Skip to main content

Epithelial–Mesenchymal Transition as a Mechanism of Metastasis

  • Chapter
  • First Online:
  • 1384 Accesses

Abstract

Mammalian embryonic cells form adhering cell sheets interconnected via various intercellular junctional complexes. Gastrulation and later stages of histo- and organogenesis depend on changes in developmental stage, such as epithelial–mesenchymal transition (EMT), whereby adherent cells disintegrate their intercellular contacts, organize their motility apparatus, and move to new locations in the developing body. EMT generates transitory mesenchymal cells, which can differentiate into myofibroblasts or pericytes (in the case of endothelial–mesenchymal transition (EndMT)), or feed the progenitor pools of cell lineages (e.g., blood, muscle, bone, adipose, and neuronal). EMT is guided by cues from extracellular signaling factors including mitogens, transforming growth factor β, Notch, and Wnt. The signaling molecules can cooperate or act sequentially to initiate transcriptional programs that involve many transcriptional regulators. Changes in gene expression lead to a reprogramming of epithelial protein components and the generation of the mesenchymal progenitor stage. EMT can also contribute to the progression of cancer, when the same growth factor pathways reawaken embryonic transcriptional programs otherwise silenced in adult life. Induction of cancer cell EMT generates rare transitory mesenchymal cells that support tumor growth, remodel the tumor microenvironment, and facilitate tissue invasiveness and metastasis. In that sense, cancer cells undergoing EMT have some of the capacities that one would expect from the so-called “tumor-initiating cells.” This makes EMT an attractive problem for medical research with new therapeutic implications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hay, E.D. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev. Dyn. 233: 706–720, 2005.

    PubMed  CAS  Google Scholar 

  2. Berx, G., E. Raspe, G. Christofori, J.P. Thiery, and J.P. Sleeman. Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin. Exp. Metastasis 24: 587–597, 2007.

    PubMed  CAS  Google Scholar 

  3. Hugo, H., M.L. Ackland, T. Blick, M.G. Lawrence, J.A. Clements, E.D. Williams, and E.W. Thompson. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J. Cell. Physiol. 213: 374–383, 2007.

    PubMed  CAS  Google Scholar 

  4. Zeisberg, M. and R. Kalluri. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med. 82: 175–181, 2004.

    PubMed  Google Scholar 

  5. Radisky, D.C., P.A. Kenny, and M.J. Bissell. Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? J. Cell. Biochem. 101: 830–839, 2007.

    PubMed  CAS  Google Scholar 

  6. Zeisberg, E.M., S. Potenta, L. Xie, M. Zeisberg, and R. Kalluri. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67: 10123–10128, 2007.

    PubMed  CAS  Google Scholar 

  7. Huber, M.A., N. Kraut, and H. Beug. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17: 548–558, 2005.

    PubMed  CAS  Google Scholar 

  8. Moustakas, A. and C.-H. Heldin. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98: 1512–1520, 2007.

    PubMed  CAS  Google Scholar 

  9. Peinado, H., D. Olmeda, and A. Cano. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7: 415–428, 2007.

    PubMed  CAS  Google Scholar 

  10. Keller, R., L. Davidson, A. Edlund, T. Elul, M. Ezin, D. Shook, and P. Skoglund. Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355: 897–922, 2000.

    PubMed  CAS  Google Scholar 

  11. Deng, C.-X., A. Wynshaw-Boris, M.M. Shen, C. Daugherty, D.M. Ornitz, and P. Leder. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev. 8: 3045–3057, 1994.

    PubMed  CAS  Google Scholar 

  12. Yamaguchi, T.P., K. Harpal, M. Henkemeyer, and J. Rossant. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 8: 3032–3044, 1994.

    PubMed  CAS  Google Scholar 

  13. Sun, X., E.N. Meyers, M. Lewandoski, and G.R. Martin. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13: 1834–1846, 1999.

    PubMed  CAS  Google Scholar 

  14. Batlle, E., E. Sancho, C. Franci, D. Dominguez, M. Monfar, J. Baulida, and A. Garcia De Herreros. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2: 84–89, 2000.

    PubMed  CAS  Google Scholar 

  15. Cano, A., M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco, M.G. del Barrio, F. Portillo, and M.A. Nieto. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2: 76–83, 2000.

    PubMed  CAS  Google Scholar 

  16. Ciruna, B. and J. Rossant. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1: 37–49, 2001.

    PubMed  CAS  Google Scholar 

  17. Sheng, G., M. dos Reis, and C.D. Stern. Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell 115: 603–613, 2003.

    PubMed  CAS  Google Scholar 

  18. Carver, E.A., R. Jiang, Y. Lan, K.F. Oram, and T. Gridley. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol. Cell. Biol. 21: 8184–8188, 2001.

    PubMed  CAS  Google Scholar 

  19. Takada, S., K.L. Stark, M.J. Shea, G. Vassileva, J.A. McMahon, and A.P. McMahon. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8: 174–189, 1994.

    PubMed  CAS  Google Scholar 

  20. Galceran, J., S.C. Hsu, and R. Grosschedl. Rescue of a Wnt mutation by an activated form of LEF-1: regulation of maintenance but not initiation of Brachyury expression. Proc. Natl. Acad. Sci. USA 98: 8668–8673, 2001.

    PubMed  CAS  Google Scholar 

  21. Barrallo-Gimeno, A. and M.A. Nieto. Evolution of the neural crest. Adv. Exp. Med. Biol. 589: 235–244, 2006.

    PubMed  CAS  Google Scholar 

  22. LaBonne, C., and M. Bronner-Fraser. Induction and patterning of the neural crest, a stem cell-like precursor population. J. Neurobiol. 36: 175–189, 1998.

    Google Scholar 

  23. Kalcheim, C. Mechanisms of early neural crest development: from cell specification to migration. Int. Rev. Cytol. 200: 143–196, 2000.

    PubMed  CAS  Google Scholar 

  24. Halloran, M.C. and J.D. Berndt. Current progress in neural crest cell motility and migration and future prospects for the zebrafish model system. Dev. Dyn. 228: 497–513, 2003.

    PubMed  CAS  Google Scholar 

  25. LaBonne, C. and M. Bronner-Fraser. Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev. Biol. 221: 195–205, 2000.

    PubMed  CAS  Google Scholar 

  26. Nawshad, A., D. LaGamba, and E.D. Hay. Transforming growth factor β (TGFβ) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch. Oral Biol. 49: 675–689, 2004.

    PubMed  CAS  Google Scholar 

  27. Murray, S.A., K.F. Oram, and T. Gridley. Multiple functions of Snail family genes during palate development in mice. Development 134: 1789–1797, 2007.

    PubMed  CAS  Google Scholar 

  28. Person, A.D., S.E. Klewer, and R.B. Runyan. Cell biology of cardiac cushion development. Int. Rev. Cytol. 243: 287–335, 2005.

    PubMed  CAS  Google Scholar 

  29. Zavadil, J., L. Cermak, N. Soto-Nieves, and E.P. Böttinger. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23: 1155–1165, 2004.

    PubMed  CAS  Google Scholar 

  30. Niimi, H., K. Pardali, M. Vanlandewijck, C.-H. Heldin, and A. Moustakas. Notch signaling is necessary for epithelial growth arrest by TGF-b. J. Cell Biol. 176: 695–707, 2007.

    PubMed  CAS  Google Scholar 

  31. Chuang, P.T. and A.P. McMahon. Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol. 13: 86–91, 2003.

    PubMed  CAS  Google Scholar 

  32. Shannon, J.M. Induction of alveolar type II cell differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev. Biol. 166: 600–614, 1994.

    PubMed  CAS  Google Scholar 

  33. Cardoso, W.V. and J. Lü. Regulation of early lung morphogenesis: questions, facts and controversies. Development 133: 1611–1624, 2006.

    Google Scholar 

  34. Min, H., D.M. Danilenko, S.A. Scully, B. Bolon, B.D. Ring, J.E. Tarpley, M. DeRose, and W.S. Simonet. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12: 3156–3161, 1998.

    PubMed  CAS  Google Scholar 

  35. Sekine, K., H. Ohuchi, M. Fujiwara, M. Yamasaki, T. Yoshizawa, T. Sato, N. Yagishita, D. Matsui, Y. Koga, N. Itoh, and S. Kato. Fgf10 is essential for limb and lung formation. Nat. Genet. 21: 138–141, 1999.

    PubMed  CAS  Google Scholar 

  36. Weaver, M., N.R. Dunn, and B.L. Hogan. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 127: 2695–2704, 2000.

    PubMed  CAS  Google Scholar 

  37. Cardoso, W.V., A. Itoh, H. Nogawa, I. Mason, and J.S. Brody. FGF-1 and FGF-7 induce distinct patterns of growth and differentiation in embryonic lung epithelium. Dev. Dyn. 208: 398–405, 1997.

    PubMed  CAS  Google Scholar 

  38. Kaartinen, V., J.W. Voncken, C. Shuler, D. Warburton, D. Bu, N. Heisterkamp, and J. Groffen. Abnormal lung development and cleft palate in mice lacking TGF-β 3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet. 11: 415–421, 1995.

    PubMed  CAS  Google Scholar 

  39. Serra, R., R.W. Pelton, and H.L. Moses. TGF β1 inhibits branching morphogenesis and N-myc expression in lung bud organ cultures. Development 120: 2153–2161, 1994.

    PubMed  CAS  Google Scholar 

  40. Zhou, L., C.R. Dey, S.E. Wert, and J.A. Whitsett. Arrested lung morphogenesis in transgenic mice bearing an SP-C-TGF-β 1 chimeric gene. Dev. Biol. 175: 227–238, 1996.

    PubMed  CAS  Google Scholar 

  41. Zhao, J., D. Bu, M. Lee, H.C. Slavkin, F.L. Hall, and D. Warburton. Abrogation of transforming growth factor-β type II receptor stimulates embryonic mouse lung branching morphogenesis in culture. Dev. Biol. 180: 242–257, 1996.

    PubMed  CAS  Google Scholar 

  42. Zhao, J., M. Lee, S. Smith, and D. Warburton. Abrogation of Smad3 and Smad2 or of Smad4 gene expression positively regulates murine embryonic lung branching morphogenesis in culture. Dev. Biol. 194: 182–195., 1998.

    PubMed  CAS  Google Scholar 

  43. Bitgood, M.J. and A.P. McMahon. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172: 126–138, 1995.

    PubMed  CAS  Google Scholar 

  44. Bellusci, S., R. Henderson, G. Winnier, T. Oikawa, and B.L. Hogan. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development 122: 1693–1702, 1996.

    PubMed  CAS  Google Scholar 

  45. Hogan, B.L. Morphogenesis. Cell 96: 225–233., 1999.

    PubMed  CAS  Google Scholar 

  46. Murone, M., A. Rosenthal, and F.J. de Sauvage. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9: 76–84, 1999.

    PubMed  CAS  Google Scholar 

  47. Litingtung, Y., L. Lei, H. Westphal, and C. Chiang. Sonic hedgehog is essential to foregut development. Nat. Genet. 20: 58–61, 1998.

    PubMed  CAS  Google Scholar 

  48. Pepicelli, C.V., P.M. Lewis, and A.P. McMahon. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 8: 1083–1086, 1998.

    PubMed  CAS  Google Scholar 

  49. Bellusci, S., Y. Furuta, M.G. Rush, R. Henderson, G. Winnier, and B.L. Hogan. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124: 53–63, 1997.

    PubMed  CAS  Google Scholar 

  50. Motoyama, J., H. Heng, M.A. Crackower, T. Takabatake, K. Takeshima, L.C. Tsui, and C. Hui. Overlapping and non-overlapping Ptch2 expression with Shh during mouse embryogenesis. Mech. Dev. 78: 81–84, 1998.

    PubMed  CAS  Google Scholar 

  51. Grindley, J.C., S. Bellusci, D. Perkins, and B.L. Hogan. Evidence for the involvement of the Gli gene family in embryonic mouse lung development. Dev. Biol. 188: 337–348, 1997.

    PubMed  CAS  Google Scholar 

  52. Threadgill, D.W., A.A. Dlugosz, L.A. Hansen, T. Tennenbaum, U. Lichti, D. Yee, C. LaMantia, T. Mourton, K. Herrup, R.C. Harris, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269: 230–234, 1995.

    PubMed  CAS  Google Scholar 

  53. Miettinen, P.J., D. Warburton, D. Bu, J.S. Zhao, J.E. Berger, P. Minoo, T. Koivisto, L. Allen, L. Dobbs, Z. Werb, and R. Derynck. Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dev. Biol. 186: 224–236, 1997.

    PubMed  CAS  Google Scholar 

  54. Leveen, P., M. Pekny, S. Gebre-Medhin, B. Swolin, E. Larsson, and C. Betsholtz. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8: 1875–1887, 1994.

    PubMed  CAS  Google Scholar 

  55. Aranda, V., T. Haire, M.E. Nolan, J.P. Calarco, A.Z. Rosenberg, J.P. Fawcett, T. Pawson, and S.K. Muthuswamy. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat. Cell Biol. 8: 1235–1245, 2006.

    PubMed  CAS  Google Scholar 

  56. Carraway, C.A. and K.L. Carraway. Sequestration and segregation of receptor kinases in epithelial cells: implications for ErbB2 oncogenesis. Sci. STKE 2007: re3, 2007.

    Google Scholar 

  57. Rosario, M. and W. Birchmeier. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol. 13: 328–335, 2003.

    PubMed  CAS  Google Scholar 

  58. Schramek, H., E. Feifel, E. Healy, and V. Pollack. Constitutively active mutant of the mitogen-activated protein kinase kinase MEK1 induces epithelial dedifferentiation and growth inhibition in madin-darby canine kidney-C7 cells. J. Biol. Chem. 272: 11426–11433, 1997.

    PubMed  CAS  Google Scholar 

  59. Montesano, R., J.V. Soriano, G. Hosseini, M.S. Pepper, and H. Schramek. Constitutively active mitogen-activated protein kinase kinase MEK1 disrupts morphogenesis and induces an invasive phenotype in Madin-Darby canine kidney epithelial cells. Cell Growth Differ. 10: 317–332, 1999.

    PubMed  CAS  Google Scholar 

  60. Lehmann, K., E. Janda, C.E. Pierreux, M. Rytomaa, A. Schulze, M. McMahon, C.S. Hill, H. Beug, and J. Downward. Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 14: 2610–2622, 2000.

    PubMed  CAS  Google Scholar 

  61. Janda, E., K. Lehmann, I. Killisch, M. Jechlinger, M. Herzig, J. Downward, H. Beug, and S. Grünert. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156: 299–313., 2002.

    PubMed  CAS  Google Scholar 

  62. Oft, M., R.J. Akhurst, and A. Balmain. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat. Cell Biol. 4: 487–494., 2002.

    PubMed  CAS  Google Scholar 

  63. Grotegut, S., D. von Schweinitz, G. Christofori, and F. Lehembre. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. Embo J 25: 3534–45, 2006.

    PubMed  CAS  Google Scholar 

  64. Savagner, P., K.M. Yamada, and J.P. Thiery. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol. 137: 1403–1419, 1997.

    PubMed  CAS  Google Scholar 

  65. Cordenonsi, M., M. Montagner, M. Adorno, L. Zacchigna, G. Martello, A. Mamidi, S. Soligo, S. Dupont, and S. Piccolo. Integration of TGF-β and Ras/MAPK signaling through p53 phosphorylation. Science 315: 840–843, 2007.

    PubMed  CAS  Google Scholar 

  66. Irie, H.Y., R.V. Pearline, D. Grueneberg, M. Hsia, P. Ravichandran, N. Kothari, S. Natesan, and J.S. Brugge. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J. Cell Biol. 171: 1023–1034, 2005.

    PubMed  CAS  Google Scholar 

  67. Larue, L. and A. Bellacosa.Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 24: 7443–7454, 2005.

    PubMed  CAS  Google Scholar 

  68. Zohn, I.E., Y. Li, E.Y. Skolnik, K.V. Anderson, J. Han, and L. Niswander. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 125: 957–69, 2006.

    PubMed  CAS  Google Scholar 

  69. Oft, M., K.H. Heider, and H. Beug. TGFβsignaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol. 8: 1243–1252., 1998.

    PubMed  CAS  Google Scholar 

  70. Portella, G., S.A. Cumming, J. Liddell, W. Cui, H. Ireland, R.J. Akhurst, and A. Balmain. Transforming growth factor β is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ. 9: 393–404., 1998.

    PubMed  CAS  Google Scholar 

  71. Gotzmann, J., H. Huber, C. Thallinger, M. Wolschek, B. Jansen, R. Schulte-Hermann, H. Beug, and W. Mikulits. Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness. J. Cell Sci. 115: 1189–1202, 2002.

    PubMed  CAS  Google Scholar 

  72. Miettinen, P.J., R. Ebner, A.R. Lopez, and R. Derynck. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127: 2021–2036., 1994.

    PubMed  CAS  Google Scholar 

  73. Valcourt, U., M. Kowanetz, H. Niimi, C.-H. Heldin, and A. Moustakas. TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell 16: 1987–2002, 2005.

    PubMed  CAS  Google Scholar 

  74. Willis, B.C., J.M. Liebler, K. Luby-Phelps, A.G. Nicholson, E.D. Crandall, R.M. du Bois, and Z. Borok. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 166: 1321–1332, 2005.

    PubMed  CAS  Google Scholar 

  75. Bierie, B. and H.L. Moses.: Tumour microenvironment: TGFβ the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6: 506–520, 2006.

    PubMed  CAS  Google Scholar 

  76. Yang, Y., X. Pan, W. Lei, J. Wang, and J. Song. Transforming growth factor-β1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism. Oncogene 25: 7235–7244, 2006.

    PubMed  CAS  Google Scholar 

  77. Sakaue-Sawano, A., H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi, K. Fukami, T. Miyata, H. Miyoshi, T. Imamura, M. Ogawa, H. Masai, and A. Miyawaki. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132: 487–498, 2008.

    PubMed  CAS  Google Scholar 

  78. Massagué, J., J. Seoane, and D. Wotton. Smad transcription factors. Genes Dev. 19: 2783–2810, 2005.

    PubMed  Google Scholar 

  79. Piek, E., A. Moustakas, A. Kurisaki, C.-H. Heldin, and P. ten Dijke. TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J. Cell Sci. 112: 4557–4568, 1999.

    PubMed  CAS  Google Scholar 

  80. Kowanetz, M., U. Valcourt, R. Bergström, C.-H. Heldin, and A. Moustakas. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein. Mol. Cell. Biol. 24: 4241–4254, 2004.

    PubMed  CAS  Google Scholar 

  81. Pardali, K. and A. Moustakas. Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim. Biophys. Acta 1775: 21–62, 2007.

    PubMed  CAS  Google Scholar 

  82. Takano, S., F. Kanai, A. Jazag, H. Ijichi, J. Yao, H. Ogawa, N. Enomoto, M. Omata, and A. Nakao. Smad4 is Essential for Down-regulation of E-cadherin Induced by TGF-β in Pancreatic Cancer Cell Line PANC-1. J. Biochem. (Tokyo) 141: 345–351, 2007.

    PubMed  CAS  Google Scholar 

  83. Li, W., W. Qiao, L. Chen, X. Xu, X. Yang, D. Li, C. Li, S.G. Brodie, M.M. Meguid, L. Hennighausen, and C.-X. Deng. Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 130: 6143–6153, 2003.

    PubMed  CAS  Google Scholar 

  84. Bardeesy, N., K.H. Cheng, J.H. Berger, G.C. Chu, J. Pahler, P. Olson, A.F. Hezel, J. Horner, G.Y. Lauwers, D. Hanahan, and R.A. DePinho. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20: 3130–3146, 2006.

    PubMed  CAS  Google Scholar 

  85. Deckers, M., M. van Dinther, J. Buijs, I. Que, C. Lowik, G. van der Pluijm, and P. ten Dijke. The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 66: 2202–2209, 2006.

    PubMed  CAS  Google Scholar 

  86. Ju, W., A. Ogawa, J. Heyer, D. Nierhof, L. Yu, R. Kucherlapati, D.A. Shafritz, and E.P. Böttinger. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol. Cell. Biol. 26: 654–667, 2006.

    PubMed  CAS  Google Scholar 

  87. Phanish, M.K., N.A. Wahab, P. Colville-Nash, B.M. Hendry, and M.E. Dockrell. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFβ1 responses in human proximal-tubule epithelial cells. Biochem J. 393: 601–607, 2006.

    PubMed  CAS  Google Scholar 

  88. Zavadil, J. and E.P. Böttinger. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774, 2005.

    PubMed  CAS  Google Scholar 

  89. Moustakas, A. and C.-H. Heldin. Non-Smad TGF-β signals. J. Cell Sci. 118: 3573–3584, 2005.

    PubMed  CAS  Google Scholar 

  90. Yang, Y., X. Pan, W. Lei, J. Wang, J. Shi, F. Li, and J. Song. Regulation of Transforming Growth Factor-β1-Induced Apoptosis and Epithelial-to-Mesenchymal Transition by Protein Kinase A and Signal Transducers and Activators of Transcription 3. Cancer Res. 66: 8617–8624, 2006.

    PubMed  CAS  Google Scholar 

  91. Bhowmick, N.A., R. Zent, M. Ghiassi, M. McDonnell, and H.L. Moses. Integrin β1 signaling is necessary for transforming growth factor-β activation of p38 MAPK and epithelial plasticity. J. Biol. Chem. 276: 46707–713, 2001.

    PubMed  CAS  Google Scholar 

  92. Bates, R.C., D.I. Bellovin, C. Brown, E. Maynard, B. Wu, H. Kawakatsu, D. Sheppard, P. Oettgen, and A.M. Mercurio. Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest. 115: 339–347, 2005.

    PubMed  CAS  Google Scholar 

  93. Li, Y., J. Yang, C. Dai, C. Wu, and Y. Liu. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J. Clin. Invest. 112: 503–516, 2003.

    PubMed  CAS  Google Scholar 

  94. Lee, Y.I., Y.J. Kwon, and C.K. Joo. Integrin-linked kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition. Biochem. Biophys. Res. Commun. 316: 997–1001, 2004.

    PubMed  CAS  Google Scholar 

  95. Shim, J.H., C. Xiao, A.E. Paschal, S.T. Bailey, P. Rao, M.S. Hayden, K.Y. Lee, C. Bussey, M. Steckel, N. Tanaka, G. Yamada, S. Akira, K. Matsumoto, and S. Ghosh. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19: 2668–2681, 2005.

    PubMed  CAS  Google Scholar 

  96. Zavadil, J., M. Bitzer, D. Liang, Y.C. Yang, A. Massimi, S. Kneitz, E. Piek, and E.P. Böttinger. Genetic programs of epithelial cell plasticity directed by transforming growth factor-b. Proc. Natl. Acad. Sci. USA 98: 6686–6691, 2001.

    PubMed  CAS  Google Scholar 

  97. Jechlinger, M., S. Grunert, I.H. Tamir, E. Janda, S. Ludemann, T. Waerner, P. Seither, A. Weith, H. Beug, and N. Kraut. Expression profiling of epithelial plasticity in tumor progression. Oncogene 22: 7155–7169, 2003.

    PubMed  CAS  Google Scholar 

  98. Kang, Y., P.M. Siegel, W. Shu, M. Drobnjak, S.M. Kakonen, C. Cordon-Cardo, T.A. Guise, and J. Massagué. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549, 2003.

    PubMed  CAS  Google Scholar 

  99. Xie, L., B.K. Law, M.E. Aakre, M. Edgerton, Y. Shyr, N.A. Bhowmick, and H.L. Moses. Transforming growth factor β-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res. 5: R187–198, 2003.

    PubMed  CAS  Google Scholar 

  100. LaGamba, D., A. Nawshad, and E.D. Hay. Microarray analysis of gene expression during epithelial-mesenchymal transformation. Dev. Dyn. 234: 132–142, 2005.

    PubMed  CAS  Google Scholar 

  101. Barrallo-Gimeno, A. and M.A. Nieto. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161, 2005.

    PubMed  CAS  Google Scholar 

  102. Shen, X., J. Li, P.P. Hu, D. Waddell, J. Zhang, and X.-F. Wang. The activity of guanine exchange factor NET1 is essential for transforming growth factor-β-mediated stress fiber formation. J. Biol. Chem. 276: 15362–15368., 2001.

    PubMed  CAS  Google Scholar 

  103. Bakin, A.V., A. Safina, C. Rinehart, C. Daroqui, H. Darbary, and D.M. Helfman. A critical role of tropomyosins in TGF-β regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol. Biol. Cell 15: 4682–4694, 2004.

    PubMed  CAS  Google Scholar 

  104. Peinado, H., M. Quintanilla, and A. Cano. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 278: 21113–21123, 2003.

    PubMed  CAS  Google Scholar 

  105. Sato, M., Y. Muragaki, S. Saika, A.B. Roberts, and A. Ooshima. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112: 1486–1494, 2003.

    PubMed  CAS  Google Scholar 

  106. Thuault, S., U. Valcourt, M. Petersen, G. Manfioletti, C.-H. Heldin, and A. Moustakas. Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J. Cell Biol. 174: 175–183, 2006.

    PubMed  CAS  Google Scholar 

  107. Kondo, M., E. Cubillo, K. Tobiume, T. Shirakihara, N. Fukuda, H. Suzuki, K. Shimizu, K. Takehara, A. Cano, M. Saitoh, and K. Miyazono. A role for Id in the regulation of TGF-β-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ. 11: 1092–1101, 2004.

    PubMed  CAS  Google Scholar 

  108. Kang, Y., C.R. Chen, and J. Massagué. A self-enabling TGFβ response coupled to stress signaling. Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11: 915–926, 2003.

    CAS  Google Scholar 

  109. Zeisberg, M., A.A. Shah, and R. Kalluri. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J. Biol. Chem. 280: 8094–8100, 2005.

    PubMed  CAS  Google Scholar 

  110. Saika, S., K. Ikeda, O. Yamanaka, K.C. Flanders, Y. Ohnishi, Y. Nakajima, Y. Muragaki, and A. Ooshima. Adenoviral gene transfer of BMP-7, Id2, or Id3 suppresses injury-induced epithelial-to-mesenchymal transition of lens epithelium in mice. Am. J. Physiol. Cell Physiol. 290: <PAGES>C282–C289</PAGES>, 2006.

    Google Scholar 

  111. Comijn, J., G. Berx, P. Vermassen, K. Verschueren, L. van Grunsven, E. Bruyneel, M. Mareel, D. Huylebroeck, and F. van Roy. The two-handed E box binding zinc finger protein SIP1 downregulates E- cadherin and induces invasion. Mol. Cell 7: 1267–1278., 2001.

    PubMed  CAS  Google Scholar 

  112. Peinado, H., F. Portillo, and A. Cano. Transcriptional regulation of cadherins during development and carcinogenesis. Int. J. Dev. Biol. 48: 365–375, 2004.

    PubMed  CAS  Google Scholar 

  113. Vandewalle, C., J. Comijn, B. De Craene, P. Vermassen, E. Bruyneel, H. Andersen, E. Tulchinsky, F. Van Roy, and G. Berx. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 33: 6566–6578, 2005.

    PubMed  CAS  Google Scholar 

  114. Eger, A., A. Stockinger, J. Park, E. Langkopf, M. Mikula, J. Gotzmann, W. Mikulits, H. Beug, and R. Foisner. β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23: 2672–2680, 2004.

    PubMed  CAS  Google Scholar 

  115. Martinez-Alvarez, C., M.J. Blanco, R. Perez, M.A. Rabadan, M. Aparicio, E. Resel, T. Martinez, and M.A. Nieto. Snail family members and cell survival in physiological and pathological cleft palates. Dev. Biol. 265: 207–218, 2004.

    PubMed  CAS  Google Scholar 

  116. Li, Y., J. Yang, J.H. Luo, S. Dedhar, and Y. Liu. Tubular epithelial cell dedifferentiation is driven by the helix-loop-helix transcriptional inhibitor Id1. J. Am. Soc. Nephrol. 18: 449–460, 2007.

    PubMed  Google Scholar 

  117. Mani, S.A., J. Yang, M. Brooks, G. Schwaninger, A. Zhou, N. Miura, J.L. Kutok, K. Hartwell, A.L. Richardson, and R.A. Weinberg. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc. Natl. Acad. Sci. USA 104: 10069–10074, 2007.

    PubMed  CAS  Google Scholar 

  118. Venkov, C.D., A.J. Link, J.L. Jennings, D. Plieth, T. Inoue, K. Nagai, C. Xu, Y.N. Dimitrova, F.J. Rauscher, and E.G. Neilson. A proximal activator of transcription in epithelial-mesenchymal transition. J. Clin. Invest. 117: 482–491, 2007.

    PubMed  CAS  Google Scholar 

  119. Spira, A. and D.S. Ettinger. Multidisciplinary management of lung cancer. N. Engl. J. Med. 350: 379–392, 2004.

    PubMed  CAS  Google Scholar 

  120. Carney, D.N. Lung cancer–time to move on from chemotherapy. N. Engl. J. Med. 346: 126–128, 2002.

    PubMed  Google Scholar 

  121. Kasai, H., J.T. Allen, R.M. Mason, T. Kamimura, and Z. Zhang. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir. Res. 6: 56, 2005.

    PubMed  Google Scholar 

  122. Keshamouni, V.G., G. Michailidis, C.S. Grasso, S. Anthwal, J.R. Strahler, A. Walker, D.A. Arenberg, R.C. Reddy, S. Akulapalli, V.J. Thannickal, T.J. Standiford, P.C. Andrews, and G.S. Omenn. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J. Proteome Res. 5: 1143–1154, 2006.

    PubMed  CAS  Google Scholar 

  123. Cordenonsi, M., S. Dupont, S. Maretto, A. Insinga, C. Imbriano, and S. Piccolo. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 113: 301–314, 2003.

    PubMed  CAS  Google Scholar 

  124. Shintani, Y., M. Maeda, N. Chaika, K.R. Johnson, and M.J. Wheelock. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-β signaling. Am. J. Respir. Cell. Mol. Biol. 38: 95–104, 2008.

    PubMed  CAS  Google Scholar 

  125. Lu, Z., S. Ghosh, Z. Wang, and T. Hunter. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 4: 499–515, 2003.

    PubMed  CAS  Google Scholar 

  126. Masuda, A., M. Kondo, T. Saito, Y. Yatabe, T. Kobayashi, M. Okamoto, M. Suyama, and T. Takahashi. Establishment of human peripheral lung epithelial cell lines (HPL1) retaining differentiated characteristics and responsiveness to epidermal growth factor, hepatocyte growth factor, and transforming growth factor β1. Cancer Res. 57: 4898–4904, 1997.

    PubMed  CAS  Google Scholar 

  127. Blanco, D., S. Vicent, E. Elizegi, I. Pino, M.F. Fraga, M. Esteller, U. Saffiotti, F. Lecanda, and L.M. Montuenga. Altered expression of adhesion molecules and epithelial-mesenchymal transition in silica-induced rat lung carcinogenesis. Lab Invest. 84: 999–1012, 2004.

    PubMed  CAS  Google Scholar 

  128. Powell, D.W., R.C. Mifflin, J.D. Valentich, S.E. Crowe, J.I. Saada, and A.B. West. Myofibroblasts. I. Paracrine. cells important in health and disease. Am. J. Physiol. 277: <PAGES>C1–9</PAGES>, 1999.

    Google Scholar 

  129. Balkwill, F. and A. Mantovani. Inflammation and cancer: back to Virchow? Lancet 357: 539–545, 2001.

    PubMed  CAS  Google Scholar 

  130. Bhowmick, N.A., A. Chytil, D. Plieth, A.E. Gorska, N. Dumont, S. Shappell, M.K. Washington, E.G. Neilson, and H.L. Moses. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303: 848–851, 2004.

    PubMed  CAS  Google Scholar 

  131. Cheng, N., N.A. Bhowmick, A. Chytil, A.E. Gorksa, K.A. Brown, R. Muraoka, C.L. Arteaga, E.G. Neilson, S.W. Hayward, and H.L. Moses. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-β-, MSP- and HGF-mediated signaling networks. Oncogene 24: 5053–5068, 2005.

    PubMed  CAS  Google Scholar 

  132. Nakamura, T., K. Matsumoto, A. Kiritoshi, and Y. Tano. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res. 57: 3305–3313, 1997.

    PubMed  CAS  Google Scholar 

  133. Gmyrek, G.A., M. Walburg, C.P. Webb, H.M. Yu, X. You, E.D. Vaughan, G.F. Vande Woude, and B.S. Knudsen. Normal and malignant prostate epithelial cells differ in their response to hepatocyte growth factor/scatter factor. Am. J. Pathol. 159: 579–590, 2001.

    PubMed  CAS  Google Scholar 

  134. Beviglia, L., K. Matsumoto, C.S. Lin, B.L. Ziober, and R.H. Kramer. Expression of the c-Met/HGF receptor in human breast carcinoma: correlation with tumor progression. Int. J. Cancer 74: 301–309, 1997.

    PubMed  CAS  Google Scholar 

  135. Masuya, D., C. Huang, D. Liu, T. Nakashima, K. Kameyama, R. Haba, M. Ueno, and H. Yokomise. The tumour-stromal interaction between intratumoral c-Met and stromal hepatocyte growth factor associated with tumour growth and prognosis in non-small-cell lung cancer patients. Br. J. Cancer 90: 1555–1562, 2004.

    PubMed  CAS  Google Scholar 

  136. Lewis, M.P., K.A. Lygoe, M.L. Nystrom, W.P. Anderson, P.M. Speight, J.F. Marshall, and G.J. Thomas. Tumour-derived TGF-β1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br. J. Cancer 90: 822–832, 2004.

    PubMed  CAS  Google Scholar 

  137. Joseph, H., A.E. Gorska, P. Sohn, H.L. Moses, and R. Serra. Overexpression of a kinase-deficient transforming growth factor-β type II receptor in mouse mammary stroma results in increased epithelial branching. Mol. Biol. Cell 10: 1221–1234., 1999.

    PubMed  CAS  Google Scholar 

  138. Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214: 199–210, 2008.

    PubMed  CAS  Google Scholar 

  139. Iwano, M., D. Plieth, T.M. Danoff, C. Xue, H. Okada, and E.G. Neilson. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110: 341–350, 2002.

    PubMed  CAS  Google Scholar 

  140. Yang, J. and Y. Liu. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J. Am. Soc. Nephrol. 13: 96–107, 2002.

    PubMed  CAS  Google Scholar 

  141. Kalluri, R. and E.G. Neilson.Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112: 1776–1784, 2003.

    PubMed  CAS  Google Scholar 

  142. Saika, S., S. Kono-Saika, Y. Ohnishi, M. Sato, Y. Muragaki, A. Ooshima, K.C. Flanders, J. Yoo, M. Anzano, C.Y. Liu, W.W. Kao, and A.B. Roberts. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am. J. Pathol. 164: 651–663, 2004.

    PubMed  CAS  Google Scholar 

  143. Schurch, W., T.A. Seemayer, and G. Gabbiani.: The myofibroblast a quarter century after its discovery. Am. J. Surg. Pathol. 22: 141–147, 1998.

    PubMed  CAS  Google Scholar 

  144. Phan, S.H. The myofibroblast in pulmonary fibrosis. Chest 122: 286S–289S, 2002.

    PubMed  Google Scholar 

  145. Singh, S.R. and I.P. Hall. Airway myofibroblasts and their relationship with airway myocytes and fibroblasts. Proc. Am. Thorac. Soc. 5: 127–132, 2008.

    PubMed  CAS  Google Scholar 

  146. Direkze, N.C., K. Hodivala-Dilke, R. Jeffery, T. Hunt, R. Poulsom, D. Oukrif, M.R. Alison, and N.A. Wright. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64: 8492–8495, 2004.

    PubMed  CAS  Google Scholar 

  147. Forbes, S.J., F.P. Russo, V. Rey, P. Burra, M. Rugge, N.A. Wright, and M.R. Alison. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 126: 955–963, 2004.

    PubMed  Google Scholar 

  148. Ebihara, Y., M. Masuya, A.C. Larue, P.A. Fleming, R.P. Visconti, H. Minamiguchi, C.J. Drake, and M. Ogawa. Hematopoietic origins of fibroblasts: II. In vitro studies of fibroblasts, CFU-F, and fibrocytes. Exp. Hematol. 34: 219–229, 2006.

    PubMed  CAS  Google Scholar 

  149. Quan, T.E., S.E. Cowper, and R. Bucala. The role of circulating fibrocytes in fibrosis. Curr. Rheumatol. Rep. 8: 145–150, 2006.

    PubMed  CAS  Google Scholar 

  150. Willis, B.C., R.M. duBois, and Z. Borok. Epithelial origin of myofibroblasts during fibrosis in the lung. Proc. Am. Thorac. Soc. 3: 377–382, 2006.

    PubMed  CAS  Google Scholar 

  151. Zeisberg, E.M., O. Tarnavski, M. Zeisberg, A.L. Dorfman, J.R. McMullen, E. Gustafsson, A. Chandraker, X. Yuan, W.T. Pu, A.B. Roberts, E.G. Neilson, M.H. Sayegh, S. Izumo, and R. Kalluri. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13: 952–961, 2007.

    PubMed  CAS  Google Scholar 

  152. Hu, B., Z. Wu, and S.H. Phan. Smad3 mediates transforming growth factor-β-induced β-smooth muscle actin expression. Am. J. Respir. Cell Mol. Biol. 29: 397–404, 2003.

    PubMed  CAS  Google Scholar 

  153. Reubinoff, B.E., M.F. Pera, C.Y. Fong, A. Trounson, and A. Bongso. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18: 399–404, 2000.

    PubMed  CAS  Google Scholar 

  154. Smith, A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17: 435–462, 2001.

    PubMed  CAS  Google Scholar 

  155. Spencer, H.L., A.M. Eastham, C.L. Merry, T.D. Southgate, F. Perez-Campo, F. Soncin, S. Ritson, R. Kemler, P.L. Stern, and C.M. Ward. E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells. Mol. Biol. Cell 18: 2838–2851, 2007.

    PubMed  CAS  Google Scholar 

  156. Eastham, A.M., H. Spencer, F. Soncin, S. Ritson, C.L. Merry, P.L. Stern, and C.M. Ward. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res. 67: 11254–11262, 2007.

    PubMed  CAS  Google Scholar 

  157. Cavallaro, U. and G. Christofori. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 4: 118–132, 2004.

    PubMed  CAS  Google Scholar 

  158. Mani, S.A., W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, and R.A. Weinberg. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715, 2008.

    PubMed  CAS  Google Scholar 

  159. Lobo, N.A., Y. Shimono, D. Qian, and M.F. Clarke. The biology of cancer stem cells. Annu. Rev. Cell Dev. Biol. 23: 675–699, 2007.

    PubMed  CAS  Google Scholar 

  160. Dalerba, P. and M.F. Clarke. Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell 1: 241–242, 2007.

    PubMed  CAS  Google Scholar 

  161. Karnoub, A.E., A.B. Dash, A.P. Vo, A. Sullivan, M.W. Brooks, G.W. Bell, A.L. Richardson, K. Polyak, R. Tubo, and R.A. Weinberg. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449: 557–563, 2007.

    PubMed  CAS  Google Scholar 

  162. Thiery, J.-P. and J.P. Sleeman. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell. Biol. 7: 131–142, 2006.

    PubMed  CAS  Google Scholar 

  163. Prindull, G. Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells? Exp. Hematol. 33: 738–746, 2005.

    CAS  Google Scholar 

  164. Ben-Porath, I., M.W. Thomson, V.J. Carey, R. Ge, G.W. Bell, A. Regev, and R.A. Weinberg. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40: 499–507, 2008.

    PubMed  CAS  Google Scholar 

  165. Ullmann, U., P. In’t Veld, C. Gilles, K. Sermon, M. De Rycke, H. Van de Velde, A. Van Steirteghem, and I. Liebaers. Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol. Hum. Reprod. 13: 21–32, 2007.

    PubMed  CAS  Google Scholar 

  166. Fischer, A.N., E. Fuchs, M. Mikula, H. Huber, H. Beug, and W. Mikulits. PDGF essentially links TGF-β signaling to nuclear β-catenin accumulation in hepatocellular carcinoma progression. Oncogene In press, 2006.

    Google Scholar 

  167. Tarin, D., E.W. Thompson, and D.F. Newgreen. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 65: 5996–6000; discussion 6000-1, 2005.

    PubMed  CAS  Google Scholar 

  168. Christiansen, J.J. and A.K. Rajasekaran. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66: 8319–8326, 2006.

    PubMed  CAS  Google Scholar 

  169. Wicki, A., F. Lehembre, N. Wick, B. Hantusch, D. Kerjaschki, and G. Christofori. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9: 261–272, 2006.

    PubMed  CAS  Google Scholar 

  170. Trimboli, A.J., K. Fukino, A. de Bruin, G. Wei, L. Shen, S.M. Tanner, N. Creasap, T.J. Rosol, M.L. Robinson, C. Eng, M.C. Ostrowski, and G. Leone. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 68: 937–945, 2008.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Due to space limitations, only selected literature is cited. Funding of the authors’ work is provided by the Ludwig Institute for Cancer Research, the Atlantic Philanthropies/Ludwig Institute for Cancer Research Clinical Discovery Program, the Swedish Cancer Society, the Swedish Research Council and the Marie Curie Research Training Network (RTN) “EpiPlastCarcinoma” under the European Union FP6 program. We thank Carl-Henrik Heldin for his continuous support and all other members of the TGFβ signaling group for their contributions to the scientific work emanating from our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristidis Moustakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Savary, K., Termén, S., Thuault, S., Keshamouni, V., Moustakas, A. (2009). Epithelial–Mesenchymal Transition as a Mechanism of Metastasis. In: Keshamouni, V., Arenberg, D., Kalemkerian, G. (eds) Lung Cancer Metastasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0772-1_4

Download citation

Publish with us

Policies and ethics