Skip to main content

Second-Order Motion Stimuli: A New Handle to Visual Motion Processing

  • Chapter
  • First Online:
Dynamics of Visual Motion Processing
  • 942 Accesses

Abstract

This chapter addresses three different aspects related to visual motion processing by means of second-order motion stimuli. The first question discussed is whether there is a need for separate mechanisms underlying the execution of action and perception elicited by these motion stimuli. Second, light is shed on the neuronal responses to second-order motion stimuli recorded from the middle temporal (MT) and medial superior temporal (MST) areas. While neuronal responses are recorded, the monkeys performed a psychophysical task and reported the direction of stimulus movements. Third and final, the perception of biological motion in man and monkeys and its relationship to second-order motion is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DI = 1 – activitynon-preferred direction/activitypreferred direction.

  2. 2.

    d' = 2 ' (mean activitypref - mean activitynon-pref)/(std activitypref + std activitynon-pref).

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299

    Article  PubMed  CAS  Google Scholar 

  • Albright TD (1992) Form-cue invariant motion processing in primate visual cortex. Science 255:1141–1143

    Article  PubMed  CAS  Google Scholar 

  • Allman JM, Kaas JH (1971) A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31:85–105

    Article  PubMed  CAS  Google Scholar 

  • Anstis SM (1970) Phi movement as a subtraction process. Vis Res 10:1411–1430

    Article  PubMed  CAS  Google Scholar 

  • Baccino T, Jaschinski W, Bussolon J (2001) The influence of bright background flicker during different saccade periods on saccadic performance. Vis Res 41:3909–3916

    Article  PubMed  CAS  Google Scholar 

  • Barraclough N, Tinsley C, Webb B, Vincent C, Derrington A (2006a) Processing of first-order motion in marmoset visual cortex is influenced by second-order motion. Vis Neurosci 23:815–824

    Article  PubMed  Google Scholar 

  • Barraclough NE, Xiao D, Oram MW, Perrett DI (2006b) The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images. Prog Brain Res 154:135–148

    Article  PubMed  Google Scholar 

  • Beintema JA, Georg K, Lappe M (2006) Perception of biological motion from limited-lifetime stimuli. Percept Psychophys 68:613–624

    Article  PubMed  CAS  Google Scholar 

  • Beintema JA, Lappe M (2002) Perception of biological motion without local image motion. Proc Natl Acad Sci USA 99:5661–5663

    Google Scholar 

  • Benevento LA, Fallon J, Davis BJ, Rezak M (1977) Auditory–visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp Neurol 57:849–872

    Article  PubMed  CAS  Google Scholar 

  • Berryhill ME, Chiu T, Hughes HC (2006) Smooth pursuit of nonvisual motion. J Neurophysiol 96:461–465

    Article  PubMed  Google Scholar 

  • Beutter BR, Stone LS (1998) Human motion perception and smooth pursuit eye movements show similar directional biases for elongated apertures. Vis Res 38:1273–1286

    Article  PubMed  CAS  Google Scholar 

  • Beutter BR, Stone LS (2000) Motion coherence affects human perception and pursuit similarly. Vis Neurosci 17:139–153

    Article  PubMed  CAS  Google Scholar 

  • Bisley JW, Pasternak T (2000) The multiple roles of visual cortical areas MT/MST in remembering the direction of visual motion. Cereb Cortex 10:1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Bisley JW, Zaksas D, Pasternak T (2001) Microstimulation of cortical area MT affects performance on a visual working memory task. J Neurophysiol 85:187–196

    PubMed  CAS  Google Scholar 

  • Braunstein ML (1962) The perception of depth through motion. Psychol Bull 59:422–433

    Article  PubMed  CAS  Google Scholar 

  • Bremmer F, Klam F, Duhamel JR, Ben Hamed S & Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience 16: 1569-1586., 2002.

    Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296

    Article  PubMed  CAS  Google Scholar 

  • Britten KH, Newsome WT, Shadlen MN, and Celebrini S (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13:87–100

    Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    PubMed  CAS  Google Scholar 

  • Butzer F, Ilg UJ, Zanker JM (1997) Smooth-pursuit eye movements elicited by first-order and second-order motion. Exp Brain Res 115:61–70

    Google Scholar 

  • Celebrini S, Newsome WT (1995) Microstimulation of extrastriate area MST influences performance on a direction discrimination task. J Neurophysiol 73:437–448

    PubMed  CAS  Google Scholar 

  • Celebrini S, Newsome WT (1994) Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J Neurosci 14:4109–4124

    PubMed  CAS  Google Scholar 

  • Chubb C, Sperling G (1988) Drift-balanced random stimuli: a general basis for studying non-fourier motion perception. J Opt Soc Am 5:1986–2007

    Article  CAS  Google Scholar 

  • Churan J, Ilg UJ (2002) Flicker in the visual background impairs the ability to process a moving visual stimulus. Eur J Neurosci 16:1151–1162

    Article  PubMed  Google Scholar 

  • Churan J, Ilg UJ (2001) Processing of second-order motion stimuli in primate middle temporal area and medial superior temporal area. J Opt Soc Am A 18:2297–2306

    Article  CAS  Google Scholar 

  • Derrington AM, Badcock DR, Henning GB (1993) Discriminating the direction of second-order motion at short stimulus durations. Vis Res 33:1785–1794

    Article  PubMed  CAS  Google Scholar 

  • Ditterich J, Mazurek ME, Shadlen MN (2003) Microstimulation of visual cortex affects the speed of perceptual decisions. Nat Neurosci 6:891–898

    Article  PubMed  CAS  Google Scholar 

  • Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35:528–532

    Article  PubMed  CAS  Google Scholar 

  • Duhamel JP, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79:126–136

    PubMed  CAS  Google Scholar 

  • Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1–47):1991

    Google Scholar 

  • Fox R, McDaniel C (1982) The perception of biological motion by human infants. Science 218:486–487

    Article  PubMed  CAS  Google Scholar 

  • Gardner JL, Tokiyama SN, Lisberger SG (2004) A population decoding framework for motion aftereffects on smooth pursuit eye movements. J Neurosci 24:9035–9048

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Google Scholar 

  • Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156

    Article  PubMed  CAS  Google Scholar 

  • Green M (1983) Contrast detection and direction discrimination of drifting gratings. Vis Res 23:281–289

    Article  PubMed  CAS  Google Scholar 

  • Grunewald A, Linden JF, Andersen RA (1999) Responses to auditory stimuli in macaque lateral intraparietal area I Effects of training. J Neurophysiol 82:330–342

    PubMed  CAS  Google Scholar 

  • Harris LR, Smith AT (1992) Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus. Vis Neurosci 9:565–570

    Article  PubMed  CAS  Google Scholar 

  • Hashiba M, Matsuoka T, Baba S, Watanabe S (1996) Non-visually induced smooth pursuit eye movements using sinusoidal target motion. Acta Otolaryngologica Suppl 525:158–162

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol (London) 195:215–243

    CAS  Google Scholar 

  • Ilg UJ, Churan J (2004) Motion perception without explicit activity in areas MT and MST. J Neurophysiol 92:1512–1523

    Article  PubMed  Google Scholar 

  • Ilg UJ, Schumann S, Thier P (2004) Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron 43:145–151

    Article  PubMed  CAS  Google Scholar 

  • Jansson G, Johansson G (1973) Visual perception of bending motion. Perception 2:321–326

    Article  PubMed  CAS  Google Scholar 

  • Johansson G (1976) Spatio-temporal differentiation and integration in visual motion perception. An experimental and theoretical analysis of calculus-like functions in visual data processing. Psychol Res 38:379–393

    Article  PubMed  CAS  Google Scholar 

  • Johansson G (1975) Visual motion perception. Sci Am 232:76–88

    Google Scholar 

  • Koffka K (1935) Principles of gestalt psychology. Lund Humphries, London

    Google Scholar 

  • Krauzlis RJ, Adler SA (2001) Effects of directional expectations on motion perception and pursuit eye movements. Vis Neurosci 18:365–376

    Article  PubMed  CAS  Google Scholar 

  • Krauzlis RJ, Stone LS (1999) Tracking with the mind’s eye. Trends Neurosci 22:544–550

    Article  PubMed  CAS  Google Scholar 

  • Lelkens AMM, Koenderink JJ (1984) Illusory motion in visual displays. Vis Res 24:1083–1090

    Article  PubMed  CAS  Google Scholar 

  • Lindner A, Ilg UJ (2000) Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli. Exp Brain Res 133:450–456

    Article  PubMed  CAS  Google Scholar 

  • Macknik SL, Fisher BD, Bridgeman B (1991) Flicker distorts visual space constancy. Vis Res 31:2057–2064

    Article  PubMed  CAS  Google Scholar 

  • Majaj NJ, Carandini M, Movshon JA (2007) Motion integration by neurons in macaque MT is local, not global. J Neurosci 27:366–370

    Article  PubMed  Google Scholar 

  • Mather G, Verstraten F, Anstis S (1998) The motion aftereffect. The MIT Press, Cambridge, MA

    Google Scholar 

  • Maunsell JHR, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586

    PubMed  CAS  Google Scholar 

  • Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741

    PubMed  CAS  Google Scholar 

  • Newsome WT, Pare EB (1988) A selective impairment of motion perception following lesions of the Middle Temporal Visual Area (MT). J Neurosci 8:2201–2211

    PubMed  CAS  Google Scholar 

  • Nishida S (1993) Spatiotemporal properties of motion perception for random-check contrast modulations. Vis Res 33:633–645

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Ashida H, Sato T (1997) Contrast dependencies of two types of motion aftereffect. Vis Res 37:553–563

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe LP, Movshon JA (1998) Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey. Vis Neurosci 15:305–317

    Article  PubMed  Google Scholar 

  • Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6:99–116

    Article  Google Scholar 

  • Patzwahl DR, Zanker JM, Altenmueller EO (1993) Cortical potentials in the humans reflecting the direction of object motion. NeuroReport 4:379–382

    Article  PubMed  CAS  Google Scholar 

  • Pavlova M, Sokolov A (2000) Orientation specificity in biological motion perception. Percept Psychophys 62:889–899

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161:533–547

    Article  PubMed  CAS  Google Scholar 

  • Rudolph K, Pasternak T (1999) Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb Cortex 9:90–100

    Article  PubMed  CAS  Google Scholar 

  • Scase MO, Braddick OJ, Raymond J (1996) What is noise for the motion system? Vis Res 36:2579–2586

    Article  PubMed  CAS  Google Scholar 

  • Schlack A, Albright TD (2007) Remembering visual motion: neural correlates of associative plasticity and motion recall in cortical area MT. Neuron 53:881–890

    Article  PubMed  CAS  Google Scholar 

  • Serences JT, Boynton GM (2007) The representation of behavioral choice for motion in human visual cortex. J Neurosci 27:12893–12899

    Article  PubMed  CAS  Google Scholar 

  • Sheliga BM, Chen KJ, Fitzgibbon EJ, Miles FA (2005) The initial ocular following responses elicited by apparent-motion stimuli: Reversal by inter-stimulus intervals. Vis Res 46:979–992

    Article  PubMed  Google Scholar 

  • Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18:3816–3830

    PubMed  CAS  Google Scholar 

  • Smith AT, Hess RF, Baker CL Jr (1994) Direction identification thresholds for second-order motion in central and peripheral vision. J Opt Soc Am A 11:506–514

    Article  CAS  Google Scholar 

  • Snowden RJ, Treue S, Erickson RG, and Andersen RA (1991) The response of area MT and V1 neurons to transparent motion. J Neurosci 11(9):2768–2785

    Google Scholar 

  • Stone LS, Beutter BR, Lorenceau J (2000) Visual motion integration for perception and pursuit. Perception 29:771–787

    Article  PubMed  CAS  Google Scholar 

  • Treue S, Snowden RJ, Andersen RA (1993) The effect of transiency on perceived velocity of visual patterns: a case of “temporal capture”. Vis Res 33:791–798

    Article  PubMed  CAS  Google Scholar 

  • Troje NF (2002) Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J Vis 2:371–387

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248:190–222

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ (ed) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549–586

    Google Scholar 

  • Vaina LM, Cowey A, Kennedy D (1999) Perception of first- and second-order motion: separable neurological mechanisms? Hum Brain Mapp 7:67–77

    Article  PubMed  CAS  Google Scholar 

  • Vaina LM, Makris N, Kennedy D, Cowey A (1998) The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Vis Neurosci 15:333–348

    Article  PubMed  CAS  Google Scholar 

  • Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7:690–701

    Article  PubMed  Google Scholar 

  • van Santen JP, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2:300–321

    Article  PubMed  Google Scholar 

  • Wassle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757

    Article  PubMed  Google Scholar 

  • Watson AB, Thompson PG, Murphy BJ, Nachmias J (1980) Summation and discrimination of gratings moving in opposite directions. Vis Res 20:341–347

    Article  PubMed  CAS  Google Scholar 

  • Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung 4:301–350

    Article  Google Scholar 

  • Wilmer JB, Nakayama K (2007) Two distinct visual motion mechanisms for smooth pursuit: evidence from individual differences. Neuron 54:987–1000

    Article  PubMed  CAS  Google Scholar 

  • Yo C, Wilson HR (1992) Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity. Vis Res 32:135–147

    Article  PubMed  CAS  Google Scholar 

  • Zanker JM (1993) Theta motion: a paradoxical stimulus to explore higher order motion extraction. Vis Res 33:553–569

    Article  PubMed  CAS  Google Scholar 

  • Zanker JM, Braddick OJ (1999) How does noise influence the estimation of speed? Vis Res 39:2411–2420

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe J. Ilg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ilg, U.J., Churan, J. (2009). Second-Order Motion Stimuli: A New Handle to Visual Motion Processing. In: Ilg, U., Masson, G. (eds) Dynamics of Visual Motion Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0781-3_6

Download citation

Publish with us

Policies and ethics