Skip to main content

Molecular Control of Lymphatic Metastasis in Lung Cancer

  • Chapter
  • First Online:
Lung Cancer Metastasis
  • 1320 Accesses

Abstract

Lymph node metastasis in lung cancer is a strong independent predictor of poor prognosis, and designation of the tumor “nodal” status is a challenging and central component of the lung carcinoma TNM staging system. In recent years, genetic studies in mouse models as well as pathologic human lung cancer studies have revealed a variety of molecules that may critically regulate thoracic lymph node metastasis. These include important lymphatic endothelial growth factors such as VEGF-C and VEGF-D as well as the pro-angiogenic factors VEGF-A and FGF-2 (often overexpressed by lung carcinoma cells) that stimulate the growth of lymphatic conduit in both the primary tumor and the downstream lymph nodes. This process of pathologic lymphangiogenesis correlates with lymph node metastasis and poor prognosis in lung cancer. Certain families of chemokines also appear to be critical for driving the process of tumor–lymphatic invasion, where the cognate chemokine receptors (e.g., CXCR4 or CCR7) are often overexpressed by carcinoma cells. In addition to lymphatic growth factors and chemokine effectors, a variety of molecules may facilitate interactions of lymphatic endothelial cells with growth factors, chemokines and their receptors, as well as the extracellular matrix. These include proteoglycans and integrins, and their roles in coordinating tumor-lymphatic interactions in the lung carcinoma microenvironment may be critical for lymph node metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alitalo, K., T. Tammela, and T.V. Petrova, Lymphangiogenesis in development and human disease. Nature, 2005. 438(7070): 946–53.

    PubMed  CAS  Google Scholar 

  2. Ji, R.C., Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev, 2006. 25(4): 677–94.

    PubMed  Google Scholar 

  3. Makinen, T., C. Norrmen, and T.V. Petrova, Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci, 2007.

    Google Scholar 

  4. Liersch, R. and M. Detmar, Lymphangiogenesis in development and disease. Thromb Haemost, 2007. 98(2): 304–10.

    PubMed  CAS  Google Scholar 

  5. Mountain, C.F., Revisions in the international system for staging lung cancer. Chest, 1997. 111(6): 1710–7.

    PubMed  CAS  Google Scholar 

  6. Silvestri, G.A. et al., Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest, 2007. 132(3 Suppl): 178S–201S.

    PubMed  Google Scholar 

  7. Scott, W.J. et al., Treatment of non-small cell lung cancer stage I and stage II: ACCP evidence-based clinical practice guidelines (2nd edition). Chest, 2007. 132(3 Suppl): 234S–242S.

    PubMed  Google Scholar 

  8. Alitalo, K. and P. Carmeliet, Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell, 2002. 1(3): 219–27.

    PubMed  CAS  Google Scholar 

  9. Nathanson, S.D., Insights into the mechanisms of lymph node metastasis. Cancer, 2003. 98(2): 413–23.

    PubMed  Google Scholar 

  10. Fidler, I.J., Molecular biology of cancer invasion and metastasis. In Cancer: Principles and Practice of Oncology, Fifth Edition, DeVita V.T., Hellman S., and Rosenberg S.A., Editor. 1997, Lippincott-Raven Publishers: Philadelphia, pp. 135–152.

    Google Scholar 

  11. He, Y. et al., Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res, 2004. 64(11): 3737–40.

    PubMed  CAS  Google Scholar 

  12. Oliver, G. and M. Detmar, The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev, 2002. 16(7): 773–83.

    PubMed  CAS  Google Scholar 

  13. Renyi-Vamos, F. et al., Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res, 2005. 11(20): 7344–53.

    PubMed  CAS  Google Scholar 

  14. He, Y. et al., Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst, 2002. 94(11): 819–25.

    PubMed  CAS  Google Scholar 

  15. Adams, R.H. and K. Alitalo, Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol, 2007. 8(6): 464–78.

    PubMed  CAS  Google Scholar 

  16. Dadras, S.S. et al., Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol, 2005. 18(9): 1232–42.

    PubMed  Google Scholar 

  17. Joukov, V. et al., A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. Embo J, 1996. 15(7): 1751.

    PubMed  CAS  Google Scholar 

  18. Makinen, T. et al., Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. Embo J, 2001. 20(17): 4762–73.

    PubMed  CAS  Google Scholar 

  19. Joukov, V. et al., Proteolytic processing regulates receptor specificity and activity of VEGF-C. Embo J, 1997. 16(13): 3898–911.

    PubMed  CAS  Google Scholar 

  20. Achen, M.G. et al., Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A, 1998. 95(2): 548–53.

    PubMed  CAS  Google Scholar 

  21. Karkkainen, M.J. et al., A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A, 2001. 98(22): 12677–82.

    PubMed  CAS  Google Scholar 

  22. Olsson, A.K. et al., VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol, 2006. 7(5): 359–71.

    PubMed  CAS  Google Scholar 

  23. Skobe, M. et al., Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med, 2001. 7(2): 192–8.

    PubMed  CAS  Google Scholar 

  24. Stacker, S.A. et al., VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med, 2001. 7(2): 186–91.

    PubMed  CAS  Google Scholar 

  25. Mandriota, S.J. et al., Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. Embo J, 2001. 20(4): 672–82.

    PubMed  CAS  Google Scholar 

  26. Hirakawa, S. et al., VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood, 2007. 109(3): 1010–7.

    PubMed  CAS  Google Scholar 

  27. Schmid, M.C. and J.A. Varner, Myeloid cell trafficking and tumor angiogenesis. Cancer Lett, 2007. 250(1): 1–8.

    PubMed  CAS  Google Scholar 

  28. Lin, E.Y. and J.W. Pollard, Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res, 2007. 67(11): 5064–6.

    PubMed  CAS  Google Scholar 

  29. Wigle, J.T. et al., An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. Embo J, 2002. 21(7): 1505–13.

    PubMed  CAS  Google Scholar 

  30. Banerji, S. et al., LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol, 1999. 144(4): 789–801.

    PubMed  CAS  Google Scholar 

  31. Jain, R.K. and B.T. Fenton, Intratumoral lymphatic vessels: a case of mistaken identity or malfunction? J Natl Cancer Inst, 2002. 94(6): 417–21.

    PubMed  Google Scholar 

  32. Su, J.L. et al., The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell, 2006. 9(3): 209–23.

    PubMed  CAS  Google Scholar 

  33. Kajita, T. et al., The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer. Br J Cancer, 2001. 85(2): 255–60.

    PubMed  CAS  Google Scholar 

  34. Nakashima, T. et al., Expression of vascular endothelial growth factor-A and vascular endothelial growth factor-C as prognostic factors for non-small cell lung cancer. Med Sci Monit, 2004. 10(6): BR157-65.

    PubMed  CAS  Google Scholar 

  35. Li, Q. et al., Clinical significance of co-expression of VEGF-C and VEGFR-3 in non-small cell lung cancer. Chin Med J (Engl), 2003. 116(5): 727–30.

    PubMed  CAS  Google Scholar 

  36. Achen, M.G. et al., The angiogenic and lymphangiogenic factor vascular endothelial growth factor-D exhibits a paracrine mode of action in cancer. Growth Factors, 2002. 20(2): 99–107.

    PubMed  CAS  Google Scholar 

  37. Huang, C. et al., Clinical application of biological markers for treatments of resectable non-small-cell lung cancers. Br J Cancer, 2005. 92(7): 1231–9.

    PubMed  CAS  Google Scholar 

  38. Adachi, Y. et al., Lymphatic vessel density in pulmonary adenocarcinoma immunohistochemically evaluated with anti-podoplanin or anti-D2-40 antibody is correlated with lymphatic invasion or lymph node metastases. Pathol Int, 2007. 57(4): 171–7.

    PubMed  CAS  Google Scholar 

  39. Kojima, H. et al., Clinical significance of vascular endothelial growth factor-C and vascular endothelial growth factor receptor 3 in patients with T1 lung adenocarcinoma. Cancer, 2005. 104(8): 1668–77.

    PubMed  CAS  Google Scholar 

  40. Chen, F. et al., Flt-4-positive endothelial cell density and its clinical significance in non-small cell lung cancer. Clin Cancer Res, 2004. 10(24): 8548–53.

    PubMed  CAS  Google Scholar 

  41. Takizawa, H. et al., The balance of VEGF-C and VEGFR-3 mRNA is a predictor of lymph node metastasis in non-small cell lung cancer. Br J Cancer, 2006. 95(1): 75–9.

    PubMed  CAS  Google Scholar 

  42. Saintigny, P. et al., Vascular endothelial growth factor-C and its receptor VEGFR-3 in non-small-cell lung cancer: concurrent expression in cancer cells from primary tumour and metastatic lymph node. Lung Cancer, 2007. 58(2): 205–13.

    PubMed  Google Scholar 

  43. Nagy, J.A. et al., Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med, 2002. 196(11): 1497–506.

    PubMed  CAS  Google Scholar 

  44. Tobler, N.E. and M. Detmar, Tumor and lymph node lymphangiogenesis – impact on cancer metastasis. J Leukoc Biol, 2006. 80(4): 691–6.

    PubMed  CAS  Google Scholar 

  45. Bremnes, R.M., C. Camps, and R. Sirera, Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer, 2006. 51(2): 143–58.

    PubMed  Google Scholar 

  46. O‘Byrne, K.J. et al., Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. Br J Cancer, 2000. 82(8): 1427–32.

    PubMed  Google Scholar 

  47. Hirakawa, S. et al., VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med, 2005. 201(7): 1089–99.

    PubMed  CAS  Google Scholar 

  48. Baldwin, M.E. et al., Multiple forms of mouse vascular endothelial growth factor-D are generated by RNA splicing and proteolysis. J Biol Chem, 2001. 276(47): 44307–14.

    PubMed  CAS  Google Scholar 

  49. Takanami, I. et al., Tumor angiogenesis in pulmonary adenocarcinomas: relationship with basic fibroblast growth factor, its receptor, and survival. Neoplasma, 1997. 44(5): 295–8.

    PubMed  CAS  Google Scholar 

  50. Shin, J.W. et al., Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell, 2006. 17(2): 576–84.

    PubMed  CAS  Google Scholar 

  51. Chang, L.K. et al., Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci U S A, 2004. 101(32): 11658–63.

    PubMed  CAS  Google Scholar 

  52. Tan, Y., Basic fibroblast growth factor-mediated lymphangiogenesis of lymphatic endothelial cells isolated from dog thoracic ducts: effects of heparin. Jpn J Physiol, 1998. 48(2): 133–41.

    PubMed  CAS  Google Scholar 

  53. Cao, Y., Direct role of PDGF-BB in lymphangiogenesis and lymphatic metastasis. Cell Cycle, 2005. 4(2): 228–30.

    PubMed  CAS  Google Scholar 

  54. Cao, R. et al., Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood, 2006. 107(9): 3531–6.

    PubMed  CAS  Google Scholar 

  55. Achen, M.G., B.K. McColl, and S.A. Stacker, Focus on lymphangiogenesis in tumor metastasis. Cancer Cell, 2005. 7(2): 121–7.

    PubMed  CAS  Google Scholar 

  56. Seto, T. et al., Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer, 2006. 53(1): 91–6.

    PubMed  Google Scholar 

  57. Cao, Y., Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer, 2005. 5(9): 735–43.

    PubMed  CAS  Google Scholar 

  58. Kawakami, T. et al., Neuropilin 1 and neuropilin 2 co-expression is significantly correlated with increased vascularity and poor prognosis in nonsmall cell lung carcinoma. Cancer, 2002. 95(10): 2196–201.

    PubMed  CAS  Google Scholar 

  59. Lantuejoul, S. et al., Expression of VEGF, semaphorin SEMA3F, and their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines. J Pathol, 2003. 200(3): 336–47.

    PubMed  CAS  Google Scholar 

  60. Karpanen, T. et al., Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. Faseb J, 2006. 20(9): 1462–72.

    PubMed  CAS  Google Scholar 

  61. Iwasaki, A. et al., Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) levels, as prognostic indicators in NSCLC. Eur J Cardiothorac Surg, 2004. 25(3): 443–8.

    PubMed  Google Scholar 

  62. Pepper, M.S., Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res, 2001. 7(3): 462–8.

    PubMed  CAS  Google Scholar 

  63. Padera, T.P. et al., Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 2002. 296(5574): 1883–6.

    PubMed  CAS  Google Scholar 

  64. Shields, J.D. et al., Chemokine-mediated migration of melanoma cells towards lymphatics – a mechanism contributing to metastasis. Oncogene, 2006.

    Google Scholar 

  65. Saharinen, P. et al., Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol, 2004. 25(7): 387–95.

    PubMed  CAS  Google Scholar 

  66. Fleury, M.E., K.C. Boardman, and M.A. Swartz, Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J, 2006. 91(1): 113–21.

    PubMed  CAS  Google Scholar 

  67. Kriehuber, E. et al., Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med, 2001. 194(6): 797–808.

    PubMed  CAS  Google Scholar 

  68. Takeuchi, H. et al., CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res, 2004. 10(7): 2351–8.

    PubMed  CAS  Google Scholar 

  69. Muller, A. et al., Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001. 410(6824): 50–6.

    PubMed  CAS  Google Scholar 

  70. Uchida, D. et al., Acquisition of lymph node, but not distant metastatic potentials, by the overexpression of CXCR4 in human oral squamous cell carcinoma. Lab Invest, 2004. 84(12): 1538–46.

    PubMed  CAS  Google Scholar 

  71. Zhang, J.P. et al., Study on CXCR4/SDF-1alpha axis in lymph node metastasis of cervical squamous cell carcinoma. Int J Gynecol Cancer, 2007. 17(2): 478–83.

    PubMed  Google Scholar 

  72. Koizumi, K. et al., CCL21 promotes the migration and adhesion of highly lymph node metastatic human non-small cell lung cancer Lu-99 in vitro. Oncol Rep, 2007. 17(6): 1511–6.

    PubMed  CAS  Google Scholar 

  73. Takanami, I., Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer, 2003. 105(2): 186–9.

    PubMed  CAS  Google Scholar 

  74. Phillips, R.J. et al., The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med, 2003. 167(12): 1676–86.

    PubMed  Google Scholar 

  75. Burger, M. et al., Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 2003. 22(50): 8093–101.

    PubMed  CAS  Google Scholar 

  76. Mashino, K. et al., Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res, 2002. 62(10): 2937–41.

    PubMed  CAS  Google Scholar 

  77. Almofti, A. et al., The clinicopathological significance of the expression of CXCR4 protein in oral squamous cell carcinoma. Int J Oncol, 2004. 25(1): 65–71.

    PubMed  CAS  Google Scholar 

  78. Luther, S.A. et al., Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol, 2002. 169(1): 424–33.

    PubMed  CAS  Google Scholar 

  79. Kabashima, K. et al., CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol, 2007. 171(4): 1249–57.

    PubMed  CAS  Google Scholar 

  80. Ben-Baruch, A., The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev, 2006. 25(3): 357–71.

    PubMed  CAS  Google Scholar 

  81. Yang, S.C. et al., Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res, 2004. 10(8): 2891–901.

    PubMed  CAS  Google Scholar 

  82. Perrot, I. et al., Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol, 2007. 178(5): 2763–9.

    PubMed  CAS  Google Scholar 

  83. Mitra, S.K., D.A. Hanson, and D.D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol, 2005. 6(1): 56–68.

    PubMed  CAS  Google Scholar 

  84. Mishima, K. et al., Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades. Mol Biol Cell, 2007. 18(4): 1421–9.

    PubMed  CAS  Google Scholar 

  85. Vlahakis, N.E. et al., The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem, 2005. 280(6): 4544–52.

    PubMed  CAS  Google Scholar 

  86. Hong, Y.K. et al., VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. Faseb J, 2004. 18(10): 1111–3.

    PubMed  CAS  Google Scholar 

  87. Dietrich, T. et al., Inhibition of inflammatory lymphangiogenesis by integrin {Alpha}5 blockade. Am J Pathol, 2007. 171(1): 361–72.

    Google Scholar 

  88. Garmy-Susini, B. et al., Methods to study lymphatic vessel integrins. Methods Enzymol, 2007. 426: 415–38.

    PubMed  CAS  Google Scholar 

  89. Han, J.Y. et al., Immunohistochemical expression of integrins and extracellular matrix proteins in non-small cell lung cancer: correlation with lymph node metastasis. Lung Cancer, 2003. 41(1): 65–70.

    PubMed  Google Scholar 

  90. Gogali, A., K. Charalabopoulos, and S. Constantopoulos, Integrin receptors in primary lung cancer. Exp Oncol, 2004. 26(2): 106–10.

    PubMed  CAS  Google Scholar 

  91. Bishop, J.R., M. Schuksz, and J.D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 2007. 446(7139): 1030–7.

    PubMed  CAS  Google Scholar 

  92. Esko, J.D. and S.B. Selleck, Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem, 2002. 71: 435–71.

    PubMed  CAS  Google Scholar 

  93. Fuster, M.M. and J.D. Esko, The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer, 2005. 5(7): 526–42.

    PubMed  CAS  Google Scholar 

  94. Handel, T.M. et al., Regulation of protein function by glycosaminoglycans – as exemplified by chemokines. Annu Rev Biochem, 2005. 74: 385–410.

    PubMed  CAS  Google Scholar 

  95. Jakobsson, L. et al., Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell, 2006. 10(5): 625–34.

    PubMed  CAS  Google Scholar 

  96. Vlodavsky, I. and Y. Friedmann, Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest, 2001. 108(3): 341–7.

    PubMed  CAS  Google Scholar 

  97. Fuster, M.M. et al., Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol, 2007. 177(3): 539–49.

    PubMed  CAS  Google Scholar 

  98. Sharma, B. et al., Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Invest, 1998. 102(8): 1599–608.

    PubMed  CAS  Google Scholar 

  99. Jiang, X. and J.R. Couchman, Perlecan and tumor angiogenesis. J Histochem Cytochem, 2003. 51(11): 1393–410.

    PubMed  CAS  Google Scholar 

  100. Iozzo, R.V. and J.D. San Antonio, Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest, 2001. 108(3): 349–55.

    PubMed  CAS  Google Scholar 

  101. Kubo, H. et al., Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci U S A, 2002. 99(13): 8868–73.

    PubMed  CAS  Google Scholar 

  102. Veikkola, T. et al., Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. Faseb J, 2003. 17(14): 2006–13.

    PubMed  CAS  Google Scholar 

  103. Scavelli, C. et al., Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia, 2004. 18(6): 1054–8.

    PubMed  CAS  Google Scholar 

  104. Yamazaki, Y. and T. Morita, Molecular and functional diversity of vascular endothelial growth factors. Mol Divers, 2006. 10(4): 515–27.

    PubMed  CAS  Google Scholar 

  105. Kuroshima, S. et al., Expression of cys-cys chemokine ligand 21 on human gingival lymphatic vessels. Tissue Cell, 2004. 36(2): 121–7.

    PubMed  CAS  Google Scholar 

  106. Amara, A. et al., Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine. J Biol Chem, 1999. 274(34): 23916–25.

    PubMed  CAS  Google Scholar 

  107. Sadir, R. et al., Characterization of the stromal cell-derived factor-1alpha-heparin complex. J Biol Chem, 2001. 276(11): 8288–96.

    PubMed  CAS  Google Scholar 

  108. Shah, L. et al., Expression of syndecan-1 and expression of epidermal growth factor receptor are associated with survival in patients with nonsmall cell lung carcinoma. Cancer, 2004. 101(7): 1632–8.

    PubMed  CAS  Google Scholar 

  109. Mennerich, D. et al., Shift of syndecan-1 expression from epithelial to stromal cells during progression of solid tumours. Eur J Cancer, 2004. 40(9): 1373–82.

    PubMed  CAS  Google Scholar 

  110. Pirinen, R. et al., Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Hum Pathol, 2005. 36(1): 44–50.

    PubMed  CAS  Google Scholar 

  111. Boehm, T. et al., Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 1997. 390(6658): 404–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant support from the American Cancer Society (RSG#116111 to MMF), the U.S. Department of Veterans Affairs (CDTA award to MMF), and NIH/NCI (RO1 CA126820-01A1 to JAV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Fuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fuster, M.M., Varner, J.A. (2009). Molecular Control of Lymphatic Metastasis in Lung Cancer. In: Keshamouni, V., Arenberg, D., Kalemkerian, G. (eds) Lung Cancer Metastasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0772-1_9

Download citation

Publish with us

Policies and ethics