skolasky RL, Tarwater PM, McArthur JC, Selnes OA, Becker J, Cohen B, Visscher B, Miller EN (2003) Response to systemic HIV viral load suppression correlates with psychomotor speed performance. Neurology 61(4):567–569PubMedCrossRefGoogle Scholar
  181. Sacktor NC, Skolasky RL, Lyles RH, Esposito D, Selnes OA, McArthur JC (2000) Improvement in HIV-associated motor slowing after antiretroviral therapy including protease inhibitors. J Neurovirol 6(1):84–88PubMedCrossRefGoogle Scholar
  182. Sanders VJ, Mehta AP, White MG, Achim CL (1998) A murine model of HIV encephalitis: xenotransplantation of HIV-infected human neuroglia into SCID mouse brain. Neuropathol Appl Neurobiol 24(6):461–467PubMedCrossRefGoogle Scholar
  183. Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA (2002) CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 3(2):143–150PubMedCrossRefGoogle Scholar
  184. Schifitto G, Navia BA, Yiannoutsos CT, Marra CM, Chang L, Ernst T, Jarvik JG, Miller EN, Singer EJ, Ellis RJ, Kolson DL, Simpson D, Nath A, Berger J, Shriver SL, Millar LL, Colquhoun D, Lenkinski R, Gonzalez RG, Lipton SA (2007) Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. Aids 21(14):1877–1886PubMedCrossRefGoogle Scholar
  185. Schmidtmayerova H, Sherry B, Bukrinsky M (1996) Chemokines and HIV replication. Nature 382(6594):767PubMedCrossRefGoogle Scholar
  186. Schweinsburg BC, Taylor MJ, Alhassoon OM, Gonzalez R, Brown GG, Ellis RJ, Letendre S, Videen JS, McCutchan JA, Patterson TL, Grant I (2005) Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors. J Neurovirol 11(4):356–364PubMedCrossRefGoogle Scholar
  187. Sevigny JJ, Albert SM, McDermott MP, McArthur JC, Sacktor N, Conant K, Schifitto G, Selnes OA, Stern Y, McClernon DR, Palumbo D, Kieburtz K, Riggs G, Cohen B, Epstein LG, Marder K (2004) Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology 63(11):2084–2090PubMedCrossRefGoogle Scholar
  188. Sevigny JJ, Albert SM, McDermott MP, Schifitto G, McArthur JC, Sacktor N, Conant K, Selnes OA, Stern Y, McClernon DR, Palumbo D, Kieburtz K, Riggs G, Cohen B, Marder K, Epstein LG (2007) An evaluation of neurocognitive status and markers of immune activation as predictors of time to death in advanced HIV infection. Arch Neurol 64(1):97–102PubMedCrossRefGoogle Scholar
  189. Sui Y, Potula R, Dhillon N, Pinson D, Li S, Nath A, Anderson C, Turchan J, Kolson D, Narayan O, Buch S (2004) Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. Am J Pathol 164(5):1557–1566PubMedCrossRefGoogle Scholar
  190. Sui Y, Stehno-Bittel L, Li S, Loganathan R, Dhillon NK, Pinson D, Nath A, Kolson D, Narayan O, Buch S (2006) CXCL10-induced cell death in neurons: role of calcium dysregulation. Eur J NeuroSci 23(4):957–964PubMedCrossRefGoogle Scholar
  191. Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD (1996) Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 39(6):705–711PubMedCrossRefGoogle Scholar
  192. Tardieu M, Hery C, Peudenier S, Boespflug O, Montagnier L (1992) Human immunodeficiency virus type 1-infected monocytic cells can destroy human neural cells after cell-to-cell adhesion. Ann Neurol 32(1):11–17PubMedCrossRefGoogle Scholar
  193. Torres-Munoz JE, Nunez M, Petito CK (2008) Successful Application of Hyperbranched Multidisplacement Genomic Amplification to Detect HIV-1 Sequences in Single Neurons Removed from Autopsy Brain Sections by Laser Capture Microdissection. J Mol Diagn 10(4):317–324PubMedCrossRefGoogle Scholar
  194. Torres-Munoz JE, Redondo M, Czeisler C, Roberts B, Tacoronte N, Petito CK (2001) Upregulation of glial clusterin in brains of patients with AIDs. Brain Res 888(2):297–301PubMedCrossRefGoogle Scholar
  195. Tracey I, Carr CA, Guimaraes AR, Worth JL, Navia BA, Gonzalez RG (1996) Brain choline-containing compounds are elevated in HIV-positive patients before the onset of AIDS dementia complex: a proton magnetic resonance spectroscopic study. Neurology 46(3):783–788PubMedCrossRefGoogle Scholar
  196. Valcour V, Paul R (2006) HIV infection and dementia in older adults. Clin Infect Dis 42(10):1449–1454PubMedCrossRefGoogle Scholar
  197. Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes O, Holck P, Grove J, Sacktor N (2004) Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 Cohort. Neurology 63(5):822–827PubMedCrossRefGoogle Scholar
  198. van Buul JD, Hordijk PL (2004) Signaling in leukocyte transendothelial migration. Arterioscler Thromb Vasc Biol 24(5):824–833PubMedCrossRefGoogle Scholar
  199. Vergote D, Butler GS, Ooms M, Cox JH, Silva C, Hollenberg MD, Jhamandas JH, Overall CM, Power C (2006) Proteolytic processing of SDF-1alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proc Natl Acad Sci U S A 103(50):19182–19187PubMedCrossRefGoogle Scholar
  200. von Giesen HJ, Koller H, Theisen A, Arendt G (2002) Therapeutic effects of nonnucleoside reverse transcriptase inhibitors on the central nervous system in HIV-1-infected patients. J Acquir Immune Defic Syndr 29(4):363–367Google Scholar
  201. Weber KS, von Hundelshausen P, Clark-Lewis I, Weber PC, Weber C (1999) Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow. Eur J Immunol 29(2):700–712PubMedCrossRefGoogle Scholar
  202. Wesselingh SL, Power C, Glass JD, Tyor WR, McArthur JC, Farber JM, Griffin JW, Griffin DE (1993) Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol 33(6):576–582PubMedCrossRefGoogle Scholar
  203. Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375(6531):497–500PubMedCrossRefGoogle Scholar
  204. Wiley CA, Achim C (1994) Human immunodeficiency virus encephalitis is the pathological correlate of dementia in acquired immunodeficiency syndrome. Ann Neurol 36(4):673–676PubMedCrossRefGoogle Scholar
  205. Wiley CA, Baldwin M, Achim CL (1996) Expression of HIV regulatory and structural mRNA in the central nervous system. Aids 10(8):843–847PubMedCrossRefGoogle Scholar
  206. Wiley CA, Masliah E, Morey M, Lemere C, DeTeresa R, Grafe M, Hansen L, Terry R (1991) Neocortical damage during HIV infection. Ann Neurol 29(6):651–657PubMedCrossRefGoogle Scholar
  207. Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83(18):7089–7093PubMedCrossRefGoogle Scholar
  208. Williams K, Westmoreland S, Greco J, Ratai E, Lentz M, Kim WK, Fuller RA, Kim JP, Autissier P, Sehgal PK, Schinazi RF, Bischofberger N, Piatak M, Lifson JD, Masliah E, Gonzalez RG (2005) Magnetic resonance spectroscopy reveals that activated monocytes contribute to neuronal injury in SIV neuroAIDS. J Clin Invest 115(9):2534–2545PubMedCrossRefGoogle Scholar
  209. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193(8):905–915PubMedCrossRefGoogle Scholar
  210. Wong MH, Robertson K, Nakasujja N, Skolasky R, Musisi S, Katabira E, McArthur JC, Ronald A, Sacktor N (2007) Frequency of and risk factors for HIV dementia in an HIV clinic in sub-Saharan Africa. Neurology 68(5):350–355PubMedCrossRefGoogle Scholar
  211. Woods SP, Conover E, Rippeth JD, Carey CL, Gonzalez R, Marcotte TD, Heaton RK, Grant I (2004) Qualitative aspects of verbal fluency in HIV-associated dementia: a deficit in rule-guided lexical-semantic search processes? Neuropsychologia 42(6):801–809PubMedCrossRefGoogle Scholar
  212. Xin KQ, Hamajima K, Hattori S, Cao XR, Kawamoto S, Okuda K (1999) Evidence of HIV type 1 glycoprotein 120 binding to recombinant N-methyl-D-aspartate receptor subunits expressed in a baculovirus system. AIDS Res Hum Retroviruses 15(16):1461–1467PubMedCrossRefGoogle Scholar
  213. Yeh MW, Kaul M, Zheng J, Nottet HS, Thylin M, Gendelman HE, Lipton SA (2000) Cytokine-stimulated, but not HIV-infected, human monocyte-derived macrophages produce neurotoxic levels of l -cysteine. J Immunol 164(8):4265–4270PubMedGoogle Scholar
  214. Yiannoutsos CT, Ernst T, Chang L, Lee PL, Richards T, Marra CM, Meyerhoff DJ, Jarvik JG, Kolson D, Schifitto G, Ellis RJ, Swindells S, Simpson DM, Miller EN, Gonzalez RG, Navia BA (2004) Regional patterns of brain metabolites in AIDS dementia complex. Neuroimage 23(3):928–935PubMedCrossRefGoogle Scholar
  215. Zhang K, Rana F, Silva C, Ethier J, Wehrly K, Chesebro B, Power C (2003) Human immunodeficiency virus type 1 envelope-mediated neuronal death: uncoupling of viral replication and neurotoxicity. J Virol 77(12):6899–6912PubMedCrossRefGoogle Scholar
  216. Zhang L, He T, Talal A, Wang G, Frankel SS, Ho DD (1998) In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J Virol 72(6):5035–5045PubMedGoogle Scholar
  217. Zheng J, Ghorpade A, Niemann D, Cotter RL, Thylin MR, Epstein L, Swartz JM, Shepard RB, Liu X, Nukuna A, Gendelman HE (1999a) Lymphotropic virions affect chemokine receptor-mediated neural signaling and apoptosis: implications for human immunodeficiency virus type 1-associated dementia. J Virol 73(10):8256–8267PubMedGoogle Scholar
  218. Zheng J, Thylin MR, Ghorpade A, Xiong H, Persidsky Y, Cotter R, Niemann D, Che M, Zeng YC, Gelbard HA, Shepard RB, Swartz JM, Gendelman HE (1999b) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98(2):185–200PubMedCrossRefGoogle Scholar
  219. Zink MC, Coleman GD, Mankowski JL, Adams RJ, Tarwater PM, Fox K, Clements JE (2001) Increased macrophage chemoattractant protein-1 in cerebrospinal fluid precedes and predicts simian immunodeficiency virus encephalitis. J Infect Dis 184(8):1015–1021PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maria F. Chen
    • 1
  • Samantha Soldan
    • 1
  • Dennis L. Kolson
    • 1
  1. 1.Department of NeurologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations