Skip to main content

Motion Detection for Reflexive Tracking

  • Chapter
  • First Online:
Dynamics of Visual Motion Processing

Abstract

The moving observer who looks in the direction of heading experiences radial optic flow, which is known to elicit horizontal vergence eye movements at short latency, expansion causing convergence and contraction causing divergence: the Radial Flow Vergence Response (RFVR). The moving observer who looks off to one side experiences linear flow, which is known to elicit horizontal version eye movements at short latency: the Ocular Following Response (OFR). Although the RFVR and OFR are very different kinds of eye movement and are sensitive to very different patterns of global motion, they have very similar local spatiotemporal properties. For example, both responses are critically dependent on the Fourier composition of the motion stimuli, consistent with early spatio-temporal filtering prior to motion detection, as in the well-known energy model of motion analysis. When the motion stimuli are sine-wave gratings, the two responses share a very similar dependence on the spatial frequency and contrast of those gratings, and even the quantitative details are very similar. When the motion consists of a single step (“two-frame movie”) then a brief inter-stimulus interval results in the reversal of both responses, consistent with the idea that both are mediated by motion detectors that receive a visual input whose temporal impulse response function is strongly biphasic. Further, when confronted with two sine-wave gratings that differ slightly in spatial frequency and have competing motions, both responses show nonlinear dependence on the relative contrasts of those two gratings: when the two sine waves differ in contrast by more than about an octave then the one with the higher contrast completely dominates the responses and the one with lower contrast loses its influence: winner-take-all. It has been suggested that these nonlinear interactions result from mutual inhibition between the low-level mechanisms sensing the motion of the different competing harmonics. Lastly, single unit recordings and local lesions in monkeys strongly suggest that both types of eye movements are mediated by neurons in the MT/MST region of the cerebral cortex that are sensitive to global optic flow. We will argue that these various findings are all consistent with the idea that the RFVR and OFR acquire their different global properties at the level of MT/MST, where the neurons respond to large-field radial and linear optic flow, and their shared local properties from a common earlier stage, the striate cortex, where the neurons respond to the local motion energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lu and Sperling ( 1995 , 1996 , 2001 ) postulate three different mechanisms by which we sense motion.

  2. 2.

    We have not mentioned a 3rd reflex, the Disparity Vergence Response, that is also thought to be a member of this family, because it responds to binocular disparity rather than motion. This reflex shares many fundamental properties with the OFR and RFVR, including dependence on 1st-order (disparity) energy (Sheliga et al. 2006b), and WTA behavior when competing (disparity) stimuli are used (Sheliga et al. 2007b).

References

  • Adelson EH (1982). Some new motion illusions, and some old ones, analysed in terms of their Fourier components. Invest Ophthalmol Vis Sci, 34 (Suppl.):144 (Abstract)

    Google Scholar 

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299

    PubMed  CAS  Google Scholar 

  • Baro JA, Levinson E (1988) Apparent motion can be perceived between patterns with dissimilar spatial frequencies. Vision Res 28:1311–1313

    PubMed  CAS  Google Scholar 

  • Barthélemy FV, Vanzetta I, Masson GS (2006) Behavioral receptive field for ocular following in humans: dynamics of spatial summation and center-surround interactions. J Neurophysiol 95:3712–3726

    PubMed  Google Scholar 

  • Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189

    PubMed  CAS  Google Scholar 

  • Braddick O (1974) A short-range process in apparent motion. Vision Res 14:519–527

    PubMed  CAS  Google Scholar 

  • Bradley DC, Qian N, Andersen RA (1995) Integration of motion and stereopsis in middle temporal cortical area of macaques. Nature 373:609–611

    PubMed  CAS  Google Scholar 

  • Britten KH, Heuer HW (1999) Spatial summation in the receptive fields of MT neurons. J Neurosci 19:5074–5084

    PubMed  CAS  Google Scholar 

  • Brown RO, He S (2000) Visual motion of missing-fundamental patterns: motion energy versus feature correspondence. Vision Res 40:2135–2147

    PubMed  CAS  Google Scholar 

  • Busettini C, Masson GS, Miles FA (1997) Radial optic flow induces vergence eye movements with ultra-short latencies. Nature 390:512–515

    PubMed  CAS  Google Scholar 

  • Busettini C, Miles FA, Schwarz U (1991) Ocular responses to translation and their dependence on viewing distance. II. Motion of the scene. J Neurophysiol 66:865–878

    PubMed  CAS  Google Scholar 

  • Carandini M, Heeger DJ (1994) Summation and division by neurons in primate visual cortex. Science 264:1333–1336

    PubMed  CAS  Google Scholar 

  • Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci 17:8621–8644

    PubMed  CAS  Google Scholar 

  • Cavanagh P (1992) Attention-based motion perception. Science 257:1563–1565

    PubMed  CAS  Google Scholar 

  • Cavanagh P, Mather G (1989) Motion: the long and short of it. Spat Vis 4:103–129

    PubMed  CAS  Google Scholar 

  • Chen KJ, Sheliga BM, FitzGibbon EJ, Miles FA (2005) Initial ocular following in humans depends critically on the fourier components of the motion stimulus. Ann N Y Acad Sci 1039:260–271

    PubMed  CAS  Google Scholar 

  • Chubb C, Sperling G (1988) Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. J Opt Soc Am A 5:1986–2007

    PubMed  CAS  Google Scholar 

  • Churchland MM, Priebe NJ, Lisberger SG (2005) Comparison of the spatial limits on direction selectivity in visual areas MT and V1. J Neurophysiol 93:1235–1245

    PubMed  Google Scholar 

  • Duffy CJ (2000) Optic flow analysis for self-movement perception. Int Rev Neurobiol 44:199–218

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65:1329–1345

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65:1346–1359

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1995) Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J Neurosci 15:5192–5208

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1997a) Medial superior temporal area neurons respond to speed patterns in optic flow. J Neurosci 17:2839–2851

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1997b) Multiple temporal components of optic flow responses in MST neurons. Exp Brain Res 114:472–482

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1997c) Planar directional contributions to optic flow responses in MST neurons. J Neurophysiol 77:782–796

    PubMed  CAS  Google Scholar 

  • Ferrera VP (2000) Task-dependent modulation of the sensorimotor transformation for smooth pursuit eye movements. J Neurophysiol 84:2725–2738

    PubMed  CAS  Google Scholar 

  • Ferrera VP, Lisberger SG (1995) Attention and target selection for smooth pursuit eye movements. J Neurosci 15:7472–7484

    PubMed  CAS  Google Scholar 

  • Ferrera VP, Lisberger SG (1997) The effect of a moving distractor on the initiation of smooth-pursuit eye movements. Vis Neurosci 14:323–338

    PubMed  CAS  Google Scholar 

  • Georgeson MA, Harris MG (1990) The temporal range of motion sensing and motion perception. Vision Res 30:615–619

    PubMed  CAS  Google Scholar 

  • Georgeson MA, Shackleton TM (1989) Monocular motion sensing, binocular motion perception. Vision Res 29:1511–1523

    PubMed  CAS  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9:181–197

    PubMed  CAS  Google Scholar 

  • Heeger DJ, Boynton GM, Demb JB, Seidemann E, Newsome WT (1999) Motion opponency in visual cortex. J Neurosci 19:7162–7174

    PubMed  CAS  Google Scholar 

  • Heinen SJ, Watamaniuk SN (1998) Spatial integration in human smooth pursuit. Vision Res 38:3785–3794

    PubMed  CAS  Google Scholar 

  • Heuer HW, Britten KH (2002) Contrast dependence of response normalization in area MT of the rhesus macaque. J Neurophysiol 88:3398–3408

    PubMed  Google Scholar 

  • Inoue Y, Takemura A, Suehiro K, Kodaka Y, Kawano K (1998) Short-latency vergence eye movements elicited by looming step in monkeys. Neurosci Res 32:185–188

    PubMed  CAS  Google Scholar 

  • Kaplan E, Shapley RM (1982) X and Y cells in the lateral geniculate nucleus of macaque monkeys. J Physiol (Lond) 330:125–143

    CAS  Google Scholar 

  • Kawano K, Shidara M, Watanabe Y, Yamane S (1994) Neural activity in cortical area MST of alert monkey during ocular following responses. J Neurophysiol 71:2305–2324

    PubMed  CAS  Google Scholar 

  • Kelly DH (1961) Visual response to time-dependent stimuli. I. Amplitude sensitivity measurements. J Opt Soc Am 51:422–429

    PubMed  CAS  Google Scholar 

  • Kelly DH (1971a) Theory of flicker and transient responses. I. Uniform fields. J Opt Soc Am 61:537–546

    PubMed  CAS  Google Scholar 

  • Kelly DH (1971b) Theory of flicker and transient responses. II. Counterphase gratings. J Opt Soc Am 61:632–640

    PubMed  CAS  Google Scholar 

  • Kodaka Y, Sheliga BM, Fitzgibbon EJ, Miles FA (2007) The vergence eye movements induced by radial optic flow: some fundamental properties of the underlying local-motion detectors. Vision Res 47:2637–2660

    PubMed  CAS  Google Scholar 

  • Lagae L, Maes H, Raiguel S, Xiao D-K, Orban GA (1994) Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol 71:1597–1626

    PubMed  CAS  Google Scholar 

  • Lee BB, Smith VC, Pokorny J, Kremers J (1997) Rod inputs to macaque ganglion cells. Vision Res 37:2813–2828

    PubMed  CAS  Google Scholar 

  • Levinson E, Sekuler R (1975) Inhibition and disinhibition of direction-specific mechanisms in human vision. Nature 254:692–694

    PubMed  CAS  Google Scholar 

  • Livingstone M, Hubel DH (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    PubMed  CAS  Google Scholar 

  • Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468

    PubMed  CAS  Google Scholar 

  • Lu ZL, Sperling G (1995) The functional architecture of human visual motion perception. Vision Res 35:2697–2722

    PubMed  CAS  Google Scholar 

  • Lu ZL, Sperling G (1996) Three systems for visual motion perception. Curr Dir Psychol Sci 5:44–53

    Google Scholar 

  • Lu ZL, Sperling G (2001) Three-systems theory of human visual motion perception: review and update. J Opt Soc Am A 18:2331–2370

    CAS  Google Scholar 

  • Masson GS, Busettini C, Yang D-S, Miles FA (2001) Short-latency ocular following in humans: sensitivity to binocular disparity. Vision Res 41:3371–3387

    PubMed  CAS  Google Scholar 

  • Masson GS, Castet E (2002) Parallel motion processing for the initiation of short-latency ocular following in humans. J Neurosci 22:5149–5163

    PubMed  CAS  Google Scholar 

  • Masson GS, Rybarczyk Y, Castet E, Mestre DR (2000) Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies. Vis Neurosci 17:753–767

    PubMed  CAS  Google Scholar 

  • Masson GS, Yang D-S, Miles FA (2002a) Reversed short-latency ocular following. Vision Res 42:2081–2087

    PubMed  CAS  Google Scholar 

  • Masson GS, Yang D-S, Miles FA (2002b) Version and vergence eye movements in humans: open-loop dynamics determined by monocular rather than binocular image speed. Vision Res 42:2853–2867

    PubMed  CAS  Google Scholar 

  • Mather G, Moulden B (1983) Thresholds for movement direction: two directions are less detectable than one. Q J Exp Psychol A 35:513–518

    PubMed  CAS  Google Scholar 

  • Maunsell JH, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334

    PubMed  CAS  Google Scholar 

  • Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586

    PubMed  CAS  Google Scholar 

  • Merigan WH, Maunsell JH (1990) Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci 5:347–352

    PubMed  CAS  Google Scholar 

  • Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J Neurophysiol 55:1308–1327

    PubMed  CAS  Google Scholar 

  • Miles FA (1998) The neural processing of 3-D visual information: evidence from eye movements. Eur J Neurosci 10:811–822

    PubMed  CAS  Google Scholar 

  • Miles FA, Busettini C, Masson GS, Yang D-S (2004) Short-latency eye movements: evidence for rapid, parallel processing of optic flow. In: Vaina LM, Beardsley SA, Rushton S (eds) Optic flow and beyond. Kluwer Academic Press, Dordrecht, pp 79–107

    Google Scholar 

  • Miles FA, Kawano K (1986) Short-latency ocular following responses of monkey. III. Plasticity. J Neurophysiol 56:1381–1396

    PubMed  CAS  Google Scholar 

  • Miles FA, Kawano K, Optican LM (1986) Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J Neurophysiol 56:1321–1354

    PubMed  CAS  Google Scholar 

  • Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741

    PubMed  CAS  Google Scholar 

  • Pantle A, Turano K (1992) Visual resolution of motion ambiguity with periodic luminance- and contrast-domain stimuli. Vision Res 32:2093–2106

    PubMed  CAS  Google Scholar 

  • Priebe NJ, Lisberger SG, Movshon JA (2006) Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. J Neurosci 26:2941–2950

    PubMed  CAS  Google Scholar 

  • Purpura K, Kaplan E, Shapley RM (1988) Background light and the contrast gain of primate P and M retinal ganglion cells. Proc Natl Acad Sci USA 85:4534–4537

    PubMed  CAS  Google Scholar 

  • Qian N, Andersen RA (1994) Transparent motion perception as detection of unbalanced motion signals. II. Physiology. J Neurosci 14:7367–7380

    PubMed  CAS  Google Scholar 

  • Qian N, Andersen RA, Adelson EH (1994) Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. J Neurosci 14:7357–7366

    PubMed  CAS  Google Scholar 

  • Rodman HR, Albright TD (1987) Coding of visual stimulus velocity in area MT of the macaque. Vision Res 27:2035–2048

    PubMed  CAS  Google Scholar 

  • Recanzone GH, Wurtz RH (1999) Shift in smooth pursuit initiation and MT and MST neuronal activity under different stimulus conditions. J Neurophysiol 82:1710–1727

    PubMed  CAS  Google Scholar 

  • Roufs JAJ (1972a) Dynamic properties of vision. I. Experimental relationships between flicker and flash thresholds. Vision Res 12:261–278

    PubMed  CAS  Google Scholar 

  • Roufs JAJ (1972b) Dynamic properties of vision. II. Theoretical relationships between flicker and flash thresholds. Vision Res 12:279–292

    PubMed  CAS  Google Scholar 

  • Rust NC (2004) Signal transmission, feature representation and computation in areas V1 and MT of the macaque monkey. Doctoral dissertation, New York University, Dissertation Abstracts International 65/09-B, 4444

    Google Scholar 

  • Rust NC, Mante V, Simoncelli EP, Movshon JA (2006) How MT cells analyze the motion of visual patterns. Nat Neurosci 9:1421–1431

    PubMed  CAS  Google Scholar 

  • Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements of macaque v1 receptive fields. Neuron 46:945–956

    PubMed  CAS  Google Scholar 

  • Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6:145–157

    PubMed  CAS  Google Scholar 

  • Schiller PH, Logothetis NK, Charles ER (1990) Role of the color-opponent and broad-band channels in vision. Vis Neurosci 5:321–346

    PubMed  CAS  Google Scholar 

  • Sheliga BM, Chen KJ, FitzGibbon EJ, Miles FA (2005a) Initial ocular following in humans: a response to first-order motion energy. Vision Res 45:3307–3321

    PubMed  CAS  Google Scholar 

  • Sheliga BM, Chen KJ, FitzGibbon EJ, Miles FA (2005b) Short-latency disparity vergence in humans: evidence for early spatial filtering. Ann NY Acad Sci 1039:252–259

    PubMed  CAS  Google Scholar 

  • Sheliga BM, Chen KJ, FitzGibbon EJ, Miles FA (2006a) The initial ocular following responses elicited by apparent-motion stimuli: Reversal by inter-stimulus intervals. Vision Res 46:979–992

    PubMed  CAS  Google Scholar 

  • Sheliga BM, FitzGibbon EJ, Miles FA (2006b) Short-latency disparity vergence eye movements: a response to disparity energy. Vision Res 46:3723–3740

    PubMed  CAS  Google Scholar 

  • Sheliga BM, FitzGibbon EJ, Miles FA (2007a) Competing image motions: evidence for local and global nonlinear interactions. 2007 Neuroscience Meeting Planner. Program No. 337.314. Society for Neuroscience, San Diego, CA

    Google Scholar 

  • Sheliga BM, FitzGibbon EJ, Miles FA (2007b) Human vergence eye movements initiated by competing disparities: evidence for a winner-take-all mechanism. Vision Res 47:479–500

    PubMed  CAS  Google Scholar 

  • Sheliga BM, FitzGibbon EJ, Miles FA (2008) Human ocular following: evidence that responses to large-field stimuli are limited by local and global inhibitory influences. Prog Brain Res 171:237–243

    Google Scholar 

  • Sheliga BM, Kodaka Y, FitzGibbon EJ, Miles FA (2006c) Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism. Vision Res 46:2041–2060

    PubMed  CAS  Google Scholar 

  • Shioiri S, Cavanagh P (1990) ISI produces reverse apparent motion. Vision Res 30:757–768

    PubMed  CAS  Google Scholar 

  • Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38:743–761

    PubMed  CAS  Google Scholar 

  • Smith AT (1994) Correspondence-based and energy-based detection of second-order motion in human vision. J Opt Soc Am A 11:1940–1948

    CAS  Google Scholar 

  • Snowden RJ, Hess RF, Waugh SJ (1995) The processing of temporal modulation at different levels of retinal illuminance. Vision Res 35:775–789

    PubMed  CAS  Google Scholar 

  • Snowden RJ, Treue S, Erickson RG, Andersen RA (1991) The response of area MT and V1 neurons to transparent motion. J Neurosci 11:2768–2785

    PubMed  CAS  Google Scholar 

  • Stromeyer CF, Kronauer RE, Madsen JC, Klein SA (1984) Opponent-movement mechanisms in human vision. J Opt Soc Am A 1:876–884

    PubMed  Google Scholar 

  • Strout JJ, Pantle A, Mills SL (1994) An energy model of interframe interval effects in single-step apparent motion. Vision Res 34:3223–3240

    PubMed  CAS  Google Scholar 

  • Swanson WH, Ueno T, Smith VC, Pokorny J (1987) Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations. J Opt Soc Am A 4:1992–2005

    PubMed  CAS  Google Scholar 

  • Takemura A, Inoue Y, Kawano K (2000) The effect of disparity on the very earliest ocular following responses and the initial neuronal activity in monkey cortical area MST. Neurosci Res 38:93–101

    PubMed  CAS  Google Scholar 

  • Takemura A, Inoue Y, Kawano K (2002) Visually driven eye movements elicited at ultra-short latency are severely impaired by MST lesions. Ann N Y Acad Sci 956:456–459

    PubMed  Google Scholar 

  • Takemura A, Kawano K (2002) Sensory-to-motor processing of the ocular-following response. Neurosci Res 43:201–206

    PubMed  Google Scholar 

  • Takemura A, Kawano K (2006) Neuronal responses in MST reflect the post-saccadic enhancement of short-latency ocular following responses. Exp Brain Res 173:174–179

    PubMed  Google Scholar 

  • Takemura A, Murata Y, Kawano K, Miles FA (2007) Deficits in short-latency tracking eye movements after chemical lesions in monkey cortical areas MT and MST. J Neurosci 27:529–541

    PubMed  CAS  Google Scholar 

  • Takeuchi T, De Valois KK (1997) Motion-reversal reveals two motion mechanisms functioning in scotopic vision. Vision Res 37:745–755

    PubMed  CAS  Google Scholar 

  • Takeuchi T, De Valois KK, Motoyoshi I (2001) Light adaptation in motion direction judgments. J Opt Soc Am A 18:755–764

    CAS  Google Scholar 

  • Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6:134–144

    PubMed  CAS  Google Scholar 

  • Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62:626–641

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248:190–222

    PubMed  CAS  Google Scholar 

  • van Santen JP, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am A 1:451–473

    PubMed  Google Scholar 

  • van Santen JP, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2:300–321

    PubMed  Google Scholar 

  • Watson AB, Ahumada AJ (1985) Model of human visual-motion sensing. J Opt Soc Am A 2:322–341

    PubMed  CAS  Google Scholar 

  • Wurtz RH (1998) Optic flow: a brain region devoted to optic flow analysis? Curr Biol 8:R554–R556

    PubMed  CAS  Google Scholar 

  • Yang D-S, FitzGibbon EJ, Miles FA (1999) Short-latency vergence eye movements induced by radial optic flow in humans: dependence on ambient vergence level. J Neurophysiol 81:945–949

    PubMed  CAS  Google Scholar 

  • Yang D-S, FitzGibbon EJ, Miles FA (2003) Short-latency disparity-vergence eye movements in humans: sensitivity to simulated orthogonal tropias. Vision Res 43:431–443

    PubMed  Google Scholar 

  • Yang D-S, Miles FA (2003) Short-latency ocular following in humans is dependent on absolute (rather than relative) binocular disparity. Vision Res 43:1387–1396

    PubMed  Google Scholar 

  • Zemany L, Stromeyer CF, Chaparro A, Kronauer RE (1998) Motion detection on flashed, stationary pedestal gratings: evidence for an opponent-motion mechanism. Vision Res 38:795–812

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Eye Institute at the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick A. Miles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miles, F.A., Sheliga, B.M. (2009). Motion Detection for Reflexive Tracking. In: Ilg, U., Masson, G. (eds) Dynamics of Visual Motion Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0781-3_7

Download citation

Publish with us

Policies and ethics