Advertisement

The Role of Tumor-Associated Macrophages and Other Innate Immune Cells in Metastatic Progression of Lung Cancer

  • Zvi G. Fridlender
  • M. Cecilia Crisanti
  • Steven M. Albelda
Chapter

Abstract

There is increasing evidence that the immune cells within the tumor microenvironment play a key role in the ability of tumor cells to proliferate and spread. Given that macrophages are the most frequent hematopoietic cells found in the tumor microenvironment, they play an especially important part in tumor biology. There are numerous mechanisms by which tumor-associated innate immune cells can influence most aspects of the metastatic process. They play a role in the epithelial to mesenchymal transformation occurring in the original tumor cells and enhance basement membrane breakdown by the cancer cells invading neighboring tissue, lymph nodes, and blood vessels. Tumor-associated innate immune cells have been shown to have a crucial role in angiogenesis, in immunosuppression, and eventually in priming distant sites for the development of metastases. Unfortunately, we still know relatively little about the roles of these cells in lung cancer. Further work in animal models and using patient lung cancer samples is very much needed. With this knowledge, a better understanding of the role that these cells play in the metastatic process may facilitate development of new therapeutics, as well as the recognition of new diagnostic and prognostic markers. Modulation of the metastatic phenotype through intervention in the host innate immune response remains a promising future area of cancer therapy.

Keywords

Vascular Endothelial Growth Factor Natural Killer Cell Tumor Microenvironment Innate Immune Cell Metastatic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gupta, G.P. and Massague, J. 2006. Cancer metastasis: Building a framework. Cell 127: 679–695.PubMedCrossRefGoogle Scholar
  2. 2.
    Virchow, R. 1863. Aetologie der neoplastichen geschwulste/pathogenie der neoplastichen geschwulste In Die krankhaften geschwulste (Berlin: Verlag von August Hirschwald; reprint).Google Scholar
  3. 3.
    Pollard, J. 2004. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4: 71–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Murdoch, C., Giannoudis, A., and Lewis, C.E. 2004. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104: 2224–2234.PubMedCrossRefGoogle Scholar
  5. 5.
    Luboshits, G., Shina, S., Kaplan, O., Engelberg, S., Nass, D., Lifshitz-Mercer, B., Chaitchik, S., Keydar, I., and Ben-Baruch, A. 1999. Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res. 59: 4681–4687.PubMedGoogle Scholar
  6. 6.
    Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., Koike, M., Inadera, H., and Matsushima, K. 2000. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 6: 3282–3289.PubMedGoogle Scholar
  7. 7.
    Scotton, C., Milliken, D., Wilson, J., Raju, S., and Balkwill, F. 2001. Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours. Brit. J. Cancer 85: 891.PubMedCrossRefGoogle Scholar
  8. 8.
    Balkwill, F. 2003. Chemokine biology in cancer. Semin. Immunol. 15: 49–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., Mcclanahan, T., Murphy, E., Yuan, W., Wagner, S.N., Barrera, J.L., Mohar, A., Verastegui, E., and Zlotnik, A. 2001. Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Scotton, C.J., Wilson, J.L., Scott, K., Stamp, G., Wilbanks, G.D., Fricker, S., Bridger, G., and Balkwill, F.R. 2002. Multiple actions of the chemokine CXCL2 on epithelial tumor cells in human ovarian cancer. Cancer Res. 62: 5930–5938.PubMedGoogle Scholar
  11. 11.
    Phillips, R.J., Burdick, M.D., Lutz, M., Belperio, J.A., Keane, M.P., and Strieter, R.M. 2003. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am. J. Respir. Crit. Care Med. 167: 1676–1686.PubMedCrossRefGoogle Scholar
  12. 12.
    Biswas, S.K., Sica, A., and Lewis, C.E. 2008. Plasticity of macrophage function during tumor progression: Regulation by distinct molecular mechanisms. J. Immunol. 180: 2011–2017.PubMedGoogle Scholar
  13. 13.
    Keller, R, K.R., Keist, R., Wechsler, A., Leist, T.P., and van der Meide, P.H. 1990. Mechanisms of macrophage-mediated tumor cell killing: A comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int. J. Cancer 46: 682–686.PubMedCrossRefGoogle Scholar
  14. 14.
    Martin, J.H. and Edwards, S.W. 1993. Changes in mechanisms of monocyte/macrophage-mediated cytotoxicity during culture. Reactive oxygen intermediates are involved in monocyte- mediated cytotoxicity, whereas reactive nitrogen intermediates are employed by macrophages in tumor cell killing. J. Immunol. 150: 3478–3486.PubMedGoogle Scholar
  15. 15.
    Grabstein, K.H., Urdal, D.L., Tushinski, R.J., Mochizuki, D.Y, Price, V.L., Cantrell, M.A., Gillis, S., and Conlon, P.J. 1986. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science 232: 506–508.PubMedCrossRefGoogle Scholar
  16. 16.
    Kamimura, A., Kamachi, M., Nishihira, J., Ogura, S., Isobe, H., Dosaka-Akita, H., Ogata, A., Shindoh, M., Ohbuchi, T., and Kawakami, Y. 2000. Intracellular distribution of macrophage migration inhibitory factor predicts the prognosis of patients with adenocarcinoma of the lung. Cancer 89: 334–341.PubMedCrossRefGoogle Scholar
  17. 17.
    Janat-Amsbury, M.M., Yockman, J.W., Lee, M., Kern, S., Furgeson, D.Y., Bikram, M., and Kim, S.W. 2004. Combination of local, nonviral IL-12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model. Mol. Ther. 9: 829–836.PubMedCrossRefGoogle Scholar
  18. 18.
    Li, Q., Carr, A.L., Donald, E.J., Skitzki, J.J., Okuyama, R., Stoolman, L.M., and Chang, A.E. 2005. Synergistic effects of IL-12 and IL-18 in skewing tumor-reactive T-cell responses towards a type 1 pattern. Cancer Res. 65: 1063–1070.PubMedGoogle Scholar
  19. 19.
    Lewis, C.E. and Pollard, J.W. 2006. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66: 605–612.PubMedCrossRefGoogle Scholar
  20. 20.
    Coussens, L.M. and Werb, Z. 2002. Inflammation and cancer. Nature 420: 860–867.PubMedCrossRefGoogle Scholar
  21. 21.
    Mantovani, A., Sozzani, S., Locati M., Allavena, P., and Sica, A. 2002. Macrophage polarization: Tumor associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549–555.PubMedCrossRefGoogle Scholar
  22. 22.
    Stout, R.D., Jiang, C., Matta, B., Tietzel, I., Watkins, S.K., and Suttles, J. 2005. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 175: 342–349.PubMedGoogle Scholar
  23. 23.
    Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J., and Hill, A.M. 2000. M-1/m-2 macrophages and the TH1/TH2 paradigm. J. Immunol. 164: 6166–6173.PubMedGoogle Scholar
  24. 24.
    Munder, M., Eichmann, K., and Modolell, M. 1998. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: Competitive regulation by CD4+ t cells correlates with TH1/TH2 phenotype. J. Immunol. 160: 5347–5354.PubMedGoogle Scholar
  25. 25.
    Bonecchi, R., Sozzani, S., Stine, J.T., Luini, W., D’amico, G., Allavena, P., Chantry, D., and Mantovani, A. 1998. Divergent effects of interleukin-4 and interferon-gamma on macrophage-derived chemokine production: An amplification circuit of polarized T helper 2 responses. Blood 92: 2668–2671.PubMedGoogle Scholar
  26. 26.
    Lewis, J.S., Landers, R.J., Underwood, J.C.E., Harris, A.L., and Lewis, C.E. 2000. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J. Pathol. 192: 150–158.PubMedCrossRefGoogle Scholar
  27. 27.
    Welch, D.R., Schissel, D.J., Howrey, R.P., and Aeed, P.A. 1989. Tumor-elicited polymorphonuclear cells, in contrast to ``normal'' circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc. Natl. Acad. Sci. 86: 5859–5863.PubMedCrossRefGoogle Scholar
  28. 28.
    Heifets, L. 1982. Centennial of Metchnikoff’s discovery. J. Reticuloendothel Soc. 31: 381–391.PubMedGoogle Scholar
  29. 29.
    Di Carlo, E., Forni, G., Lollini, P., Colombo, M.P., Modesti, A., and Musiani, P. 2001. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97: 339–345.PubMedCrossRefGoogle Scholar
  30. 30.
    Ishihara, Y.F.T., Iijima, H., Saito, K., Matsunaga, K. 1998. The role of neutrophils as cytotoxic cells in lung metastasis: Suppression of tumor cell metastasis by a biological response modifier (psk). In Vivo 12: 175–182.PubMedGoogle Scholar
  31. 31.
    Ishihara, Y.I.H. and Matsunaga, K. 1998. Contribution of cytokines on the suppression of lung metastasis. Biotherapy 11: 267–275.PubMedCrossRefGoogle Scholar
  32. 32.
    Scapini, P., Lapinet-Vera, J.A., Gasperini, S., Calzetti, F., Bazzoni, F., and Cassatella, M.A. 2000. The neutrophil as a cellular source of chemokines. Immunol. Rev. 177: 195–203.PubMedCrossRefGoogle Scholar
  33. 33.
    Wu, Q.D., Wang, J.H., Condron, C., Bouchier-Hayes, D., and Redmond, H.P. 2001. Human neutrophils facilitate tumor cell transendothelial migration. Am. J. Physiol. Cell Physiol. 280: C814–822.PubMedGoogle Scholar
  34. 34.
    Orr, F.W. and Warner, D.J.A. 1990. Effects of systemic complement activation and neutrophil-mediated pulmonary injury on the retention and metastasis of circulating cancer cells in mouse lungs. Lab. Invest. 62: 331–338.PubMedGoogle Scholar
  35. 35.
    Orr, F.W. and Warner, D.J.A. 2001. Tumor cell interactions with the microvasculature: A rate-limiting step in metastasis. Surg. Oncol. Clin. N. Am. 10: 357–381.PubMedGoogle Scholar
  36. 36.
    Doi, K., Horiuchi, T., Uchinami, M., Tabo, T., Kimura, N., Yokomachi, J., Yoshida, M., and Tanaka, K. 2002. Neutrophil elastase inhibitor reduces hepatic metastases induced by ischaemia-reprefusion in rats. Eur. J. Surg. 168: 507.PubMedCrossRefGoogle Scholar
  37. 37.
    Aeed, P.A., Nakajima, M., and Welch, D.R. 1988. The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762nf mammary adenocarcinoma cells. Int. J. Cancer 42: 748–759.PubMedCrossRefGoogle Scholar
  38. 38.
    Nozawa, H., Chiu, C., and Hanahan, D. 2006. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl. Acad. Sci. 103: 12493–12498.PubMedCrossRefGoogle Scholar
  39. 39.
    Schmielau, J. and Finn, O.J. 2001. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61: 4756–4760.PubMedGoogle Scholar
  40. 40.
    Zea, A.H., Rodriguez, P.C., Atkins, M.B., Hernandez, C., Signoretti, S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O’neill, A., Mier, J., and Ochoa, A.C. 2005. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Res. 65: 3044–3048.PubMedGoogle Scholar
  41. 41.
    Schmidt, H., Bastholt, L., Geertsen, P., Christensen, I.J., Larsen, S., Gehl, J., and Von Der Maase, H. 2005. Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: A prognostic model. Brit. J. Cancer 93: 273–278.PubMedCrossRefGoogle Scholar
  42. 42.
    McGary, C.T., Miele, M.F., and Welch, D.R. 1995. Highly metastatic 13762NF rat mammary adenocarcinoma cell clones stimulate bone marrow by secretion of granulocyte-macrophage colony-stimulating factor/interleukin-3 activity. Am. J. Pathol. 147: 1668–1681.PubMedGoogle Scholar
  43. 43.
    De Larco, J.E., Wuertz, B.R.K., and Furcht, L.T. 2004. The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin. Cancer Res. 10: 4895–4900.PubMedCrossRefGoogle Scholar
  44. 44.
    De Larco, J.E., Wuertz, B.R.K., Yee, D., Rickert, B.L., and Furcht, L.T. 2003. Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proc. Natl. Acad. Sci. 100: 13988–13993.PubMedCrossRefGoogle Scholar
  45. 45.
    Caruso, R.A., Bellocco, R., Pagano, M., Bertoli, G., Rigoli, L., and Inferrera, C. 2002. Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod. Pathol. 15: 831–837.PubMedCrossRefGoogle Scholar
  46. 46.
    Gregoire, C., Chasson, L., Luci, C., Tomasello, E., Geissmann, F., Vivier, E., and Walzer, T. 2007. The trafficking of natural killer cells. Immunol. Rev. 220: 169–182.PubMedCrossRefGoogle Scholar
  47. 47.
    Yang, Q., Goding, S., Hokland, M., and Basse, P. 2006. Antitumor activity of NK cells. Immunol. Res. 36: 13–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Lu, L.-M., Zavitz, C.C.J., Chen, B., Kianpour, S., Wan, Y., and Stampfli, M.R. 2007. Cigarette smoke impairs NK cell-dependent tumor immune surveillance. J. Immunol. 178: 936–943.PubMedGoogle Scholar
  49. 49.
    Ribatti, D., Crivellato, E., Roccaro, A.M., Ria, R., and Vacca, A. 2004. Mast cell contribution to angiogenesis related to tumour progression. Clin. Exper. Allergy 34: 1660–1664.CrossRefGoogle Scholar
  50. 50.
    Tomita, M., Matsuzaki, Y., and Onitsuka, T. 2000. Effect of mast cells on tumor angiogenesis in lung cancer. Ann. Thorac. Surg. 69: 1686–1690.PubMedCrossRefGoogle Scholar
  51. 51.
    Azizkhan, R.G., Azizkhan, J.C., Zetter, B.R., and Folkman, J. 1980. Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J. Exp. Med. 152: 931–944.PubMedCrossRefGoogle Scholar
  52. 52.
    Tomita, M., Matsuzaki, Y., Edagawa, M., Shimizu, T., Hara, M., and Onitsuka, T. 2003. Distribution of mast cells in mediastinal lymph nodes from lung cancer patients. World J. Surg. Oncol. 1: 25.PubMedCrossRefGoogle Scholar
  53. 53.
    Ibaraki, T., Muramatsu, M., Takai, S., Jin, D., Maruyama, H., Orino, T., Katsumata, T., and Miyazaki, M. 2005. The relationship of tryptase- and chymase-positive mast cells to angiogenesis in stage 1 non-small cell lung cancer. Eur. J. Cardio-Thorac. Surg. 28: 617–621.CrossRefGoogle Scholar
  54. 54.
    Akhurst, R.J. and Derynck, R. 2001. TGF-β signaling in cancer – a double-edged sword. Trends Cell Biol. 11: S44–S51.PubMedGoogle Scholar
  55. 55.
    Ashley, D.M., Kong, F.M., Bigner, D.D., and Hale, L.P. 1998. Endogenous expression of transforming growth factor beta-1 inhibits growth and tumorigenicity and enhances fas-mediated apoptosis in a murine high-grade glioma model. Cancer Res. 58: 302–309.PubMedGoogle Scholar
  56. 56.
    Wrzesinski, S.H., Wan, Y.Y., and Flavell, R.A. 2007. Transforming growth factor-β and the immune response: Implications for anticancer therapy. Clin Cancer Res. 13: 5262–5270.PubMedCrossRefGoogle Scholar
  57. 57.
    Bacman, D., Merkel, S., Croner, R., Papadopoulos, T., Brueckl, W., and Dimmler, A. 2007. TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: A retrospective study. BMC Cancer 7: 156.PubMedCrossRefGoogle Scholar
  58. 58.
    Hagemann, T., Wilson, J., Kulbe, H., Li, N.F., Leinster, D.A., Charles, K., Klemm, F., Pukrop, T., Binder, C., and Balkwill, F.R. 2005. Macrophages induce invasiveness of epithelial cancer cells via NFκB and JNK. J. Immunol. 175: 1197–1205.PubMedGoogle Scholar
  59. 59.
    Wyckoff, J., Wang, W., Lin, E.Y., Wang, Y., Pixley, F., Stanley, E.R., Graf, T., Pollard, J.W., Segall, J., and Condeelis, J. 2004. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64: 7022–7029.PubMedCrossRefGoogle Scholar
  60. 60.
    Domagala, W.S.G., Szadowska, A., Dukowicz, A., Weber, K., and Osborn, M. 1992. Cathepsin B in invasive ductal nos breast carcinoma as defined by immunohistochemistry. No correlation with survival at 5 years. Am. J. Pathol. 141: 1003–1012.PubMedGoogle Scholar
  61. 61.
    Hagemann, T., Robinson, S.C., Schulz, M., Trumper, L., Balkwill, F.R., and Binder, C. 2004. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-α dependent up-regulation of matrix metalloproteases. Carcinogenesis 25: 1543–1549.PubMedCrossRefGoogle Scholar
  62. 62.
    Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., Shipley, J.M., Senior, R.M., and Shibuya, M. 2002. Mmp9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2: 289–300.PubMedCrossRefGoogle Scholar
  63. 63.
    Chen, X., Su, Y., Fingleton, B., Acuff, H., Matrisian, L.M., Zent, R., and Pozzi, A. 2005. Increased plasma MMP9 in integrin α1-null mice enhances lung metastasis of colon carcinoma cells. Int. J. Cancer 116: 52–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Williams, T.M., Medina, F., Badano, I., Hazan, R.B., Hutchinson, J., Muller, W.J., Chopra, N.G., Scherer, P.E., Pestell, R.G., and Lisanti, M.P. 2004. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo: Role of cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J. Biol. Chem. 279: 51630–51646.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhongyun Dong, R.K., Xiulan, Y., and Fidler, I.J. 1997. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88: 801–810.CrossRefGoogle Scholar
  66. 66.
    Koide, N., Nishio, A., Sato, T., Sugiyama, A., and Miyagawa, S. 2004. Significance of macrophage infiltration in squamous cell carcinoma of the esophagus. Am. J. Gastroenterol. 99: 1667–1674.PubMedCrossRefGoogle Scholar
  67. 67.
    Takanami, T., Takeuchi, K., and Kodaira, S. 1999. Tumor-associated macrophage infiltration in pulmonary adenocarcinoma: Association with angiogenesis and poor prognosis. Oncology 57: 138–142.PubMedCrossRefGoogle Scholar
  68. 68.
    Koukourakis Mi, G.A., Kakolyris, S., O’Byrne, K.J., Apostolikas, N., Skarlatos, J., Gatter, K.C., andHarris A.L. 1998. Different patterns of stromal and cancer cell thymidine phosphorylase reactivity in non-small-cell lung cancer: Impact on tumour neoangiogenesis and survival. Brit. J. Cancer. 77: 1696–1703.PubMedCrossRefGoogle Scholar
  69. 69.
    Barleon, B., Sozzani, S., Zhou, D., Weich, H.A., Mantovani, A., and Marme, D. 1996. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87: 3336–3343.PubMedGoogle Scholar
  70. 70.
    Robinson-Smith, T.M., Isaacsohn, I., Mercer, C.A., Zhou, M., Van Rooijen, N., Husseinzadeh, N., Mcfarland-Mancini, M.M., and Drew, A.F. 2007. Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res. 67: 5708–5716.PubMedCrossRefGoogle Scholar
  71. 71.
    Queen, M.M., Ryan, R.E., Holzer, R.G., Keller-Peck, C.R., and Jorcyk, C.L. 2005. Breast cancer cells stimulate neutrophils to produce oncostatin M: Potential implications for tumor progression. Cancer Res. 65: 8896–8904.PubMedCrossRefGoogle Scholar
  72. 72.
    Li, A., Dubey, S., Varney, M.L., Dave, B.J., and Singh, R.K. 2003. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 170: 3369–3376.PubMedGoogle Scholar
  73. 73.
    White, E.S., Strom, S.R.B., Wys, N.L., and Arenberg, D.A. 2001. Non-small cell lung cancer cells induce monocytes to increase expression of angiogenic activity. J. Immunol. 166: 7549–7555.PubMedGoogle Scholar
  74. 74.
    White, E.S., Flaherty, K.R., Carskadon, S., Brant, A., Iannettoni, M.D., Yee, J., Orringer, M.B., and Arenberg, D.A. 2003. Macrophage migration inhibitory factor and cxc chemokine expression in non-small cell lung cancer: Role in angiogenesis and prognosis. Clin. Cancer Res. 9: 853–860.PubMedGoogle Scholar
  75. 75.
    Schoppmann, S.F., Birner, P., Stockl, J., Kalt, R., Ullrich, R., Caucig, C., Kriehuber, E., Nagy, K., Alitalo, K., and Kerjaschki, D. 2002. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161: 947–956.PubMedCrossRefGoogle Scholar
  76. 76.
    Leek, R.D. and Lewis, C.L. 1999. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Brit. J. Cancer 79: 991–995.PubMedCrossRefGoogle Scholar
  77. 77.
    Leek, R.D., Hunt, N.C., Landers, R.J., Lewis, C.E., Royds, J.A., and Harris, A.L. 2000. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 190: 430–436.PubMedCrossRefGoogle Scholar
  78. 78.
    Dinapoli, M.R., Calderon, C.L., and Lopez, D.M. 1996. The altered tumoricidal capacity of macrophages isolated from tumor- bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J. Exp. Med. 183: 1323–1329.PubMedCrossRefGoogle Scholar
  79. 79.
    Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., Damme, J.V., and Mantovani, A. 2000. Autocrine production of il-10 mediates defective IL-12 production and NFκB activation in tumor-associated macrophages. J. Immunol. 164: 762–767.PubMedGoogle Scholar
  80. 80.
    Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.-K.L., and Flavell, R.A. 2006. Transforming growth factor-β; regulation of immune responses. Ann. Rev. Immunol. 24: 99–146.CrossRefGoogle Scholar
  81. 81.
    Teicher, B.A. 2007. Transforming growth factor-β and the immune response to malignant disease. Clin. Cancer Res. 13: 6247–6251.PubMedCrossRefGoogle Scholar
  82. 82.
    Rodriguez, P.C., Quiceno, D.G., Zabaleta, J., Ortiz, B., Zea, A.H., Piazuelo, M.B., Delgado, A., Correa, P., Brayer, J., Sotomayor, E.M., Antonia, S., Ochoa, J.B., and Ochoa, A.C. 2004. Arginase 1 production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64: 5839–5849.PubMedCrossRefGoogle Scholar
  83. 83.
    Mrass, P. and Weninger, W. 2006. Immune cell migration as a means to control immune privilege: Lessons from the CNS and tumors. Immunol. Rev. 213: 195–212.PubMedCrossRefGoogle Scholar
  84. 84.
    Kobie, J.J., Wu, R.S., Kurt, R.A., Lou, S., Adelman, M.K., Whitesell, L.J., Ramanathapuram, L.V., Arteaga, C.L., and Akporiaye, E.T. 2003. Transforming growth factor–β inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res. 63: 1860–1864.PubMedGoogle Scholar
  85. 85.
    Marie, J.C., Letterio, J.J., Gavin, M., and Rudensky, A.Y. 2005. TGF-²1 maintains suppressor function and foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201: 1061–1067.PubMedCrossRefGoogle Scholar
  86. 86.
    Liu, V.C., Wong, L.Y., Jang, T., Shah, A.H., Park, I., Yang, X., Zhang, Q., Lonning, S., Teicher, B.A., and Lee, C. 2007. Tumor evasion of the immune system by converting CD4+CD25– T-cells into CD4+CD25+ T regulatory cells: Role of tumor-derived TGF-β. J. Immunol. 178: 2883–2892.PubMedGoogle Scholar
  87. 87.
    Chang, C.-J., Liao, C.-H., Wang, F.-H., and Lin, C.-M. 2003. Transforming growth factor-β² induces apoptosis in antigen-specific CD4+ T cells prepared for adoptive immunotherapy. Immunol. Lett. 86: 37–43.PubMedCrossRefGoogle Scholar
  88. 88.
    Thomas, D.A. and Massague, J. 2005. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8: 369–380.PubMedCrossRefGoogle Scholar
  89. 89.
    Ahmadzadeh, M. and Rosenberg, S.A. 2005. TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J. Immunol. 174: 5215–5223.PubMedGoogle Scholar
  90. 90.
    Jakobisiak, M., Lasek, W., and Golab, J. 2003. Natural mechanisms protecting against cancer. Immunol. Lett. 90: 103–122.PubMedCrossRefGoogle Scholar
  91. 91.
    Hanna, N. 1982. Role of natural killer cells in control of cancer metastasis. Cancer Metastasis Rev. 1: 45–64.PubMedCrossRefGoogle Scholar
  92. 92.
    Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., Macdonald, D.D., Jin, D.K., Shido, K., Kerns, S.A., Zhu, Z., Hicklin, D., Wu, Y., Port, J.L., Altorki, N., Port, E.R., Ruggero, D., Shmelkov, S.V., Jensen, K.K., Rafii, S., and Lyden, D. 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–827.PubMedCrossRefGoogle Scholar
  93. 93.
    Hiratsuka, S., Watanabe, A., Aburatani, H., and Maru, Y. 2006. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8: 1369–1375.PubMedCrossRefGoogle Scholar
  94. 94.
    Oberg, A., Samii, S., Stenling, R., and Lindmark, G. 2002. Different occurrence of cd8+, CD45R0+, and CD68+ immune cells in regional lymph node metastases from colorectal cancer as potential prognostic predictors. Int. J. Colorectal Dis. 17: 25–29.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin, E.Y., Nguven, A.V., Russell, R.G., and Pollard J.W. 2001. Colony stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193: 727–740.PubMedCrossRefGoogle Scholar
  96. 96.
    Yano, S., Nishioka, Y., Izumi, K., Tsuruo, T., Tanaka, T., Miyasaka, M., and Sone, S. 1996. Novel metastasis model of human lung cancer in SCID mice depleted of NK cells. Int. J. Cancer 67: 211–217.PubMedCrossRefGoogle Scholar
  97. 97.
    Young, M.R. and Newby, M. 1986. Differential induction of suppressor macrophages by cloned lewis lung carcinoma variants in mice. J. Natl. Cancer Inst. 77: 1255–1260.Google Scholar
  98. 98.
    Henry, N., Van Lamsweerde, A.-L., and Vaes, G. 1983. Collagen degradation by metastatic variants of lewis lung carcinoma: Cooperation between tumor cells and macrophages. Cancer Res. 43: 5321–5327.PubMedGoogle Scholar
  99. 99.
    Gorelik, E., Wiltrout, R.H., Brunda, M.J., Holden, H.T., andHerberman, R.B. 1982. Augmentation of metastasis formation by thioglycollate-elicited macrophages. Int. J. Cancer 29: 575–581.PubMedCrossRefGoogle Scholar
  100. 100.
    Duffie, G.P. and Young, M.R. 1991. Tumoricidal activity of alveolar and peritoneal macrophages of C57bl/6 mice bearing metastatic or nonmetastatic variants of lewis lung carcinoma. J. Leukoc. Biol. 49: 8–14.PubMedGoogle Scholar
  101. 101.
    Luo, Y., Zhou H., Krueger, J., Kaplan, C., Lee, S., Dolman, C., Markowitz, D., Wu, W., Liu, C., Reisfeld, R.A., Xiang, R. 2006. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J. Clin. Invest. 116: 2132–2141.PubMedCrossRefGoogle Scholar
  102. 102.
    Chen, J.J.W., Yao, P.-L., Yuan, A., Hong, T.-M., Shun, C.-T., Kuo, M.-L., Lee, Y.-C., and Yang, P.-C. 2003. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: Its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin. Cancer Res. 9: 729–737.PubMedGoogle Scholar
  103. 103.
    Cornelius, L.A., Nehring, L.C., Harding, E., Bolanowski, M., Welgus, H.G., Kobayashi, D.K., Pierce, R.A., and Shapiro, S.D. 1998. Matrix metalloproteinases generate angiostatin: Effects on neovascularization. J. Immunol. 161: 6845–6852.PubMedGoogle Scholar
  104. 104.
    Dong, Z., Kumar, R., Yang, X., and Fidler, I.J. 1997. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in lewis lung carcinoma. Cell 88: 801–810.PubMedCrossRefGoogle Scholar
  105. 105.
    Montuenga, L.M. and Pio, R. 2007. Tumour-associated macrophages in nonsmall cell lung cancer: The role of interleukin-10. Eur. Respir. J. 30: 608–610.PubMedCrossRefGoogle Scholar
  106. 106.
    Sato, T., Takahashi, S., Mizumoto, T., Harao, M., Akizuki, M., Takasugi, M., Fukutomi, T., and Yamashita, J.-I. 2006. Neutrophil elastase and cancer. Surg. Oncol. 15: 217–222.PubMedCrossRefGoogle Scholar
  107. 107.
    Bingle, L., Brown, N., and Lewis, C.E. 2002. The role of tumor-associated macrophages in tumor progression: Implications for new anticancer therapies. J. Pathol. 196: 254–265.PubMedCrossRefGoogle Scholar
  108. 108.
    Chen, J.J., Lin, Y.C., Yao, P.L., Yuan, A., Chen, H.Y., Shun, C.T., Tsai, M.F., Chen, C.H., and Yang, P.C. 2005. Tumor-associated macrophages: The double-edged sword in cancer progression. J. Clin. Oncol. 23: 953–964.PubMedCrossRefGoogle Scholar
  109. 109.
    Takeo, S., Yasumoto, K., Nagashima, A., Nakahashi, H., Sugimachi, K., and Nomoto, K. 1986. Role of tumor-associated macrophages in lung cancer. Cancer Res. 46: 3179–3182.PubMedGoogle Scholar
  110. 110.
    Johnson, S.K., Kerr, K.M., Chapman, A.D., Kennedy, M.M., King, G., Cockburn, J.S., and Jeffrey, R.R. 1999. Immune cell infiltrates and prognosis in primary carcinoma of the lung. Lung Cancer 27: 27–35.CrossRefGoogle Scholar
  111. 111.
    Toomey, D., Symthe, G., Condron, C., Kelly, J., Byrne, A.M., Kay, E., Conroy, R.M., Broe, P., and Bouchier-Hayes, D. 2003. Infiltrating immune cells, but not tumour cells, express fasl in non-small cell lung cancer: No association with prognosis identified in 3-year follow-up. Intl. J. Cancer 103: 408–412.CrossRefGoogle Scholar
  112. 112.
    Welsh, T.J., Green, R.H., Richardson, D., Waller, D.A., O’byrne, K.J., and Bradding, P. 2005. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J. Clin. Oncol. 23: 8959–8967.PubMedCrossRefGoogle Scholar
  113. 113.
    Zeni, E., Mazzetti, L., Miotto, D., Lo Cascio, N., Maestrelli, P., Querzoli, P., Pedriali, M., De Rosa, E., Fabbri, L.M., Mapp, C.E., and Boschetto, P. 2007. Macrophage expression of interleukin-10 is a prognostic factor in nonsmall cell lung cancer. Eur. Respir. J. 30: 627–632.CrossRefGoogle Scholar
  114. 114.
    Junker, N., Johansen, J.S., Andersen, C.B., and Kristjansen, P.E.G. 2005. Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer 48: 223–231.PubMedCrossRefGoogle Scholar
  115. 115.
    Ferrigno, D.B.G. 2003. Hematologic counts and clinical correlates in 1201 newly diagnosed lung cancer patients. Monaldi Arch. Chest Dis. 59: 193–198.PubMedGoogle Scholar
  116. 116.
    Kerr, K.M., Johnson, S.K., King, G., Kennedy, M.M., Weir, J. and Jeffrey, R. 1998. Partial regression in primary carcinoma of the lung: Does it occur? Histopathology 33:55–63.PubMedGoogle Scholar
  117. 117.
    Arenberg, D.A., Keane, M.P. Digiovine, B., Kunkle, S.L., Strom, S.R, Burdick, M.D., Iannettoni, M.D., and Strieter, R.M. 2000. Macrophage infiltration in human non-small-cell lung cancer: The role of cc chemokines. Cancer Immunol. Immunother 49:63–70.PubMedCrossRefGoogle Scholar
  118. 118.
    Tataroglu, C., Kargi, A., Ozkal, S., Esrefoglu, N., and Akkoclu, A. 2004. Association of macrophages, mast cells and eosinophil leukocytes with angiogenesis and tumor stage in non-small cell lung carcinomas (nsclc). Lung Cancer 43: 47–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zvi G. Fridlender
    • 1
  • M. Cecilia Crisanti
    • 2
  • Steven M. Albelda
    • 1
  1. 1.Thoracic Oncology Research Laboratory, Pulmonary and Critical Care DivisionUniversity of Pennsylvania Medical CenterPhiladelphiaUSA
  2. 2.Thoracic Oncology Research Laboratory, Department of SurgeryUniversity of Pennsylvania Medical CenterPhiladelphiaUSA

Personalised recommendations