Skip to main content

Molecular Imaging in Lung Cancer Metastases

  • Chapter
  • First Online:
  • 1349 Accesses

Abstract

Advances in gene profiling technology have led to the identification of novel gene expression signatures and individual biomarkers associated with the cancer and the spread of malignancy to distant organs. Molecular imaging is a very promising technology which provides the potential for utilizing these biomarkers for monitoring tumor progression and therapeutic response. This technology may allow real-time, dynamic, and quantifiable monitoring of biomarker activity. This chapter describes molecular imaging modalities that are currently available for monitoring clinical and experimental metastasis, their application and potential to monitor tumor progression and therapeutic outcome of a treatment regimen in real time, and in the discovery and development of novel drugs that target metastatic disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cady, B. Regional lymph node metastases; a singular manifestation of the process of clinical metastases in cancer: contemporary animal research and clinical reports suggest unifying concepts. Ann Surg Oncol 14: 1790–800, 2007.

    PubMed  Google Scholar 

  2. Leong, S.P., B. Cady, D.M. Jablons, J. Garcia-Aguilar, D. Reintgen, J. Jakub, S. Pendas, L. Duhaime, R. Cassell, M. Gardner, R. Giuliano, V. Archie, D. Calvin, L. Mensha, S. Shivers, C. Cox, J.A. Werner, Y. Kitagawa, and M. Kitajima. Clinical patterns of metastasis. Cancer Metastasis Rev 25: 221–32, 2006.

    PubMed  Google Scholar 

  3. Leong, S.P., B. Cady, D.M. Jablons, J. Garcia-Aguilar, D. Reintgen, J.A. Werner, and Y. Kitagawa. Patterns of metastasis in human solid cancers. Cancer Treat Res 135: 209–21, 2007.

    PubMed  Google Scholar 

  4. Vicent, S., D. Luis-Ravelo, I. Anton, I. Garcia-Tunon, F. Borras-Cuesta, J. Dotor, J. De Las Rivas, and F. Lecanda. A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Cancer Res 68: 2275–85, 2008.

    PubMed  CAS  Google Scholar 

  5. Inamura, K., T. Shimoji, H. Ninomiya, M. Hiramatsu, M. Okui, Y. Satoh, S. Okumura, K. Nakagawa, T. Noda, M. Fukayama, and Y. Ishikawa. A metastatic signature in entire lung adenocarcinomas irrespective of morphological heterogeneity. Hum Pathol 38: 702–9, 2007.

    PubMed  Google Scholar 

  6. Montel, V., T.Y. Huang, E. Mose, K. Pestonjamasp, and D. Tarin. Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model. Am J Pathol 166: 1565–79, 2005.

    PubMed  CAS  Google Scholar 

  7. Hu, J., F. Bianchi, M. Ferguson, A. Cesario, S. Margaritora, P. Granone, P. Goldstraw, M. Tetlow, C. Ratcliffe, A.G. Nicholson, A. Harris, K. Gatter, and F. Pezzella. Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene 24: 1212–9, 2005.

    PubMed  CAS  Google Scholar 

  8. Li, C., Z. Chen, Z. Xiao, X. Wu, X. Zhan, X. Zhang, M. Li, J. Li, X. Feng, S. Liang, P. Chen, and J.Y. Xie. Comparative proteomics analysis of human lung squamous carcinoma. Biochem Biophys Res Commun 309: 253–60, 2003.

    PubMed  CAS  Google Scholar 

  9. Yanagisawa, K., B.J. Xu, D.P. Carbone, and R.M. Caprioli. Molecular fingerprinting in human lung cancer. Clin Lung Cancer 5: 113–8, 2003.

    PubMed  CAS  Google Scholar 

  10. Sharma, V., G.D. Luker, and D. Piwnica-Worms. Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J Magn Reson Imaging 16: 336–51, 2002.

    PubMed  Google Scholar 

  11. Contag, C.H. and M.H. Bachmann. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4: 235–60, 2002.

    PubMed  CAS  Google Scholar 

  12. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2: 11–8, 2002.

    PubMed  CAS  Google Scholar 

  13. Blasberg, R.G. Molecular imaging and cancer. Mol Cancer Ther 2: 335–43, 2003.

    PubMed  CAS  Google Scholar 

  14. Gelovani Tjuvajev, J. and R.G. Blasberg. In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 3: 327–32, 2003.

    PubMed  Google Scholar 

  15. Herschman, H.R. Molecular imaging: looking at problems, seeing solutions. Science 302: 605–8, 2003.

    PubMed  CAS  Google Scholar 

  16. Gross, S. and D. Piwnica-Worms. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7: 5–15, 2005.

    PubMed  CAS  Google Scholar 

  17. Jaffer, F.A. and R. Weissleder. Molecular imaging in the clinical arena. Jama 293: 855–62, 2005.

    PubMed  CAS  Google Scholar 

  18. Weissleder, R. and U. Mahmood. Molecular imaging. Radiology 219: 316–33, 2001.

    PubMed  CAS  Google Scholar 

  19. Weissleder, R. and V. Ntziachristos. Shedding light onto live molecular targets. Nat Med 9: 123–8, 2003.

    PubMed  CAS  Google Scholar 

  20. Mahmood, U. and R. Weissleder. Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2: 489–96, 2003.

    PubMed  CAS  Google Scholar 

  21. Chenevert, T.L., L.D. Stegman, J.M. Taylor, P.L. Robertson, H.S. Greenberg, A. Rehemtulla, and B.D. Ross. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92: 2029–36, 2000.

    PubMed  CAS  Google Scholar 

  22. Moffat, B.A., D.E. Hall, J. Stojanovska, P.J. McConville, J.B. Moody, T.L. Chenevert, A. Rehemtulla, and B.D. Ross. Diffusion imaging for evaluation of tumor therapies in preclinical animal models. Magma 17: 249–59, 2004.

    PubMed  CAS  Google Scholar 

  23. Guccione, S., K.C. Li, and M.D. Bednarski. Molecular imaging and therapy directed at the neovasculature in pathologies. How imaging can be incorporated into vascular-targeted delivery systems to generate active therapeutic agents. IEEE Eng Med Biol Mag 23: 50–6, 2004.

    PubMed  Google Scholar 

  24. Morgan, B., M.A. Horsfield, and W.P. Steward. The role of imaging in the clinical development of antiangiogenic agents. Hematol Oncol Clin North Am 18: 1183–206, x, 2004.

    PubMed  Google Scholar 

  25. Louie, A.Y., M.M. Huber, E.T. Ahrens, U. Rothbacher, R. Moats, R.E. Jacobs, S.E. Fraser, and T.J. Meade. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18: 321–5, 2000.

    PubMed  CAS  Google Scholar 

  26. Ntziachristos, V., C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder. In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 1: 82–8, 2002.

    PubMed  Google Scholar 

  27. Bremer, C., V. Ntziachristos, and R. Weissleder. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13: 231–43, 2003.

    PubMed  Google Scholar 

  28. Funovics, M., R. Weissleder, and C.H. Tung. Protease sensors for bioimaging. Anal Bioanal Chem 377: 956–63, 2003.

    PubMed  CAS  Google Scholar 

  29. Ntziachristos, V., E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA 101: 12294–9, 2004.

    PubMed  CAS  Google Scholar 

  30. Dzik-Jurasz, A.S. Molecular imaging in vivo: an introduction. Br J Radiol 76 Spec No 2: S98–109, 2003.

    PubMed  CAS  Google Scholar 

  31. Bhojani, M.S., B. Laxman, B.D. Ross, and A. Rehemtulla. Molecular imaging in cancer. In Apoptosis and Cancer Therapy, K.-M. Debatin and S. Fulda, eds. (Weinheim: Wiley-VCH, 2006).

    Google Scholar 

  32. Buchsbaum, D., R. Lloyd, J. Juni, I. Wollner, P. Brubaker, D. Hanna, J. Spicker, F. Burns, Z. Steplewski, D. Colcher et al. Localization and imaging of radiolabeled monoclonal antibodies against colorectal carcinoma in tumor-bearing nude mice. Cancer Res 48: 4324–33, 1988.

    PubMed  CAS  Google Scholar 

  33. Buchsbaum, D.J. Imaging and therapy of tumors induced to express somatostatin receptor by gene transfer using radiolabeled peptides and single chain antibody constructs. Semin Nucl Med 34: 32–46, 2004.

    PubMed  Google Scholar 

  34. Figueiredo, J.L., H. Alencar, R. Weissleder, and U. Mahmood. Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer. Int J Cancer 118: 2672–7, 2006.

    PubMed  CAS  Google Scholar 

  35. Blum, G., G. von Degenfeld, M.J. Merchant, H.M. Blau, and M. Bogyo. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3: 668–77, 2007.

    PubMed  CAS  Google Scholar 

  36. Tung, C.H., U. Mahmood, S. Bredow, and R. Weissleder. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60: 4953–8, 2000.

    PubMed  CAS  Google Scholar 

  37. Bremer, C., S. Bredow, U. Mahmood, R. Weissleder, and C.H. Tung. Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221: 523–9, 2001.

    PubMed  CAS  Google Scholar 

  38. Tung, C.H., S. Bredow, U. Mahmood, and R. Weissleder. Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug Chem 10: 892–6, 1999.

    PubMed  CAS  Google Scholar 

  39. Rehemtulla, A., L.D. Stegman, S.J. Cardozo, S. Gupta, D.E. Hall, C.H. Contag, and B.D. Ross. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2: 491–5, 2000.

    PubMed  CAS  Google Scholar 

  40. Ciana, P., M. Raviscioni, P. Mussi, E. Vegeto, I. Que, M.G. Parker, C. Lowik, and A. Maggi. In vivo imaging of transcriptionally active estrogen receptors. Nat Med 9: 82–6, 2003.

    PubMed  CAS  Google Scholar 

  41. Carlsen, H., J.O. Moskaug, S.H. Fromm, and R. Blomhoff. In vivo imaging of NF-kappa B activity. J Immunol 168: 1441–6, 2002.

    PubMed  CAS  Google Scholar 

  42. Doubrovin, M., V. Ponomarev, T. Beresten, J. Balatoni, W. Bornmann, R. Finn, J. Humm, S. Larson, M. Sadelain, R. Blasberg, and J. Gelovani. Tjuvajev Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA 98: 9300–5, 2001.

    PubMed  CAS  Google Scholar 

  43. Rehemtulla, A., N. Taneja, and B.D. Ross. Bioluminescence detection of cells having stabilized p53 in response to a genotoxic event. Mol Imaging 3: 63–8, 2004.

    PubMed  CAS  Google Scholar 

  44. Laxman, B., D.E. Hall, M.S. Bhojani, D.A. Hamstra, T.L. Chenevert, B.D. Ross, and A. Rehemtulla. Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 99: 16551–5, 2002.

    PubMed  CAS  Google Scholar 

  45. Luker, G.D., V. Sharma, C.M. Pica, J.L. Prior, W. Li, and D. Piwnica-Worms. Molecular imaging of protein–protein interactions: controlled expression of p53 and large T-antigen fusion proteins in vivo. Cancer Res 63: 1780–8, 2003.

    PubMed  CAS  Google Scholar 

  46. Massoud, T.F. and S.S. Gambhir. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17: 545–80, 2003.

    PubMed  CAS  Google Scholar 

  47. Stell, A., S. Belcredito, B. Ramachandran, A. Biserni, G. Rando, P. Ciana, and A. Maggi. Multimodality imaging: novel pharmacological applications of reporter systems. Q J Nucl Med Mol Imaging 51: 127–38, 2007.

    PubMed  CAS  Google Scholar 

  48. Ross, B.D., T.L. Chenevert, and A. Rehemtulla. Magnetic resonance imaging in cancer research. Eur J Cancer 38: 2147–56, 2002.

    PubMed  CAS  Google Scholar 

  49. Rees, J. Advances in magnetic resonance imaging of brain tumours. Curr Opin Neurol 16: 643–50, 2003.

    PubMed  Google Scholar 

  50. Choy, G., P. Choyke, and S.K. Libutti. Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2: 303–12, 2003.

    PubMed  CAS  Google Scholar 

  51. Bartrons, R. and J. Caro. Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39: 223–9, 2007.

    PubMed  CAS  Google Scholar 

  52. Wallace, D.C. Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol 70: 363–74, 2005.

    PubMed  CAS  Google Scholar 

  53. Massoud, T.F., R. Paulmurugan, and S.S. Gambhir. Molecular imaging of homodimeric protein–protein interactions in living subjects. Faseb J 18: 1105–7, 2004.

    PubMed  CAS  Google Scholar 

  54. Blasberg, R.G. and J. Gelovani. Molecular-genetic imaging: a nuclear medicine-based perspective. Mol Imaging 1: 280–300, 2002.

    PubMed  CAS  Google Scholar 

  55. Blankenberg, F.G., C. Mari, and H.W. Strauss. Development of radiocontrast agents for vascular imaging: progress to date. Am J Cardiovasc Drugs 2: 357–65, 2002.

    PubMed  Google Scholar 

  56. McCaffrey, A., M.A. Kay, and C.H. Contag. Advancing molecular therapies through in vivo bioluminescent imaging. Mol Imaging 2: 75–86, 2003.

    PubMed  CAS  Google Scholar 

  57. Greer, L.F., 3rd and A.A. Szalay. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17: 43–74, 2002.

    PubMed  CAS  Google Scholar 

  58. Mahmood, U. Near infrared optical applications in molecular imaging. Earlier, more accurate assessment of disease presence, disease course, and efficacy of disease treatment. IEEE Eng Med Biol Mag 23: 58–66, 2004.

    PubMed  Google Scholar 

  59. Weissleder, R., C.H. Tung, U. Mahmood, and A. Bogdanov, Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17: 375–8, 1999.

    PubMed  CAS  Google Scholar 

  60. Campbell, R.E., O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias, and R.Y. Tsien. A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99: 7877–82, 2002.

    PubMed  CAS  Google Scholar 

  61. Shaner, N.C., R.E. Campbell, P.A. Steinbach, B.N. Giepmans, A.E. Palmer, and R.Y. Tsien. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567–72, 2004.

    PubMed  CAS  Google Scholar 

  62. Zhang, H.G., J. Wang, X. Yang, H.C. Hsu, and J.D. Mountz. Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23: 2009–15, 2004.

    PubMed  CAS  Google Scholar 

  63. Zipfel, W.R., R.M. Williams, R. Christie, A.Y. Nikitin, B.T. Hyman, and W.W. Webb. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100: 7075–80, 2003.

    PubMed  CAS  Google Scholar 

  64. Zipfel, W.R., R.M. Williams, and W.W. Webb. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21: 1369–77, 2003.

    PubMed  CAS  Google Scholar 

  65. Bhojani, M.S., G. Chen, B.D. Ross, D.G. Beer, and A. Rehemtulla. Nuclear localized phosphorylated FADD induces cell proliferation and is associated with aggressive lung cancer. Cell Cycle 4: 1478–81, 2005.

    PubMed  CAS  Google Scholar 

  66. Ntziachristos, V., C.H. Tung, C. Bremer, and R. Weissleder. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8: 757–60, 2002.

    PubMed  CAS  Google Scholar 

  67. Messerli, S.M., S. Prabhakar, Y. Tang, K. Shah, M.L. Cortes, V. Murthy, R. Weissleder, X.O. Breakefield, and C.H. Tung. A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe. Neoplasia 6: 95–105, 2004.

    PubMed  CAS  Google Scholar 

  68. Mahmood, U., C.H. Tung, A. Bogdanov, Jr., and R. Weissleder. Near-infrared optical imaging of protease activity for tumor detection. Radiology 213: 866–70, 1999.

    PubMed  CAS  Google Scholar 

  69. Chen, J., C.H. Tung, U. Mahmood, V. Ntziachristos, R. Gyurko, M.C. Fishman, P.L. Huang, and R. Weissleder. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105: 2766–71, 2002.

    PubMed  Google Scholar 

  70. Parungo, C.P., S. Ohnishi, A.M. De Grand, R.G. Laurence, E.G. Soltesz, Y.L. Colson, P.M. Kang, T. Mihaljevic, L.H. Cohn, and J.V. Frangioni. In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann Surg Oncol 11: 1085–92, 2004.

    PubMed  Google Scholar 

  71. Parungo, C.P., S. Ohnishi, S.W. Kim, S. Kim, R.G. Laurence, E.G. Soltesz, F.Y. Chen, Y.L. Colson, L.H. Cohn, M.G. Bawendi, and J.V. Frangioni. Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 129: 844–50, 2005.

    PubMed  Google Scholar 

  72. Josephson, L., U. Mahmood, P. Wunderbaldinger, Y. Tang, and R. Weissleder. Pan and sentinel lymph node visualization using a near-infrared fluorescent probe. Mol Imaging 2: 18–23, 2003.

    PubMed  Google Scholar 

  73. Michalet, X., F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, and S. Weiss. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538–44, 2005.

    PubMed  CAS  Google Scholar 

  74. Gao, X., Y. Cui, R.M. Levenson, L.W. Chung, and S. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22: 969–76, 2004.

    PubMed  CAS  Google Scholar 

  75. Lacoste, T.D., X. Michalet, F. Pinaud, D.S. Chemla, A.P. Alivisatos, and S. Weiss. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci USA 97: 9461–6, 2000.

    PubMed  CAS  Google Scholar 

  76. Dahan, M., S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302: 442–5, 2003.

    PubMed  CAS  Google Scholar 

  77. Hohng, S. and T. Ha. Near-complete suppression of quantum dot blinking in ambient conditions. J Am Chem Soc 126: 1324–5, 2004.

    PubMed  CAS  Google Scholar 

  78. Ponomarev, V., M. Doubrovin, I. Serganova, J. Vider, A. Shavrin, T. Beresten, A. Ivanova, L. Ageyeva, V. Tourkova, J. Balatoni, W. Bornmann, R. Blasberg, and J. Gelovani. Tjuvajev A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31: 740–51, 2004.

    PubMed  CAS  Google Scholar 

  79. Doubrovin, M., I. Serganova, P. Mayer-Kuckuk, V. Ponomarev, and R.G. Blasberg. Multimodality in vivo molecular-genetic imaging. Bioconjug Chem 15: 1376–88, 2004.

    PubMed  CAS  Google Scholar 

  80. Ray, P., A. De, J.J. Min, R.Y. Tsien, and S.S. Gambhir. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64: 1323–30, 2004.

    PubMed  CAS  Google Scholar 

  81. Kim, Y.J., P. Dubey, P. Ray, S.S. Gambhir, and O.N. Witte. Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol 6: 331–40, 2004.

    PubMed  Google Scholar 

  82. Yen, K.Y., J.A. Liang, A.C. Shiau, T.C. Hsieh, S.S. Sun, and C.H. Kao. Fusion images of Tl-201 SPECT and FDG PET with CT in detection of cervical carcinoma with bladder invasion. Clin Nucl Med 30: 278–80, 2005.

    PubMed  Google Scholar 

  83. Blasberg, R.G. and J.G. Tjuvajev. Molecular-genetic imaging: current and future perspectives. J Clin Invest 111: 1620–9, 2003.

    PubMed  CAS  Google Scholar 

  84. Schellenberger, E.A., D. Sosnovik, R. Weissleder, and L. Josephson. Magneto/optical annexin V, a multimodal protein. Bioconjug Chem 15: 1062–7, 2004.

    PubMed  CAS  Google Scholar 

  85. Kerppola, T.K. Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7: 449–56, 2006.

    PubMed  CAS  Google Scholar 

  86. Michnick, S.W., M.L. MacDonald, and J.K. Westwick. Chemical genetic strategies to delineate MAP kinase signaling pathways using protein-fragment complementation assays (PCA). Methods 40: 287–93, 2006.

    PubMed  CAS  Google Scholar 

  87. Shyu, Y.J. and C.D. Hu. Fluorescence complementation: an emerging tool for biological research. Trends Biotechnol 26: 622–30, 2008.

    PubMed  CAS  Google Scholar 

  88. Fields, S. and O. Song. A novel genetic system to detect protein–protein interactions. Nature 340: 245–6, 1989.

    PubMed  CAS  Google Scholar 

  89. Michnick, S.W., P.H. Ear, E.N. Manderson, I. Remy, and E. Stefan. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 6: 569–82, 2007.

    PubMed  CAS  Google Scholar 

  90. Paulmurugan, R. and S.S. Gambhir. Monitoring protein–protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal Chem 75: 1584–9, 2003.

    PubMed  CAS  Google Scholar 

  91. Manning, G., G.D. Plowman, T. Hunter, and S. Sudarsanam. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27: 514–20, 2002.

    PubMed  CAS  Google Scholar 

  92. Manning, G., D.B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam. The protein kinase complement of the human genome. Science 298: 1912–34, 2002.

    PubMed  CAS  Google Scholar 

  93. Edelman, A.M., D.K. Blumenthal, and E.G. Krebs. Protein serine/threonine kinases. Annu Rev Biochem 56: 567–613, 1987.

    PubMed  CAS  Google Scholar 

  94. Hubbard, S.R. and J.H. Till. Protein tyrosine kinase structure and function. Annu Rev Biochem 69: 373–98, 2000.

    PubMed  CAS  Google Scholar 

  95. Hunter, T. and J.A. Cooper. Protein-tyrosine kinases. Annu Rev Biochem 54: 897–930, 1985.

    PubMed  CAS  Google Scholar 

  96. Tsygankov, A.Y. Non-receptor protein tyrosine kinases. Front Biosci 8: s595–635, 2003.

    PubMed  CAS  Google Scholar 

  97. Zhang, L., M.S. Bhojani, B.D. Ross, and A. Rehemtulla. Molecular imaging of protein kinases. Cell Cycle 7: 314–7, 2008.

    PubMed  CAS  Google Scholar 

  98. Blume-Jensen, P. and T. Hunter. Oncogenic kinase signalling. Nature 411: 355–65, 2001.

    PubMed  CAS  Google Scholar 

  99. Zhang, L., K.C. Lee, M.S. Bhojani, A.P. Khan, A. Shilman, E.C. Holland, B.D. Ross, and A. Rehemtulla. Molecular imaging of Akt kinase activity. Nat Med 13: 1114–9, 2007.

    PubMed  CAS  Google Scholar 

  100. Zhang, L., M.S. Bhojani, B.D. Ross, and A. Rehemtulla. Enhancing Akt imaging through targeted reporter expression. Mol Imaging 7: 168–74, 2008.

    PubMed  CAS  Google Scholar 

  101. Zhou, V., X. Gao, S. Han, A. Brinker, J.S. Caldwell, and X.J. Gu. An intracellular conformational sensor assay for Abl T315I. Anal Biochem 385: 300–8, 2009.

    PubMed  CAS  Google Scholar 

  102. Liotta, L.A., K. Tryggvason, S. Garbisa, I. Hart, C.M. Foltz, and S. Shafie. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67–8, 1980.

    PubMed  CAS  Google Scholar 

  103. Liotta, L.A., P.S. Steeg, and W.G. Stetler-Stevenson. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–36, 1991.

    PubMed  CAS  Google Scholar 

  104. Coussens, L.M., B. Fingleton, and L.M. Matrisian. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295: 2387–92, 2002.

    PubMed  CAS  Google Scholar 

  105. Stupack, D.G., T. Teitz, M.D. Potter, D. Mikolon, P.J. Houghton, V.J. Kidd, J.M. Lahti, and D.A. Cheresh. Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439: 95–9, 2006.

    PubMed  CAS  Google Scholar 

  106. Shi, Y. Apoptosome: the cellular engine for the activation of caspase-9. Structure 10: 285–8, 2002.

    PubMed  CAS  Google Scholar 

  107. Nicholson, D.W. and N.A. Thornberry. Caspases: killer proteases. Trends Biochem Sci 22: 299–306, 1997.

    PubMed  CAS  Google Scholar 

  108. Nicholson, D.W. and N.A. Thornberry. Apoptosis. Life and death decisions. Science 299: 214–5, 2003.

    PubMed  CAS  Google Scholar 

  109. Bhojani, M.S., Ross, B.D., and A. Rehemtulla. TRAIL in Cancer Therapy. In Death Receptor in Cancer Therapy, El-Deiry, W.S., ed., Series Cancer Drug Discovery and Development (Totowa NJ: Humana, 2004).

    Google Scholar 

  110. Bhojani, M.S., B.D. Rossu, and A. Rehemtulla. TRAIL and anti-tumor responses. Cancer Biol Ther 2: S71–8, 2003.

    PubMed  CAS  Google Scholar 

  111. Thormeyer, D., O. Ammerpohl, O. Larsson, Y. Xu, A. Asinger, C. Wahlestedt, and Z. Liang. Characterization of lacZ complementation deletions using membrane receptor dimerization. Biotechniques 34: 346–50, 352–5, 2003.

    Google Scholar 

  112. Zhang, G., X. Zhou, C. Wang, M. Yao, H. Yu, and Q. Xie. mRNA and protein expression of Fas associated death domain protein in apoptotic hepatocyte induced by tumor necrosis factor-alpha. Zhonghua Gan Zang Bing Za Zhi 9: 10–2, 2001.

    PubMed  Google Scholar 

  113. Coppola, J.M., B.D. Ross, and A. Rehemtulla. Noninvasive imaging of apoptosis and its application in cancer therapeutics. Clin Cancer Res 14: 2492–501, 2008.

    PubMed  CAS  Google Scholar 

  114. Hu, C.D., Y. Chinenov, and T.K. Kerppola. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9: 789–98, 2002.

    PubMed  CAS  Google Scholar 

  115. Luker, G.D., V. Sharma, C.M. Pica, J.L. Dahlheimer, W. Li, J. Ochesky, C.E. Ryan, H. Piwnica-Worms, and D. Piwnica.-Worms Noninvasive imaging of protein–protein interactions in living animals. Proc Natl Acad Sci USA 99: 6961–6, 2002.

    PubMed  CAS  Google Scholar 

  116. Luker, K.E. and D. Piwnica-Worms. Optimizing luciferase protein fragment complementation for bioluminescent imaging of protein–protein interactions in live cells and animals. Methods Enzymol 385: 349–60, 2004.

    PubMed  CAS  Google Scholar 

  117. Galarneau, A., M. Primeau, L.E. Trudeau, and S.W. Michnick. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat Biotechnol 20: 619–22, 2002.

    PubMed  CAS  Google Scholar 

  118. Remy, I. and S.W. Michnick. A highly sensitive protein–protein interaction assay based on Gaussia luciferase. Nat Methods 3: 977–9, 2006.

    PubMed  CAS  Google Scholar 

  119. Remy, I. and S.W. Michnick. Application of protein-fragment complementation assays in cell biology. Biotechniques 42: 137, 139, 141 passim, 2007.

    PubMed  CAS  Google Scholar 

  120. Chenevert, T.L., C.R. Meyer, B.A. Moffat, A. Rehemtulla, S.K. Mukherji, S.S. Gebarski, D.J. Quint, P.L. Robertson, T.S. Lawrence, L. Junck, J.M. Taylor, T.D. Johnson, Q. Dong, K.M. Muraszko, J.A. Brunberg, and B.D. Ross. Diffusion MRI: a new strategy for assessment of cancer therapeutic efficacy. Mol Imaging 1: 336–43, 2002.

    PubMed  Google Scholar 

  121. Moffat, B.A., T.L. Chenevert, T.S. Lawrence, C.R. Meyer, T.D. Johnson, Q. Dong, C. Tsien, S. Mukherji, D.J. Quint, S.S. Gebarski, P.L. Robertson, L.R. Junck, A. Rehemtulla, and B.D. Ross. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102: 5524–9, 2005.

    PubMed  CAS  Google Scholar 

  122. Stroobants, S., J. Goeminne, M. Seegers, S. Dimitrijevic, P. Dupont, J. Nuyts, M. Martens, B. van den Borne, P. Cole, R. Sciot, H. Dumez, S. Silberman, L. Mortelmans, and A. van Oosterom. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 39: 2012–20, 2003.

    PubMed  CAS  Google Scholar 

  123. Mankoff, D.A., A.F. Shields, and K.A. Krohn. PET imaging of cellular proliferation. Radiol Clin North Am 43: 153–67, 2005.

    PubMed  Google Scholar 

  124. Blankenberg, F., K. Ohtsuki, and H.W. Strauss. Dying a thousand deaths. Radionuclide imaging of apoptosis. Q J Nucl Med 43: 170–6, 1999.

    PubMed  CAS  Google Scholar 

  125. Luker, K.E., M.C. Smith, G.D. Luker, S.T. Gammon, H. Piwnica-Worms, and D. Piwnica-Worms. Kinetics of regulated protein–protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 101: 12288–93, 2004.

    PubMed  CAS  Google Scholar 

  126. Paulmurugan, R., Y. Umezawa, and S.S. Gambhir. Noninvasive imaging of protein–protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA 99: 15608–13, 2002.

    PubMed  CAS  Google Scholar 

  127. Luker, K.E., M. Gupta, and G.D. Luker. Imaging CXCR4 signaling with firefly luciferase complementation. Anal Chem 80: 5565–73, 2008.

    PubMed  CAS  Google Scholar 

  128. Li, W.R., F. Li, Q. Huang, B. Frederick, S.D. Bao, and C.Y. Li. Noninvasive imaging and quantification of epidermal growth factor receptor kinase activation in vivo. Cancer Res 68: 4990–4997, 2008.

    PubMed  CAS  Google Scholar 

  129. Paulmurugan, R., T.F. Massoud, J. Huang, and S.S. Gambhir. Molecular imaging of drug-modulated protein–protein interactions in living subjects. Cancer Res 64: 2113–9, 2004.

    PubMed  CAS  Google Scholar 

  130. Kaihara, A., Y. Umezawa, and T. Furukawa. Bioluminescent indicators for Ca2+ based on split renilla luciferase complementation in living cells. Analytical Sciences 24: 1405–8, 2008.

    PubMed  CAS  Google Scholar 

  131. Chan, C.T., R. Paulmurugan, O.S. Gheysens, J. Kim, G. Chiosis, and S.S. Gambhir. Molecular imaging of the efficacy of heat shock protein 90 inhibitors in living subjects. Cancer Res 68: 216–226, 2008.

    PubMed  CAS  Google Scholar 

  132. Cissell, K.A., Y. Rahimi, S. Shrestha, and S.K. Deo. Reassembly of a bioluminescent protein renilla luciferase directed through dna hybridization. Bioconjug Chem 2008.

    Google Scholar 

Download references

Acknowledgments

We thank Terry Williams for critical reading of the manuscript. This work was supported by US National Institutes of Health grants P01CA85878, P50CA01014, R24CA83099, R01RCA129623A and a grant from the John and Suzanne Munn Endowed Research Fund of the University of Michigan Comprehensive Cancer Center (to MSB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahaveer Swaroop Bhojani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bhojani, M.S., Nyati, S., Rao, H.R., Ross, B.D., Rehemtulla, A. (2009). Molecular Imaging in Lung Cancer Metastases. In: Keshamouni, V., Arenberg, D., Kalemkerian, G. (eds) Lung Cancer Metastasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0772-1_13

Download citation

Publish with us

Policies and ethics