Skip to main content

Inbreeding

  • Chapter
  • First Online:
Quantitative Genetics in Maize Breeding

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 6))

Abstract

Maize is a naturally cross-pollinated crop and dispersion of pollen grains (male gametes) is achieved by wind currents, system that favors cross-pollination. The plant has a separate male and female inflorescence (monoecious) which makes relatively easy to produce seed by artificial hybridization and self-pollination for inbreeding. The tassel (male inflorescence with staminate flowers) is at the top of the plant arising from the shoot apical meristem. The ear (female inflorescence with pistillate flowers) is usually located in the middle of the stalk (at the sixth of seventh node from the top of the plant) and originates from the axillary bud apice. During development flowers become unisexual. Apical dominance is present on stalks with multiple ears (prolific genotypes). The male florets usually mature before than the female florets (protandry). Genotype and environmental conditions (e.g., stress) influence the difference in maturity of male and female florets. Pollen shed occurs after anther exertion from each spikelet and begins in the main tassel branch (central spike or rachis). Each spikelet has two florets and pollen shed starts from the upper flower. Spikelets are in pairs: pedicellate and sessile. Each spikelet has a pair of glumes. Within the glumes each floret is also enclosed with thin scales (a lemma and a palea). Two of the three anthers are located adjacent to the palea and the third one is located adjacent to the lemma. The number of pollen grains dispersed by the tassel depends on the genotype and/or vigor of the plants. Hybrids, for example, shed more pollen than inbred-lines. Some open-pollinated varieties, however, shed even more pollen than hybrids. Ear shoots are formed of husks (modified leaves) and silks emerging from the cob. The silks are functional stigmas and there is one stigma for each potential kernel. Silk emergence progresses from the bottom to the tip of the ear. High temperatures and low-moisture availability may cause silk growth to stop and not be ready for fertilization at the time of pollen shed. The ear branch or shank is formed of nodes and short internodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard, R. W. 1960. Principles of Plant Breeding. Wiley, New York, NY.

    Google Scholar 

  • Baker, L. H., and R. N. Curnow. 1969. Choice of population size and use of variation between replicate populations in plant breeding selection programs. Crop Sci. 9:555–60.

    Article  Google Scholar 

  • Carena, M. J. 2005. Maize commercial hybrids compared to improved population hybrids for grain yield and agronomic performance. Euphytica 141:201–8.

    Article  Google Scholar 

  • Carena, M. J. 2007. Maize population hybrids: Successful genetic resources for breeding programs and potential alternatives to single-cross hybrids. Acta Agronomica Hung 55:27–36.

    Article  Google Scholar 

  • Carena, M. J. 2008. Development of new and diverse lines for early-maturing hybrids: Traditional and modern maize breeding. In Modern Variety Breeding for Present and Future Needs. J. Prohens and M.L. Badenes (eds.), Eucarpia, Valencia, Spain.

    Google Scholar 

  • Carena, M. J., and A. R. Hallauer. 2001. Response to inbred progeny recurrent selection in Leaming and Midland Yellow Dent populations. Maydica 46:1–10.

    Google Scholar 

  • Carena, M. J., and D. W. Wanner. 2003. Registration of ND2000 inbred line of maize. Crop Sci. 43:1568–9.

    Article  Google Scholar 

  • Carena, M. J., and D. W. Wanner. 2010. Development of genetically broad-based inbred lines of maize for early maturing (70-80RM) hybrids. J. Plant Reg. 4:86–92.

    Article  Google Scholar 

  • Carena, M. J., and Z. W. Wicks III. 2006. Maize early maturing hybrids: An exploitation of U.S. temperate public genetic diversity in reserve. Maydica 51:201–8.

    Google Scholar 

  • Carena, M. J., D. W. Wanner, and H. Z. Cross. 2003. Registration of ND291 inbred line of maize. Crop Sci. 43:1568.

    Article  Google Scholar 

  • Carena, M. J., D. W. Wanner, J. Yang. 2009. Linking pre-breeding for local germplasm improvement with cultivar development in maize breeding for short-season (85-95RM) hybrids. J. Plant Reg. (in press).

    Google Scholar 

  • Carena, M. J., L. Pollak, W. Salhuana, and M. Denuc. 2009. Development of unique lines for early-maturing hybrids: Moving GEM germplasm northward and westward. Euphytica 170:87–97.

    Article  Google Scholar 

  • Cockerham, C. C. 1961. Implications of genetic variances in a hybrid breeding program. Crop Sci. 1:47–52.

    Article  Google Scholar 

  • Collins, G. N. 1909. The importance of broad breeding in corn. USDA Bull. 141(IV):33–44.

    Google Scholar 

  • Cornelius, P. L., and J. W. Dudley. 1974. Effects of inbreeding by selfing and full-sibbing in a maize population. Crop Sci. 14:815–19.

    Article  Google Scholar 

  • Darrah, L. L., and M. S. Zuber. 1986. United States farm maize germplasm base and commercial breeding strategies. Crop Sci. 26:1109–13.

    Article  Google Scholar 

  • Darwin, C. 1859. The Origin of Species. World Famous Books, Merrill & Baker, New York, NY.

    Google Scholar 

  • Darwin, C. 1877. The Effects of Cross- and Self-Fertilization in the Vegetable Kingdom. Appleton, London.

    Google Scholar 

  • Dowswell, C. R., R. L. Paliwal, and R. P. Cantrell. 1996. Maize in the Third World. Westview Press, Boulder, CO.

    Google Scholar 

  • Doxtator, C. M., and I. J. Johnson. 1936. Prediction of double cross yields in corn. J. Am. Soc. Agron. 28:460–62.

    Article  Google Scholar 

  • Dudley, J. W., and G. R. Johnson. 2009. Epistatic models improve prediction of performance in corn. Crop Sci. 49:763–70.

    Article  CAS  Google Scholar 

  • Duvick, D. N. 1999. Heterosis: Feeding people and protecting natural resources. In Genetics and Exploitation of Heterosis in Crops, J. G. Coors and S. Pandey (eds.), pp. 19–29. ASA, CSSA, SSSA, Madison, WI.

    Google Scholar 

  • Duvick, D. N., J. S. C. Smith, and M. Cooper. 2004. Changes in performance, parentage, and genetic diversity of successful corn hybrids, 1930–2000. In Corn: Origin, History and Production, C. W. Smith, J. Betran, and E.C.A. Runge (eds.), pp. 65–97. John Wiley & Sons, Hoboken, NJ.

    Google Scholar 

  • East, E. M. 1908. Inbreeding in corn. Connecticut Agric. Exp. Stn. Rep. 1907:419–28.

    Google Scholar 

  • East, E. M. 1909. The distinction between development and heredity in inbreeding. Am. Nat. 43:173–81.

    Article  Google Scholar 

  • East, E. M., and H. K. Hayes. 1912. Heterozygosis in evolution and in plant breeding. USDA Bur. Plant Ind. Bull. 243:58pp.

    Google Scholar 

  • East, E. M., and D. F. Jones. 1918. Inbreeding and Outbreeding. Lippincott, Philadelphia, PA.

    Google Scholar 

  • Eberhart, S. A., and A. R. Hallauer. 1968. Genetic effects for yield in single-, three-way, and double-cross maize hybrids. Crop Sci. 8:377–79.

    Article  Google Scholar 

  • Eberhart, S. A., and W. A. Russell. 1966. Stability parameters for comparing varieties. Crop Sci. 6:36–40.

    Article  Google Scholar 

  • Eberhart, S. A., and W. A. Russell. 1969. Yield and stability for a 10-line diallel of single-cross and double-cross maize hybrids. Crop Sci. 9:357–61.

    Article  Google Scholar 

  • Eyherabide, G. H., and A. R. Hallauer. 1991. Reciprocal full-sib selection in maize. II. Contributions of additive, dominance, and genetic drift effects. Crop Sci. 31:1442–8.

    Article  Google Scholar 

  • Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. 4th edn., Longman Group Ltd., Edinburgh, UK.

    Google Scholar 

  • Federer, W. T., and G. F. Sprague. 1947. A comparison of variance components in corn yield trials. I. Error, tester × line, and line components in top-cross experiments. J. Am. Soc. Agron. 39:453–63.

    Article  Google Scholar 

  • Focke, W. O. 1881. Die Pflanzen-Mischlinge, 569pp. Borntraeger, Berlin.

    Google Scholar 

  • Gama, E. E. G., and A. R. Hallauer. 1980. Stability of hybrids produced from selected and unselected lines of maize. Crop Sci. 20:623–26.

    Article  Google Scholar 

  • Gärtner, C. F. 1849. Versuche und Beobachtungen über die Bastarderzengung in Pflanyenreich, 791pp. Stuttgart.

    Google Scholar 

  • Geadelmann, J. L., and R. H. Peterson. 1978. Effects of two yield component selection procedures on maize. Crop Sci. 18:387–90.

    Article  Google Scholar 

  • Genter, C. F. 1971. Yield of S1 lines from original and advanced synthetic varieties of maize. Crop Sci. 11:821–24.

    Article  Google Scholar 

  • Gilmore, E. C. 1969. Effect of inbreeding of parental lines on predicted yields of synthetics. Crop Sci. 9:102–04.

    Article  Google Scholar 

  • Good, R. L. 1976. Inbreeding depression in Iowa Stiff Stalk Synthetic (Zea mays L.) by selfing and full-sibbing. Ph.D. dissertation, Iowa State University, Ames, IA.

    Google Scholar 

  • Good, R. L., and A. R. Hallauer. 1977. Inbreeding depression in maize by selfing and full-sibbing. Crop Sci. 17:935–40.

    Article  Google Scholar 

  • Gordillo, G. A., and H. H. Geiger. 1977. Alternative recurrent selection strategies using doubled haploid lines in hybrid maize breeding. Crop Sci. 48:911–22.

    Article  Google Scholar 

  • Gutierrez, M. G., and G. F. Sprague. 1959. Randomness of mating in isolated polycross plantings in maize. Genetics 44:1075–82.

    PubMed  CAS  Google Scholar 

  • Guzman, P. S., and K. R. Lamkey. 2000. Effective population size and genetic variability in the BS11 maize population. Crop Sci. 40:338–46.

    Article  Google Scholar 

  • Hallauer, A. R., and M. J. Carena. 2009. Maize breeding. In Handbook of Plant Breeding: Cereals, M. J. Carena (ed.), pp. 3–98. Springer, New York, NY.

    Google Scholar 

  • Hallauer, A. R., and J. H. Sears. 1973. Changes in quantitative traits associated with inbreeding in a synthetic variety of maize. Crop Sci. 13:327–30.

    Article  Google Scholar 

  • Hallauer, A. R., W. A. Russell, and K. R. Lamkey. 1988. Corn breeding. In Corn and Corn Improvement, G.F. Sprague and J.W. Dudley (eds.), pp. 463–564. ASA, CSSA, SSSA Madison, WI.

    Google Scholar 

  • Harris, R. E., C. O. Gardner, and W. A. Compton. 1972. Effects of mass selection and irradiation in corn measured by random S1 lines and their testcrosses. Crop Sci. 12:594–98.

    Article  Google Scholar 

  • Harvey, P. H., and J. A. Rigney. 1947. Inbreeding studies with prolific corn varieties. Department of Agronomy, North Carolina State University, Raleigh, NC.

    Google Scholar 

  • Hayes, H. K. 1956. I saw hybrid corn develop. Annu. Corn & Sorghum Res. Conf. Proc. 11:48–55.

    Google Scholar 

  • Hayes, H. K. 1963. A professor’s Story of Hybrid Corn. Burgess Publishing Co., Minneapolis, MN.

    Google Scholar 

  • Helms, T. C., A. R. Hallauer, O. S. Smith. 1989. Genetic drift and selection evaluated from recurrent selection programs in maize. Crop Sci. 29:606–7.

    Google Scholar 

  • Jenkins, M. T. 1934. Methods of estimating performance of double-crosses in corn. J. Am. Soc. Agron. 26:199–204.

    Article  Google Scholar 

  • Jones, D. F. 1918. The effects of inbreeding and crossbreeding upon development. Connecticut Agric. Exp. Stn. Bull. 207:5–100.

    Google Scholar 

  • Jones, D. F. 1924. Selective fertilization among the gametes from the same individuals. Proc. Nat. Acad. Sci. 10:218–21.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. F. 1939. Continued inbreeding in maize. Genetics 24:462–73.

    PubMed  CAS  Google Scholar 

  • Jones, D. F. 1958. Heterosis and homeostasis in evolution and in applied genetics. Am. Nat. 92:321–28.

    Article  Google Scholar 

  • Jugenheimer, R. W. 1958. Hybrid Maize Breeding and Seed Production. FAO, Rome.

    Google Scholar 

  • Keeratinijakal, V., and K. R. Lamkey. 1993. Responses to reciprocal recurrent selection in BSSS and BSCB1 maize populations. Crop Sci. 33:73–7.

    Article  Google Scholar 

  • Kempthorne, O. 1957. An Introduction to Genetic Statistics. Wiley, New York, NY.

    Google Scholar 

  • Kiesselbach, T. A. 1922. Corn investigations. Nebraska Agric. Exp. Stn. Res. Bull. 20:5–151.

    Google Scholar 

  • Kiesselbach, T. A. 1930. The use of advanced generation hybrids as parents of double cross seed corn. J. Am. Soc. Agron. 22:614–26.

    Article  Google Scholar 

  • Kiesselbach, T. A. 1933. The possibilities of modern corn breeding. Proc. World Grain Exhib. Conf. (Canada) 2:92–112.

    Google Scholar 

  • Kinman, M. L. 1952. Composite sibbing versus selfing in development of corn inbred lines. Agron. J. 44:209–41.

    Article  Google Scholar 

  • Kinman, M. L., and G. F. Sprague. 1945. Relation between number of parental lines and theoretical performance of synthetic varieties of corn. J. Am. Soc. Agron. 37:341–51.

    Article  Google Scholar 

  • Knight, T. A. 1799. An account of some experiments on the fecundation of vegetables. Philos. Trans. R. Soc. London 89:195.

    Google Scholar 

  • Kölreuter, J. G. 1776. Dritte Fortsetzung der vorläufigen Nachricht von einigen das Geschlecht der Pflanzen betreftender Versuchen and Beobachtunger, 266pp. Leipzig.

    Google Scholar 

  • Lamkey, K. R., and O. S. Smith. 1987. Performance and inbreeding depression of populations representing seven eras of maize breeding. Crop Sci. 27:695–9.

    Article  Google Scholar 

  • Levings, C. S. III, J. W. Dudley, and D. E. Alexander. 1967. Inbreeding and crossing in autotetraploid maize. Crop Sci. 7:72–3.

    Article  Google Scholar 

  • Li, C. C. 1976. Population Genetics. Boxwood Press, Pacific Grove, CA.

    Google Scholar 

  • Lindstrom, E. W. 1939. Analysis of modern maize breeding principles and methods. Proc. Seventh Int. Genet. Congr. 7:191–6.

    Google Scholar 

  • Loeffel, F. A. 1971. Development and utilization of parental lines. Annu. Corn Sorghum Res. Conf. Proc. 26:209–17.

    Google Scholar 

  • Lopez-Perez, E. 1977. Comparisons among maize hybrids made from unselected lines developed by selfing and full-sibbing. Master’s thesis, Iowa State University, Ames, IA.

    Google Scholar 

  • Macaulay, T. B. 1928. The improvement of corn by selection and plot inbreeding. J. Hered. 19:57–72.

    Google Scholar 

  • Malécot, G. 1948. Les Mathématiques de l’Hérédité. Masson et Cie, Paris.

    Google Scholar 

  • Martin, J. M., and A. R. Hallauer. 1976. Relation between heterozygosis and yield for four types of maize inbred lines. Egyptian J. Genet. Cytol. 5:119–35.

    Google Scholar 

  • Mikel, M. A. 2008. Genetic diversity and improvement of contemporary proprietary North American dent corn. Crop Sci. 48:1686–95.

    Article  Google Scholar 

  • Mikel, M. A., and J. W. Dudley. 2006. Evolution of North American dent corn inbred lines with expired U.S. plant variety protection. Crop Sci. 46:1193–205.

    Article  Google Scholar 

  • Moll, R. H.;, J. H. Lonnquist, J. V. Fortuno, and E. C. Johnson. 1965. The relation of heterosis and genetic divergence in maize. Genetics 52:139–44.

    PubMed  CAS  Google Scholar 

  • Morris, M. L. 1998. Maize Seed Industries in Developing Countries. Lynne Rienner Publ., Boulder, CO.

    Google Scholar 

  • Neal, N. P. 1935. The decrease in yielding capacity in advanced generations of hybrid corn. J. Am. Soc. Agron. 27:666–70.

    Article  Google Scholar 

  • Otsuka, Y., S. A. Eberhart, and W. A. Russell. 1972. Comparisons of prediction formulas for maize hybrids. Crop Sci. 12:325–31.

    Article  Google Scholar 

  • Oyervides-García, M., and A. R. Hallauer. 1986. Selection-induced differences among strains of Iowa Stiff Stalk Synthetic maize. Crop Sci. 26:506–11.

    Article  Google Scholar 

  • Pirchner, F. 1969. Population Genetics in Animal Breeding. W. H. Freeman, San Francisco, CA.

    Google Scholar 

  • Pollak, E., H. F. Robinson, and R. E. Comstock. 1957. Interpopulation hybrids in open-pollinated varieties of maize. Am. Nat. 91:387–91.

    Article  Google Scholar 

  • Powers, L. 1941. Inheritance of quantitative characters in crosses involving two species of Lycopersicon. J. Agric. Res. 63:149–74.

    Google Scholar 

  • Rasmusson, J. A. 1934. A contribution to the theory of quantitative character inheritance. Hereditas 18:245–61.

    Article  Google Scholar 

  • Rawlings, J. O. 1969. Present status of research on long- and short-term recurrent selection in finite populations: Choice of population size. Proc. Second Meet. Work. Group Quant. Genet., sect. 22. IUFRO, Raleigh, NC.

    Google Scholar 

  • Rice, J. S., and J. W. Dudley. 1974. Gene effects responsible for inbreeding depression in autotetraploid maize. Crop Sci. 14:390–93.

    Article  Google Scholar 

  • Richey, F. D., G. H. Stringfield, and F. F. Sprague. 1934. The loss of yield that may be expected from planting second generation double-crossed corn. J. Am. Soc. Agron. 26:196–9.

    Article  Google Scholar 

  • Rinke, E. H., and J. C Sentz. 1961. Moving corn-belt germ-plasm northward. Annu. Hybrid Corn Ind. Res. Conf. Proc. 16:53–56.

    Google Scholar 

  • Robertson, A. 1960. A theory of limits in artificial selection. Proc. R. Soc. B153:234–49.

    Google Scholar 

  • Robinson, H. F., and C. C. Cockerham. 1961. Heterosis and inbreeding depression in population involving two open-pollinated varieties of maize. Crop Sci. 1:68–71.

    Article  Google Scholar 

  • Rodriguez, O. A., and A. R. Hallauer. 1988. Effects of recurrent selection on corn populations. Crop Sci. 28:796–800.

    Article  Google Scholar 

  • Russell, W. A., and A. R. Hallauer. 1980. Corn. In Hybridization of Crop Plants, W. R. Fehr and H. H. Hadley (eds.), pp. 299–312. ASA, CSSA, SSSA., Madison, WI.

    Google Scholar 

  • Schnell, F. W. 1975. Type of variety and average performance in hybrid maize. Z. Pflanzenzuchrg 74:177–88.

    Google Scholar 

  • Sentz, J. C., H. F. Robinson, and R. E. Comstock. 1954. Relation between heterozygosis and performance in maize. Agron. J. 46:514–20.

    Article  Google Scholar 

  • Sezegen, B., and M. J. Carena. 2009. Divergent recurrent selection for cold tolerance in two improved maize populations. Euphytica 167:237–44.

    Article  Google Scholar 

  • Shamel, A. D. 1905. The effect of inbreeding in plants. USDA Yearbook. 377–92.

    Google Scholar 

  • Shehata, A. H., and N. L. Dhawan. 1975. Genetic analysis of grain yield in maize as manifested in genetically diverse varietal populations and their crosses. Egyptian J. Genet. Cytol. 4:90–116.

    Google Scholar 

  • Shull, G. H. 1908. The composition of a field of maize. Am. Breeders’ Assoc. Rep. 4:296–301.

    Google Scholar 

  • Shull, G. H. 1909. A pure line method of corn breeding. Am. Breeders’ Assoc. Rep. 5:51–9.

    Google Scholar 

  • Shull, G. H. 1910. Hybridization methods in corn breeding. Am. Breeders’ Mag. 1:98–107.

    Google Scholar 

  • Shull, G. H. 1952. Beginnings of the heterosis concept. In Heterosis, J. W. Gowen (ed.), pp. 14–48. Iowa State University Press, Ames, IA.

    Google Scholar 

  • Sing, C. F., R. H. Moll, and W. D. Hanson. 1967. Inbreeding in two populations of Zea mays L. Crop Sci. 7:631–6.

    Article  Google Scholar 

  • Smith, J. S. C. 1988. Diversity of United States hybrid maize germplasm: Isozymic and chromatographic evidence. Crop Sci. 26:63–9.

    Article  Google Scholar 

  • Smith, O. S. 1983. Evaluation of recurrent selection in BSSS, BSCB1, and BS13 maize populations. Crop Sci. 13:35–40.

    Article  Google Scholar 

  • Sprague, G. F. 1946. The experimental basis for hybrid maize. Biol. Rev. 21:101–20.

    Article  PubMed  CAS  Google Scholar 

  • Sprague, G. F. 1971. Genetic vulnerability to disease and insects in corn and sorghum. Annu. Corn Sorghum Res. Conf. Proc. 26:96–104.

    Google Scholar 

  • Sprague, G. F., and S. A. Eberhart. 1977. Corn breeding. In Corn and Corn Improvement, G. F. Sprague (ed.), pp. 305–62. ASA, CSSA, SSSA, Madison, WI.

    Google Scholar 

  • Sprague, G. F., and W. T. Federer. 1951. A comparison of variance components in corn yield trials. II. Error, year × variety, location × variety, and variety components. Agron. J. 43:535–41.

    Article  Google Scholar 

  • Sprague, G. F., and W. T. Thomas. 1967. Further evidence of epistasis in single and three-way cross yields of maize (Zea mays L.). Crop Sci. 7:355–6.

    Article  Google Scholar 

  • Sprague, G. F., W. A. Russell, L. H. Penny, and T. W. Horner. 1962. Effects of epistasis on grain yield of maize. Crop Sci. 2:205–8.

    Article  Google Scholar 

  • Stringfield, G. H. 1950. Heterozygosis and hybrid vigor in maize. Agron. J. 42:145–51.

    Article  Google Scholar 

  • Stringfield, G. H. 1974. Developing heterozygous parent stocks for maize hybrids. DeKalb AgResearch, DeKalb, Ill.

    Google Scholar 

  • Stojšin, D., and L. W. Kannenberg. 1994. Genetics changes associated with different methods of recurrent selection in five maize populations. I. Directly selected traits. Crop Sci. 34:1466–72.

    Article  Google Scholar 

  • Stuber, C. W., W. P. Williams, and R. H. Moll. 1973. Epistasis in maize (Zea mays L.). III. Significance in predictions of hybrid performance. Crop Sci. 13:195–200.

    Article  Google Scholar 

  • Tanner, A. H., and O. S. Smith. 1987. Comparison of half-sib and S1 recurrent selection Krug Yellow Dent maize populations. Crop Sci. 27:509–13.

    Article  Google Scholar 

  • Weatherspoon, J. H. 1970. Comparative yields of single, three-way, and double crosses of maize. Crop Sci. 10:157–9.

    Article  Google Scholar 

  • Weatherwax, P. 1955. Structure and development of reproductive organs. In Corn and Corn Improvement, G. F. Sprague (ed.), pp. 89–121. Academic Press, New York, NY.

    Google Scholar 

  • Wright, J. A., A. R. Hallauer, L. H. Penny, and S. A. Eberhart. 1971. Estimating genetic variance in maize by use of single and three-way crosses among unselected inbred lines. Crop Sci. 11:690–5.

    Article  Google Scholar 

  • Wright, S. 1921. Systems of mating. II. The effects of inbreeding on the genetic composition of a population. Genetics 6:124–43.

    PubMed  CAS  Google Scholar 

  • Wright, S. 1922a. Coefficients of inbreeding and relationship. Am. Nat. 56:330–8.

    Article  Google Scholar 

  • Wright, S. 1922b. The effects of inbreeding and crossbreeding on guinea pigs. III. Crosses between highly inbred families. USDA Bull. 1121:60pp.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97–159.

    PubMed  CAS  Google Scholar 

  • Zuber, M. S. 1975. Corn germplasm base in the United States: Is it narrowing, widening, or static? Annu. Corn Sorghum Res. Conf. Proc. 30:277–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnel R. Hallauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hallauer, A.R., Filho, J.B.M., Carena, M.J. (2010). Inbreeding. In: Quantitative Genetics in Maize Breeding. Handbook of Plant Breeding, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0766-0_9

Download citation

Publish with us

Policies and ethics