Skip to main content

Multiscale Functional Imaging in V1 and Cortical Correlates of Apparent Motion

  • Chapter
  • First Online:
Book cover Dynamics of Visual Motion Processing

Abstract

In vivo intracellular electrophysiology offers the unique possibility of listening to the “synaptic rumor” of the cortical network captured by the recording electrode in a single V1 cell. The analysis of synaptic echoes evoked during sensory processing is used to reconstruct the distribution of input sources in visual space and time. It allows us to infer, in the cortical space, the dynamics of the effective input network afferent to the recorded cell. We have applied this method to demonstrate the propagation of visually evoked activity through lateral (and possibly feedback) connectivity in the primary cortex of higher mammals. This approach, based on functional synaptic imaging, is compared here with a real-time functional network imaging technique, based on the use of voltage-sensitive fluorescent dyes. The former method gives access to microscopic convergence processes during synaptic integration in a single neuron, while the latter describes the macroscopic divergence process at the neuronal map level. The joint application of the two techniques, which address two different scales of integration, is used to elucidate the cortical origin of low-level (non-attentive) binding processes participating in the emergence of illusory motion percepts predicted by the psychological Gestalt theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed B, Hanazawa A, Undeman C, Eriksson D, Valentiniene S, Roland PE (2008) Cortical dynamics subserving visual apparent motion. Cereb Cortex 18(12):2796–2810

    Article  PubMed  Google Scholar 

  • Albus K (1975) A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Exp Brain Res 24:159–179

    Article  PubMed  CAS  Google Scholar 

  • Angelucci A, Levitte JB, Walton EJS, Hupé JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646

    PubMed  CAS  Google Scholar 

  • Anstis SM, Verstraten FAJ, Mather G (1998) The motion aftereffect: a review. Trends Cogn Sci 2:111–117

    Article  PubMed  CAS  Google Scholar 

  • Basole A, White LE, Fitzpatrcik D (2003) Mapping multiple features in the population response of visual cortex. Nature 423:986–990

    Article  PubMed  CAS  Google Scholar 

  • Baudot P, Chavane F, Pananceau M, Edet V, Gutkin B, Lorenceau J, Grant K, Frégnac Y (2000) Cellular correlates of apparent motion in the association field of cat area 17 neurons. Abstr Soc Neurosci 26:446

    Google Scholar 

  • Benucci A, Frazor RA, Carandini M (2007) Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55(1):103–117

    Article  PubMed  CAS  Google Scholar 

  • Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441–8453

    Article  PubMed  CAS  Google Scholar 

  • Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369–373

    Article  PubMed  CAS  Google Scholar 

  • Bringuier V, Chavane F, Glaeser L, Frégnac Y (1999) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283:695–699

    Article  PubMed  CAS  Google Scholar 

  • Cannon MW, Fullenkamp SC (1993) Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects. Vision Res 33:1685–1695

    Article  PubMed  CAS  Google Scholar 

  • Carlson GC, Coulter DA (2008) In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording. Nat Protoc 3(2):249–255

    Article  PubMed  CAS  Google Scholar 

  • Cass J, Alais D (2006) The mechanisms of collinear integration. J Vis 6(9):915–922

    Article  PubMed  Google Scholar 

  • Castet E, Lorenceau J, Shiffrar M, Bonnet C (1993) Perceived speed of moving lines depends on orientation, length, speed and luminance. Vision Res 33:1921–1936

    Article  PubMed  CAS  Google Scholar 

  • Chavane F, Monier C, Bringuier V, Baudot P, Borg-Graham L, Lorenceau J, Frégnac Y (2000) The visual cortical association field: a Gestalt concept or a physiological entity? J Physiol Paris 94:333–342

    Article  PubMed  CAS  Google Scholar 

  • Chavane F, Sharon D, Jancke D, Marre O, Frégnac Y, Grinvald A (in revision). Horizontal spread of orientation selectivity in V1 requires intracortical cooperativity. J. Neuroscience

    Google Scholar 

  • Daugman J (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized two-dimensional visual cortical filters. J Opt Soc Am A2:1160–1168

    Article  Google Scholar 

  • Field DJ, Hayes A, Hess RF (1993) Contour integration by the human visual system: evidence for a local “association field”. Vision Res 33:173–193

    Article  PubMed  CAS  Google Scholar 

  • Frégnac Y (2001) Le combat des hémisphères. Pour Sci 283:94–95

    Google Scholar 

  • Frégnac Y, Bringuier V (1996) Spatio-temporal dynamics of synaptic integration in cat visual cortical receptive fields. In: Aertsen A, Braitenberg V (eds) Brain theory: biological basis and computational theory of vision. Springer, Amsterdam, pp 143–199

    Google Scholar 

  • Georges S, Sèries P, Frégnac Y, Lorenceau J (2002) Orientation dependent modulation of apparent speed: psychophysical evidence. Vision Res 42:2757–2772

    Article  PubMed  Google Scholar 

  • Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5(11):874–885

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568

    PubMed  CAS  Google Scholar 

  • Hartline HK (1938) The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol 121:400–415

    Google Scholar 

  • Haynes JD, Rees G (2006) Decoding mental states from brain activity in humans. Nat Rev Neurosci 7:523–534

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka O, Miyauchi S, Shimojo S (1993) Focal visual attention produces illusory temporal order and motion sensation. Vision Res 33:1219–1240

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat’s visual cortex. J Neurosci 11:1800–1809

    PubMed  CAS  Google Scholar 

  • Hoffman KP, Stone J (1971) Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res 32:460–466

    Article  PubMed  CAS  Google Scholar 

  • Jancke D, Chavane F, Naaman S, Grinvald A (2004) Imaging cortical correlates of illusion in early visual cortex. Nature 428:423–426

    Article  PubMed  CAS  Google Scholar 

  • Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38(4):529–545

    Article  PubMed  CAS  Google Scholar 

  • Karube F, Kisvarday ZF (2006). Bouton distribution of deep-layer spiny neurons on the functional maps in cat visual cortex. FENS Forum Abstr 3:179.14.

    Google Scholar 

  • Kay KN, Naseralis T, Prenger RJ, Gallant JL (2008) Identifying human natural images from brain activity. Nature 452:352–355

    Article  PubMed  CAS  Google Scholar 

  • Knierim JJ, Van Essen DC (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol 67:961–980

    PubMed  CAS  Google Scholar 

  • Lee S, Blake R, Heeger DJ (2007) Hierarchy of cortical responses underlying binocular rivalry. Nature Neurosci 10(8):1048–1054

    Article  PubMed  CAS  Google Scholar 

  • Levitt JB, Lund JS (1997) Contrast dependence of contextual effects in primate visual cortex. Nature 387:73–76

    Article  PubMed  CAS  Google Scholar 

  • Mitchison G, Crick F (1982) Long axons within the striate cortex: their distribution, orientation, and patterns of connection. Proc Natl Acad Sci U S A 79:3661–3665

    Article  PubMed  CAS  Google Scholar 

  • Monier C, Chavane F, Baudot P, Graham L, Frégnac Y (2003) Orientation and direction selectivity of excitatory and inhibitory inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37:663–680

    Article  PubMed  CAS  Google Scholar 

  • Moore CI, Nelson SB (1998) Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J Neurophysiol 80:2882–2892

    PubMed  CAS  Google Scholar 

  • Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nature Neurosci 12:70–76

    Article  PubMed  CAS  Google Scholar 

  • Nowak LG, Bullier J (1997) The timing of information transfer in the visual system. In: Rockland KS, Kaas JH, Peters A (eds) Extrastriate visual cortex in primates. New York, Plenum, pp 205–241

    Google Scholar 

  • Polat U, Sagi D (1993) Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Res 33:993–999

    Article  PubMed  CAS  Google Scholar 

  • Polat U, Mizobe K, Pettet MW, Kasamatsu T, Norcia AM (1998) Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature 391:580–584

    Article  PubMed  CAS  Google Scholar 

  • Roland PE (2002) Dynamic depolarisation fields in the cerebral cortex. Trends Neurosci 25:183–190

    Article  PubMed  CAS  Google Scholar 

  • Roland PE, Hanazawa A, Undeman C, Eriksson D, Tompa T, Nakamura H, Valentiniene S, Ahmed B (2006) Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc Natl Acad Sci U S A 103(33):12586–12591

    Article  PubMed  CAS  Google Scholar 

  • Séries P, Lorenceau J, Frégnac Y (2003) The silent surround of V1 receptive fields : theory and experiments. J Physiol Paris 97(4–6):453–474

    Article  PubMed  Google Scholar 

  • Séries P, Georges S, Lorenceau J, Frégnac Y (2002) Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex. Vision Res 42:2781–2797

    Article  PubMed  Google Scholar 

  • Shoham D, Glaser DE, Arieli AI, Kenet T, Wijnbergen C, Toledo Y, Hildesheim R, Grinvald A (1999) Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24(4):791–802

    Article  PubMed  CAS  Google Scholar 

  • Tanifuji M, Sugiyama T, Murase K (1994) Horizontal propagation of excitation in rat visual cortical slices revealed by optical imaging. Science 266:1057–1059

    Article  PubMed  CAS  Google Scholar 

  • Thirion B, Diuchesnay E, Hubbard EM, Dubois J, Poline J-B, LeBihan D, Deheane S (2006) Inverse retinotopy: inferring the visual content of images from brain activation patterns. Neuroimage 33:1104–1116

    Article  PubMed  Google Scholar 

  • Tootell RB, Silverman MS, Switkes E, De Valois RL (1982) Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218:902–904

    Article  PubMed  CAS  Google Scholar 

  • Warnking J, Dojat M, Guerin-Dughe A, Delon-Martin C, Olympieff S, Richard N, Chehikian A, Segebarth C (2002) FMRI retinotopic mapping-step by step. Neuroimage 17:1665–1683

    Article  PubMed  CAS  Google Scholar 

  • Wertheimer M (1912) Experimentelle Studien über das Sehen von Beuegung. Z Psychol Physiol Sinnesorg 61:161–265

    Google Scholar 

  • Williams MA, Baker C, Op De Beeck HP, Shim WM, Dang S, Triantafyllou C, Kanwisher N (2008) Feedback of visual object information to foveal retinotopic cortex. Nature Neurosci 11:1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Huang X, Takagaki K, Wu JY (2007) Compression and reflection of visually evoked cortical waves. Neuron 55(1):119–129

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS, and grants from ANR (NATSTATS) and the European integrated project FACETS (FET- Bio-I3: 015879). This long-lasting line of research has benefited in its realization of the experimental participation of Dr Sebastien Georges in psychophysics, of Dr. Peggy Séries in modeling, and of Julien Fournier, Nazyed Huguet and Drs Alice René, Lyle Graham and Manuel Levy in electrophysiology at UNIC. It has also benefited in the recent years of the scientific collaborations with the laboratory of Pr. Amiram Grinvald (Weizmann Institute, Rehovot, Israel) and the CNRS DyVA team (INCM, Marseille). We thank Drs Andrew Davison and Guillaume Masson for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Fregnac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fregnac, Y. et al. (2009). Multiscale Functional Imaging in V1 and Cortical Correlates of Apparent Motion. In: Ilg, U., Masson, G. (eds) Dynamics of Visual Motion Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0781-3_4

Download citation

Publish with us

Policies and ethics