Second-Order Motion Stimuli: A New Handle to Visual Motion Processing

  • Uwe J. Ilg
  • Jan Churan


This chapter addresses three different aspects related to visual motion processing by means of second-order motion stimuli. The first question discussed is whether there is a need for separate mechanisms underlying the execution of action and perception elicited by these motion stimuli. Second, light is shed on the neuronal responses to second-order motion stimuli recorded from the middle temporal (MT) and medial superior temporal (MST) areas. While neuronal responses are recorded, the monkeys performed a psychophysical task and reported the direction of stimulus movements. Third and final, the perception of biological motion in man and monkeys and its relationship to second-order motion is addressed.


Random dot kinematogram Fourier motion Drift-balanced motion Theta motion Pursuit initiation Point-light walker Dynamic flicker Middle temporal area (MT) Medial superior temporal area (MST) 


  1. Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299PubMedCrossRefGoogle Scholar
  2. Albright TD (1992) Form-cue invariant motion processing in primate visual cortex. Science 255:1141–1143PubMedCrossRefGoogle Scholar
  3. Allman JM, Kaas JH (1971) A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31:85–105PubMedCrossRefGoogle Scholar
  4. Anstis SM (1970) Phi movement as a subtraction process. Vis Res 10:1411–1430PubMedCrossRefGoogle Scholar
  5. Baccino T, Jaschinski W, Bussolon J (2001) The influence of bright background flicker during different saccade periods on saccadic performance. Vis Res 41:3909–3916PubMedCrossRefGoogle Scholar
  6. Barraclough N, Tinsley C, Webb B, Vincent C, Derrington A (2006a) Processing of first-order motion in marmoset visual cortex is influenced by second-order motion. Vis Neurosci 23:815–824PubMedCrossRefGoogle Scholar
  7. Barraclough NE, Xiao D, Oram MW, Perrett DI (2006b) The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images. Prog Brain Res 154:135–148PubMedCrossRefGoogle Scholar
  8. Beintema JA, Georg K, Lappe M (2006) Perception of biological motion from limited-lifetime stimuli. Percept Psychophys 68:613–624PubMedCrossRefGoogle Scholar
  9. Beintema JA, Lappe M (2002) Perception of biological motion without local image motion. Proc Natl Acad Sci USA 99:5661–5663Google Scholar
  10. Benevento LA, Fallon J, Davis BJ, Rezak M (1977) Auditory–visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp Neurol 57:849–872PubMedCrossRefGoogle Scholar
  11. Berryhill ME, Chiu T, Hughes HC (2006) Smooth pursuit of nonvisual motion. J Neurophysiol 96:461–465PubMedCrossRefGoogle Scholar
  12. Beutter BR, Stone LS (1998) Human motion perception and smooth pursuit eye movements show similar directional biases for elongated apertures. Vis Res 38:1273–1286PubMedCrossRefGoogle Scholar
  13. Beutter BR, Stone LS (2000) Motion coherence affects human perception and pursuit similarly. Vis Neurosci 17:139–153PubMedCrossRefGoogle Scholar
  14. Bisley JW, Pasternak T (2000) The multiple roles of visual cortical areas MT/MST in remembering the direction of visual motion. Cereb Cortex 10:1053–1065PubMedCrossRefGoogle Scholar
  15. Bisley JW, Zaksas D, Pasternak T (2001) Microstimulation of cortical area MT affects performance on a visual working memory task. J Neurophysiol 85:187–196PubMedGoogle Scholar
  16. Braunstein ML (1962) The perception of depth through motion. Psychol Bull 59:422–433PubMedCrossRefGoogle Scholar
  17. Bremmer F, Klam F, Duhamel JR, Ben Hamed S & Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience 16: 1569-1586., 2002.Google Scholar
  18. Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296PubMedCrossRefGoogle Scholar
  19. Britten KH, Newsome WT, Shadlen MN, and Celebrini S (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13:87–100Google Scholar
  20. Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384PubMedGoogle Scholar
  21. Butzer F, Ilg UJ, Zanker JM (1997) Smooth-pursuit eye movements elicited by first-order and second-order motion. Exp Brain Res 115:61–70Google Scholar
  22. Celebrini S, Newsome WT (1995) Microstimulation of extrastriate area MST influences performance on a direction discrimination task. J Neurophysiol 73:437–448PubMedGoogle Scholar
  23. Celebrini S, Newsome WT (1994) Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J Neurosci 14:4109–4124PubMedGoogle Scholar
  24. Chubb C, Sperling G (1988) Drift-balanced random stimuli: a general basis for studying non-fourier motion perception. J Opt Soc Am 5:1986–2007CrossRefGoogle Scholar
  25. Churan J, Ilg UJ (2002) Flicker in the visual background impairs the ability to process a moving visual stimulus. Eur J Neurosci 16:1151–1162PubMedCrossRefGoogle Scholar
  26. Churan J, Ilg UJ (2001) Processing of second-order motion stimuli in primate middle temporal area and medial superior temporal area. J Opt Soc Am A 18:2297–2306CrossRefGoogle Scholar
  27. Derrington AM, Badcock DR, Henning GB (1993) Discriminating the direction of second-order motion at short stimulus durations. Vis Res 33:1785–1794PubMedCrossRefGoogle Scholar
  28. Ditterich J, Mazurek ME, Shadlen MN (2003) Microstimulation of visual cortex affects the speed of perceptual decisions. Nat Neurosci 6:891–898PubMedCrossRefGoogle Scholar
  29. Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35:528–532PubMedCrossRefGoogle Scholar
  30. Duhamel JP, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79:126–136PubMedGoogle Scholar
  31. Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1–47):1991Google Scholar
  32. Fox R, McDaniel C (1982) The perception of biological motion by human infants. Science 218:486–487PubMedCrossRefGoogle Scholar
  33. Gardner JL, Tokiyama SN, Lisberger SG (2004) A population decoding framework for motion aftereffects on smooth pursuit eye movements. J Neurosci 24:9035–9048PubMedCrossRefGoogle Scholar
  34. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25Google Scholar
  35. Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156PubMedCrossRefGoogle Scholar
  36. Green M (1983) Contrast detection and direction discrimination of drifting gratings. Vis Res 23:281–289PubMedCrossRefGoogle Scholar
  37. Grunewald A, Linden JF, Andersen RA (1999) Responses to auditory stimuli in macaque lateral intraparietal area I Effects of training. J Neurophysiol 82:330–342PubMedGoogle Scholar
  38. Harris LR, Smith AT (1992) Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus. Vis Neurosci 9:565–570PubMedCrossRefGoogle Scholar
  39. Hashiba M, Matsuoka T, Baba S, Watanabe S (1996) Non-visually induced smooth pursuit eye movements using sinusoidal target motion. Acta Otolaryngologica Suppl 525:158–162Google Scholar
  40. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol (London) 195:215–243Google Scholar
  41. Ilg UJ, Churan J (2004) Motion perception without explicit activity in areas MT and MST. J Neurophysiol 92:1512–1523PubMedCrossRefGoogle Scholar
  42. Ilg UJ, Schumann S, Thier P (2004) Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron 43:145–151PubMedCrossRefGoogle Scholar
  43. Jansson G, Johansson G (1973) Visual perception of bending motion. Perception 2:321–326PubMedCrossRefGoogle Scholar
  44. Johansson G (1976) Spatio-temporal differentiation and integration in visual motion perception. An experimental and theoretical analysis of calculus-like functions in visual data processing. Psychol Res 38:379–393PubMedCrossRefGoogle Scholar
  45. Johansson G (1975) Visual motion perception. Sci Am 232:76–88Google Scholar
  46. Koffka K (1935) Principles of gestalt psychology. Lund Humphries, LondonGoogle Scholar
  47. Krauzlis RJ, Adler SA (2001) Effects of directional expectations on motion perception and pursuit eye movements. Vis Neurosci 18:365–376PubMedCrossRefGoogle Scholar
  48. Krauzlis RJ, Stone LS (1999) Tracking with the mind’s eye. Trends Neurosci 22:544–550PubMedCrossRefGoogle Scholar
  49. Lelkens AMM, Koenderink JJ (1984) Illusory motion in visual displays. Vis Res 24:1083–1090PubMedCrossRefGoogle Scholar
  50. Lindner A, Ilg UJ (2000) Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli. Exp Brain Res 133:450–456PubMedCrossRefGoogle Scholar
  51. Macknik SL, Fisher BD, Bridgeman B (1991) Flicker distorts visual space constancy. Vis Res 31:2057–2064PubMedCrossRefGoogle Scholar
  52. Majaj NJ, Carandini M, Movshon JA (2007) Motion integration by neurons in macaque MT is local, not global. J Neurosci 27:366–370PubMedCrossRefGoogle Scholar
  53. Mather G, Verstraten F, Anstis S (1998) The motion aftereffect. The MIT Press, Cambridge, MAGoogle Scholar
  54. Maunsell JHR, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586PubMedGoogle Scholar
  55. Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741PubMedGoogle Scholar
  56. Newsome WT, Pare EB (1988) A selective impairment of motion perception following lesions of the Middle Temporal Visual Area (MT). J Neurosci 8:2201–2211PubMedGoogle Scholar
  57. Nishida S (1993) Spatiotemporal properties of motion perception for random-check contrast modulations. Vis Res 33:633–645PubMedCrossRefGoogle Scholar
  58. Nishida S, Ashida H, Sato T (1997) Contrast dependencies of two types of motion aftereffect. Vis Res 37:553–563PubMedCrossRefGoogle Scholar
  59. O’Keefe LP, Movshon JA (1998) Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey. Vis Neurosci 15:305–317PubMedCrossRefGoogle Scholar
  60. Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6:99–116CrossRefGoogle Scholar
  61. Patzwahl DR, Zanker JM, Altenmueller EO (1993) Cortical potentials in the humans reflecting the direction of object motion. NeuroReport 4:379–382PubMedCrossRefGoogle Scholar
  62. Pavlova M, Sokolov A (2000) Orientation specificity in biological motion perception. Percept Psychophys 62:889–899PubMedCrossRefGoogle Scholar
  63. Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161:533–547PubMedCrossRefGoogle Scholar
  64. Rudolph K, Pasternak T (1999) Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb Cortex 9:90–100PubMedCrossRefGoogle Scholar
  65. Scase MO, Braddick OJ, Raymond J (1996) What is noise for the motion system? Vis Res 36:2579–2586PubMedCrossRefGoogle Scholar
  66. Schlack A, Albright TD (2007) Remembering visual motion: neural correlates of associative plasticity and motion recall in cortical area MT. Neuron 53:881–890PubMedCrossRefGoogle Scholar
  67. Serences JT, Boynton GM (2007) The representation of behavioral choice for motion in human visual cortex. J Neurosci 27:12893–12899PubMedCrossRefGoogle Scholar
  68. Sheliga BM, Chen KJ, Fitzgibbon EJ, Miles FA (2005) The initial ocular following responses elicited by apparent-motion stimuli: Reversal by inter-stimulus intervals. Vis Res 46:979–992PubMedCrossRefGoogle Scholar
  69. Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18:3816–3830PubMedGoogle Scholar
  70. Smith AT, Hess RF, Baker CL Jr (1994) Direction identification thresholds for second-order motion in central and peripheral vision. J Opt Soc Am A 11:506–514CrossRefGoogle Scholar
  71. Snowden RJ, Treue S, Erickson RG, and Andersen RA (1991) The response of area MT and V1 neurons to transparent motion. J Neurosci 11(9):2768–2785Google Scholar
  72. Stone LS, Beutter BR, Lorenceau J (2000) Visual motion integration for perception and pursuit. Perception 29:771–787PubMedCrossRefGoogle Scholar
  73. Treue S, Snowden RJ, Andersen RA (1993) The effect of transiency on perceived velocity of visual patterns: a case of “temporal capture”. Vis Res 33:791–798PubMedCrossRefGoogle Scholar
  74. Troje NF (2002) Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J Vis 2:371–387PubMedCrossRefGoogle Scholar
  75. Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248:190–222PubMedCrossRefGoogle Scholar
  76. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ (ed) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549–586Google Scholar
  77. Vaina LM, Cowey A, Kennedy D (1999) Perception of first- and second-order motion: separable neurological mechanisms? Hum Brain Mapp 7:67–77PubMedCrossRefGoogle Scholar
  78. Vaina LM, Makris N, Kennedy D, Cowey A (1998) The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Vis Neurosci 15:333–348PubMedCrossRefGoogle Scholar
  79. Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7:690–701PubMedCrossRefGoogle Scholar
  80. van Santen JP, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2:300–321PubMedCrossRefGoogle Scholar
  81. Wassle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757PubMedCrossRefGoogle Scholar
  82. Watson AB, Thompson PG, Murphy BJ, Nachmias J (1980) Summation and discrimination of gratings moving in opposite directions. Vis Res 20:341–347PubMedCrossRefGoogle Scholar
  83. Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung 4:301–350CrossRefGoogle Scholar
  84. Wilmer JB, Nakayama K (2007) Two distinct visual motion mechanisms for smooth pursuit: evidence from individual differences. Neuron 54:987–1000PubMedCrossRefGoogle Scholar
  85. Yo C, Wilson HR (1992) Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity. Vis Res 32:135–147PubMedCrossRefGoogle Scholar
  86. Zanker JM (1993) Theta motion: a paradoxical stimulus to explore higher order motion extraction. Vis Res 33:553–569PubMedCrossRefGoogle Scholar
  87. Zanker JM, Braddick OJ (1999) How does noise influence the estimation of speed? Vis Res 39:2411–2420PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Cognitive NeurolgyHertie-Institute of Clinical Brain ResearchTuebingenGermany

Personalised recommendations