Role of CX3CL1 in Synaptic Activity and Neuroprotection

  • Davide Ragozzino
  • Clotilde Lauro
  • Cristina Limatola


The only member of the CX3C family of chemokines, fractalkine/CX3CL1, and its unique specific receptor CX3CR1, are expressed constitutively and at very high levels in the nervous system. While for other chemokine/chemokine receptor pairs constitutively expressed in the brain, like CXCL12/CXCR4, clear physiological roles have been assigned (Proc Natl Acad Sci USA 95:9448–9453, 1998; Nature 393:524–525, 1998; Proc Natl Acad Sci USA 99:7090–7095, 2002), knocking down CX3CL1 or CX3CR1 did not shed bright light on possible physiological functions of this monogamous pair in the nervous system (Mol Cell Biol 20:4106–4114; Mol Cell Biol 21:3159–3165). However, the strategic and abundant expression of CX3CL1 in neurons and of CX3CR1 in microglial cells has been suggestive, from the very beginning (Proc Natl Acad Sci USA 95:10896–10901; FEBS Lett 429:167–172), of a physical bridge or, in general, of a preferential communicating system between neurons and microglia. This view has now been confirmed by several in vitro and in vivo studies and there is a general agreement that at least part of the effects described for CX3CL1 on neurons is mediated by microglial cells. In particular, in this chapter, we will discuss how microglia intervenes in the effects of CX3CL1 on neurons in terms of (1) neuromodulation of synaptic activity; (2) neuroprotection from toxic insults; (3) modulation of pain sensation.


Amyotrophic Lateral Sclerosis Microglial Cell Dorsal Root Ganglion Cell CX3CR1 Expression CX3CL1 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Alzheimer’s disease


α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


AMPA-evoked currents


Cerebrospinal fluid




Experimental autoimmune encephalopathy


Extracellular signal-regulated kinase


IL-1 receptor antagonist


Interleukin 1 β




Long-term depression


Middle cerebral artery occlusion




Multiple sclerosis


Phosphatidylinositol-3 kinase


Pertussis toxin


Stress-activated protein kinase


Urokinase-type plasminogen activator


Wild type



The authors thank Drs. Fabrizio Eusebi and Flavia Trettel for helpful discussions during the writing of this chapter.


  1. Bazan JF, Bacon KB, Hardiman G et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644PubMedCrossRefGoogle Scholar
  2. Bertollini C, Ragozzino D, Gross C et al (2006) Fractalkine/CX3CL1 depresses central synaptic transmission in mouse hippocampal slices. Neuropharmacol 51:816–821CrossRefGoogle Scholar
  3. Boddeke EW, Meigel I, Frentzel S et al (1999) Functional expression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia. Eur J Pharmacol 374:309–313PubMedCrossRefGoogle Scholar
  4. Boheme SA, Lio FM, Maciejewski-Lenoir D et al (2000) The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol 165:397–403Google Scholar
  5. Cambien B, Pomeranz M, Schmid-Antonmarchi H et al (2001) Signal transduction pathways involved in soluble fractalkine-induced monocytic cell adhesion. Blood 97:2031–2037PubMedCrossRefGoogle Scholar
  6. Cardona AE, Pioro EP, Sasse ME et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924PubMedCrossRefGoogle Scholar
  7. Chapman GA, Moores K, Harrison D et al (2000) Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci 20:RC87Google Scholar
  8. Chen S, Luo D, Streit WJ et al (2002) TGF-β1 upregulates CX3CR1 expression and inhibits fractalkine-stimulated signaling in rat microglia. J Neuroimmunol 133:46–55PubMedCrossRefGoogle Scholar
  9. Chen X, Geller EB, Rogers TJ et al (2007) The chemokine CX3CL1/fractalkine interferes with the antinociceptive effect induced by opioid agonists in the periaqueductal grey of rats. Brain Res 11:1153–1157Google Scholar
  10. Clark AK, Yip PK, Grist J et al (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA 104:10655–10660PubMedCrossRefGoogle Scholar
  11. Combadiere C, Ahuia SK, Murphy PM (1995) Cloning, chromosomal localization, and RNA expression of a human beta chemokine receptor-like gene DNA. Cell Biol 14:673–680Google Scholar
  12. Combadiere C, Gao J, Tiffany HL et al (1998a) Gene cloning, RNA distribution, and functional expression of mCX3CR1, a mouse chemotactic receptor for the CX3C chemokine fractalkine. Biochem Biophys Res Commun 253:728–732PubMedCrossRefGoogle Scholar
  13. Combadiere C, Salzwedel K, Smith ED et al (1998b) Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J Biol Chem 273:23799–23804PubMedCrossRefGoogle Scholar
  14. Cotter R, Williams C, Ryan L et al (2002) Fractalkine (CX3CL1) and brain inflammation: implications for HIV-1-associated dementia. J Neurovirol 8:585–598PubMedCrossRefGoogle Scholar
  15. Cunha-Reis D, Ribeiro JA, Sebastião AM (2008) A1 and A2A receptor activation by endogenous adenosine is required for VIP enhancement of K + -evoked [3H]-GABA release from rat hippocampal nerve terminals. Neurosci Lett 430:207–212PubMedCrossRefGoogle Scholar
  16. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758PubMedCrossRefGoogle Scholar
  17. Davis CN, Harrison JK (2006) Proline 326 in the C terminus of murine CX3CR1 prevents G-protein and phosphatidylinositol 3-kinase-dependent stimulation of Akt and extracellular signal-regulated kinase in Chinese hamster ovary cells. J Pharmacol Exp Ther 316:356–363PubMedCrossRefGoogle Scholar
  18. de Haas AH, van Weering HRJ, de Jong EK et al (2007) Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol Neurobiol 36:137–151PubMedCrossRefGoogle Scholar
  19. Deiva K, Geeraerts T, Salim H et al (2004) Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur J Neurosci 20:3222–3232PubMedCrossRefGoogle Scholar
  20. Dorf ME, Berman MA, Tanabe S et al (2000) Astrocytes express functional chemokine receptors. J Neuroimmunol 111:109–121PubMedCrossRefGoogle Scholar
  21. Erichsen D, Lopez AL, Peng H et al (2003) Neuronal injury regulates fractalkine: relevance for HIV-1 associated dementia. J Neuroimmunol 138:144–155PubMedCrossRefGoogle Scholar
  22. Faure S, Meyer L, Costagliola D et al (2000) Rapid progression to AIDS in HIV1 individuals with a structural variant of the chemokine receptor CX3CR1. Science 287:2274–2277PubMedCrossRefGoogle Scholar
  23. Fong AM, Erickson HP, Zachariah JP et al (2000) Ultrastructure and function of the fractalkine mucin domain in CX3C chemokine domain presentation. J Biol Chem 275:3781–3786PubMedCrossRefGoogle Scholar
  24. Garin A, Tarantino N, Faure S et al (2003) Two novel fully functional isoforms of CX3CR1 are potent HIV coreceptors. J Immunol 171:5305–5312Google Scholar
  25. Garton KJ, Gough PJ, Blobel CP et al (2001) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276:37993–38001PubMedGoogle Scholar
  26. Gillard SE, Lu M, Mastracci RM (2002) Expression of functional chemokine receptors by rat cerebellar neurons. J Neuroimmunol 124:16–28PubMedCrossRefGoogle Scholar
  27. Guyon A, Nahon JL (2007) Multiple actions of the chemokine stromal cell-derived factor-1α on neuronal activity. J Mol Endocrinol 38:365–376PubMedCrossRefGoogle Scholar
  28. Harrison JK, Barber CM, Lynch KR (1994) cDNA cloning of a G-protein-coupled receptor expressed in rat spinal cord and brain related to chemokine receptors. Neurosci Lett 169:85–89PubMedCrossRefGoogle Scholar
  29. Harrison JK, Jiang Y, Chen S et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 95:10896–10901PubMedCrossRefGoogle Scholar
  30. Hatori K, Nagai A, Heisel R et al (2002) Fractalkine and fractalkine receptors in human neurons and glial cells. J Neurosci Res 69:418–426PubMedCrossRefGoogle Scholar
  31. Holmes FE, Arnott N, Vanderplank P et al (2008) Intra-neural administration of fractalkine attenuates neuropathic pain-related behaviour. J Neurochem 106:640–649PubMedCrossRefGoogle Scholar
  32. Huang DR, Shi FD, Jung S et al (2006) The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 20:896–905PubMedCrossRefGoogle Scholar
  33. Hughes PM, Botham MS, Frentzel S et al (2002) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 37:314–327PubMedCrossRefGoogle Scholar
  34. Hulshof S, van Haasters ES, Kuipers HF et al (2003) CX3CL1 and CX3CR1 expression in human brain tissue: noninflammatory control versus multiple sclerosis. J Neuropathol Exp Neurol 62:899–907PubMedGoogle Scholar
  35. Hundhausen C, Misztela D, Berkhout TA et al (2003) The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102:1186–1195PubMedCrossRefGoogle Scholar
  36. Imai T, Hieshima K, Haskell C et al (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91:521–530PubMedCrossRefGoogle Scholar
  37. Ji JF, He BP, Dheen ST et al (2004) Interaction of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22:415–427PubMedCrossRefGoogle Scholar
  38. Ji JF, Dheen ST, Kumar SD et al (2005) Expressions of cytokines and chemokines in the dorsal motor nucleus of the vagus nerve after right vagotomy. Mol Brain Res 142:47–57PubMedCrossRefGoogle Scholar
  39. Jiang Y, Salafranca MN, Adhikari S et al (1998) Chemokine receptor expression in cultured glia and rat experimental allergic encephalomyelitis. J Neuroimmunol 86:1–12PubMedCrossRefGoogle Scholar
  40. Johnston IN, Milligan ED, Wieseler-Frank J et al (2004) A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci 24:7353–7365Google Scholar
  41. Jung S, Aliberti J, Graemmel P et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114PubMedCrossRefGoogle Scholar
  42. Kansra V, Groves C, Gutierrez-Ramos JC et al (2001) Phosphatidylinositol 3-kinase-dependent extracellular calcium influx is essential for CX3CR1-mediated activation of the mitogen-activated protein kinase cascade. J Biol Chem 276:31831–31838PubMedCrossRefGoogle Scholar
  43. Kastenbauer S, Koedel U, Wick M et al (2003) CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. J Neuroimmunol 137:210–217PubMedCrossRefGoogle Scholar
  44. Kim TS, Lim HK, Lee JY et al (2008) Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 436:196–200PubMedCrossRefGoogle Scholar
  45. Krathwohl MD, Kaiser JL (2004) Chemokines promote quiescence and survival of human neural progenitor cells. Stem Cells 22:109–118PubMedCrossRefGoogle Scholar
  46. Lauro C, Catalano M, Trettel F et al (2006) The chemokine CX3CL1 reduces migration and increases adhesion of neurons with mechanisms dependent on the beta1 integrin subunit. J Immunol 177:7599–7606PubMedGoogle Scholar
  47. Lauro C, Di Angelantonio S, Cipriani R et al (2008) Activity of adenosine receptors type 1 is required for CX3CL1-mediated neuroprotection and neuromodulation in hippocampal neurons. J Immunol 180:7590–7596PubMedGoogle Scholar
  48. Lee RH, Hsu SC, Munoz J et al (2006) A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood 107:2153–2161PubMedCrossRefGoogle Scholar
  49. Lee SR, Guo SZ, Scannevin RH et al (2007) Induction of matrix metalloproteases and chemokines in rat cortical astrocytes exposed to plasminogen activators. Neurosci Lett 417:1–5PubMedCrossRefGoogle Scholar
  50. Limatola C, Lauro C, Catalano M et al (2005) Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity. J Neuroimmunol 166:19–28PubMedCrossRefGoogle Scholar
  51. Lindia JA, McGowan E, Jochnowitz N et al (2005) Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J Pain 6:434–438PubMedCrossRefGoogle Scholar
  52. Luongo L, Sajic M, Grist J et al (2008) Spinal changes associated with mechanical hypersensitivity in a model of Guillain-Barré syndrome. Neurosci Lett 437:98–102PubMedCrossRefGoogle Scholar
  53. Maciejewski-Lenoir D, Chen S, Feng L et al (1999) Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 163:1628–1635PubMedGoogle Scholar
  54. Matloubian M, David A, Engel S et al (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1:298–304PubMedCrossRefGoogle Scholar
  55. McDermott DH, Colla JS, Kleeberger CA et al (2000) Genetic polymorphism in CX3CR1 and risk of HIV disease. Science 290:2274–2277CrossRefGoogle Scholar
  56. Meucci O, Fatatis A, Simen AA et al (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA 95:14500–14505PubMedCrossRefGoogle Scholar
  57. Meucci O, Fatatis A, Simen AA et al (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci USA 97:8075–8080PubMedCrossRefGoogle Scholar
  58. Mizuno T, Kawanokuchi J, Numata K et al (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979:65–70PubMedCrossRefGoogle Scholar
  59. Milligan ED, Zapata V, Chacur M et al (2004) Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci 20:2294–2302Google Scholar
  60. Milligan E, Zapata V, Schoeniger D et al (2005) An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur J Neurosci 22:2775–2782Google Scholar
  61. Moatti D, Faure S, Fumeron F et al (2001) Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 97:1925–1928PubMedCrossRefGoogle Scholar
  62. Mody M, Cao Y, Cui Z et al (2001) Genome-wide gene expression profiles of the developing mouse hippocampus. Proc Natl Acad Sci USA 98:8862–8867PubMedCrossRefGoogle Scholar
  63. Murphy PM, Baggiolini M, Charo IF et al (2000) International union of pharmacology XXII nomenclature for chemokine receptors. Pharmacol Review 52:145–176Google Scholar
  64. Nishiyori A, Minami M, Ohtani Y et al (1998) Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett 429:167–172PubMedCrossRefGoogle Scholar
  65. Oh SB, Tran PB, Gillard SE et al (2001) Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 21:5027–5035Google Scholar
  66. Oh SB, Endoh T, Simen AA et al (2002) Regulation of calcium currents by chemokines and their receptors. J Neuroimmunol 123:66–75Google Scholar
  67. Pan Y, Lloyd C, Zhou H et al (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387:611–617PubMedCrossRefGoogle Scholar
  68. Pereira CF, Middel J, Jansen G et al (2001) Enhanced expression of fractalkine in HIV-1 associated dementia. J Neuroimmunol 115:168–175CrossRefGoogle Scholar
  69. Ragozzino D, Di Angelantonio S, Trettel F et al (2006) Chemokine fractalkine/CX3CL1 negatively modulates active glutamatergic synapses in rat hippocampal neurons. J Neurosci 26:10488–10498PubMedCrossRefGoogle Scholar
  70. Raport CJ, Schweickart VL, Eddy RL et al (1995) The orphan G-protein-coupled receptor-encoding gene V28 is closely related to genes for chemokine receptors and is expressed in lymphoid and neural tissues. Gene 163:295–299PubMedCrossRefGoogle Scholar
  71. Reeves JD, McKnight A, Potempa S et al (1997) CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology 231:130–134PubMedCrossRefGoogle Scholar
  72. Ribeiro JA (2005) What can adenosine neuromodulation do for neuroprotection? Curr Drug Targets CNS Neurol Disord 4:325–329PubMedCrossRefGoogle Scholar
  73. Rucker J, Edinger AL, Sharron M et al (1997) Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J Virol 71:8999–9007PubMedGoogle Scholar
  74. Schwaeble WJ, Stover CM, Schall TJ et al (1988) Neuronal expression of fractalkine in the presence and absence of inflammation. FEBS Lett 439:203–207CrossRefGoogle Scholar
  75. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368PubMedCrossRefGoogle Scholar
  76. Soriano SG, Amaravadi LS, Wang YF et al (2002) Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol 125:59–65PubMedCrossRefGoogle Scholar
  77. Sun S, Cao H, Han M et al (2007) New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain 129:64–75PubMedCrossRefGoogle Scholar
  78. Sunnemark D, Eltayeb S, Nilsson M et al (2005) CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. Neuroinflammation 2:17CrossRefGoogle Scholar
  79. Tarozzo G, Bortolazzi C, Crochemore S et al (2003) Fractalkine protein localization and gene expression in mouse brain. J Neurosci Res 73:81–88PubMedCrossRefGoogle Scholar
  80. Tarozzo G, Campanella M, Ghiani M et al (2002) Expression of fractalkine and its receptor, CX3CR1, in response to ischaemia-reperfusion brain injury in the rat. Eur J Neurosci 15:1663–1668PubMedCrossRefGoogle Scholar
  81. Tong N, Perry SW W, Zhang Q et al (2000) Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol 164:1333–1339PubMedGoogle Scholar
  82. Tsou CL, Haskell CA, Charo IF (2001) Tumor necrosis factor-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem 276:44622–44626PubMedCrossRefGoogle Scholar
  83. Verge GM, Milligan ED, Maier SF et al (2004) Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci 20:1150–1160PubMedCrossRefGoogle Scholar
  84. Vidal F, Viladés C, Domingo P et al (2005) Spanish HIV-1-infected long-term nonprogressors of more than 15 years have an increased frequency of the CX3CR1 249I variant allele. J Acquir Immune Defic Syndr 40:527–531PubMedCrossRefGoogle Scholar
  85. Vitale S, Schmid-Alliana A, Breuil V et al (2004) Soluble fractalkine prevents monocyte chemoattractant protein-1-induced monocyte migration via inhibition of stress-activated protein kinase 2/p38 and matrix metalloproteinase activities. J Immunol 172:585–592PubMedGoogle Scholar
  86. Zhuang ZY, Kawasaki Y, Tan PH et al (2007) Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun 21:642–651PubMedCrossRefGoogle Scholar
  87. Zujovic V, Benavides J, Vigé X et al (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29:305–315PubMedCrossRefGoogle Scholar
  88. Zujovic V, Schussler N, Jourdain D et al (2001) In vivo neutralization of endogenous brain fractalkine increases hippocampal TNFalpha and 8-isoprostane production induced by intracerebroventricular injection of LPS. J Neuroimmunol 115:135–143PubMedCrossRefGoogle Scholar
  89. Yoshida H, Imaizumia T, Fujimotoa K et al (2001) Synergistic stimulation, by tumor necrosis factor-α and interferon-γ, of fractalkine expression in human astrocytes. Neurosci Lett 303:132–136PubMedCrossRefGoogle Scholar
  90. Xu Q, Wang S, Ishida X et al (2007) Hypoxia-induced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-derived factor-1alpha and monocyte chemoattractant protein-1 upregulation in vitro. Clin Exp Pharmacol Physiol 34:624–631PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Davide Ragozzino
    • 1
  • Clotilde Lauro
    • 1
  • Cristina Limatola
    • 1
  1. 1.Department of Physiology and PharmacologyUniversity SapienzaRomeItaly

Personalised recommendations