Skip to main content

Selection: Theory

  • Chapter
  • First Online:
Quantitative Genetics in Maize Breeding

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 6))

Abstract

Plant breeding has been defined by Nikolai I. Vavilov as plant evolution directed by man (Sanchez-Monge, 1993). Selection has been the essence of the overall science of plant breeding through the identification of elite germplasm and the combined application of methods available to the breeder. Evolution (via natural selection) and domestication (via artificial selection) created and improved the crop plant species that are so important for human survival. Ever since the potential of certain plant species as food sources was recognized, selection has been practiced for more productive plant types. Particularly in maize, in addition to great advances achieved by domestication and early empirical breeding, significant improvements have been made by changes in breeding methods that have occurred mainly during the past 100 years. New and old selection methods, for the genetic improvement of maize still are important in increasing food production. Applied plant breeding programs and their targeted selection methods will allow the continuous production of more efficient cultivars which can maintain a sustainable production without the requirement of expensive inputs. Public breeding programs focus on not only short-term research goals but also long-term improvement of germplasm. Even though the product (e.g., hybrid, pure line) is the goal, some of the breeding strategies used for long-term selection are neglected. Long-term genetic improvement is needed for the success of short-term products. Future genetic gains are dependent on the deployment of useful genetic diversity carried out in the public sector (Smith, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arus, P., and J. Moreno-Gonzalez. 1993. Marker-assisted selection. In. Plant Breeding: Principles and Prospects, M.D. Hayward, N.O. Bosemark, and I. Romagosa (ed.), pp. 314–331. Chapman & Hall, London.

    Google Scholar 

  • Baker, L. H., and R. N. Curnow. 1969. Choice of population size and use of variation between replicate populations in plant breeding selection programs. Crop Sci. 9:555–60.

    Article  Google Scholar 

  • Barata, C., and M. J. Carena. 2006. Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151:339–249.

    Google Scholar 

  • Beck, D .L., S. K. Vasal, J. Crossa. 1991. Heterosis and combining ability among subtropical and temperate intermediate-maturity maize germplasm. Crop Sci. 31: 68–73.

    Article  Google Scholar 

  • Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 48:1649–64.

    Article  Google Scholar 

  • Bernardo, B., and J. Yu. 2007. Prospects for genome-wide selection for quantitative traits in maize. Crop Sci. 47:1082–90.

    Google Scholar 

  • Brim, C.A., H.W. Johnson, and C. C. Cockerham. 1959. Multiple selection criteria in soybeans. Agron. J. 51:42–46.

    Article  Google Scholar 

  • Buren, L. L., J. J. Mock, and I.C. Anderson. 1974. Morphological and physiological traits in maize associated with tolerance to high plant density. Crop Sci. 14:426–29.

    Article  Google Scholar 

  • Carena, M. J. 2005. Maize commercial hybrids compared to improved population hybrids for grain yield and agronomic performance. Euphytica 141:201–08.

    Article  Google Scholar 

  • Carena, M. J., and Wanner, D. W. 2009. Development of genetically broad-based inbred lines of maize for early maturing (70-80RM) hybrids. J. Plant Reg. 3:107–11.

    Article  Google Scholar 

  • Carena, M. J., and Z. W. Wicks III. 2006. Maize early maturing hybrids: an exploitation of U.S. temperate public genetic diversity in reserve. Maydica 51:201–08.

    Google Scholar 

  • Carena, M. J., I. Santiago, and A. Ordas. 1998. Direct and correlated response to selection for prolificacy in maize at two planting densities. Maydica 43:95–102.

    Google Scholar 

  • Carena, M. J., L. Pollak, W. Salhuana, and M. Denuc. 2009a. Development of unique lines for early-maturing hybrids: Moving GEM germplasm northward and westward. Euphytica 170:87–97.

    Article  Google Scholar 

  • Carena, M. J., G. Bergman, N. Riveland, E. Eriksmoen, M. Halvorson. 2009b. Breeding maize for higher yield and quality under drought stress. Maydica 54:287–298.

    Google Scholar 

  • Cockerham, C. C. 1956. Effects of linkage on the covariances between relatives. Genetics 41:138–41.

    PubMed  CAS  Google Scholar 

  • Cockerham, C. C. 1961. Implications of genetic variances in a hybrid breeding program. Crop Sci. 1:47–52.

    Article  Google Scholar 

  • Collier, J. W. 1959. Three cycles of reciprocal recurrent selection. Annu. Hybrid Corn Ind. Res. Conf. Proc. 14:12–23.

    Google Scholar 

  • Compton, W. A., and R. E. Comstock. 1976. More on modified ear-to-row selection in corn. Crop Sci. 16:122.

    Article  Google Scholar 

  • Comstock, R. E. 1964. Selection procedures in corn improvement. Annu. Hybrid Corn Ind. Res. Conf. Proc. 19:87–94.

    Google Scholar 

  • Comstock, R. E., H. F. Robinson, and P. H. Harvey. 1949. A breeding procedure designed to make maximum use of both general and specific combining ability. Agron. J. 41:360–67.

    Article  Google Scholar 

  • Coors, J. G. 1999. Selection methodology and heterosis. In The Genetics and Exploitation of Heterosis in Crops. J. G. Coors, and S. Pandey (eds.), pp. 225–245. ASA, CSSA, and SSSA, Madison, WI.

    Google Scholar 

  • Cress, C. E. 1966. Heterosis of the hybrid related to gene frequency differences between two populations. Genetics 53:269–74.

    PubMed  CAS  Google Scholar 

  • Dhillon, B. S., and A. S. Khehra. 1989. Modified S1 recurrent selection in maize improvement. Crop Sci. 29:226–228.

    Article  Google Scholar 

  • Dudley, J. W. 1982. Theory of transfer of alleles. Crop Sci. 22: 631–37.

    Article  Google Scholar 

  • Dudley, J.W., and G.R. Johnson. 2009. Epistatic models improve prediction of performance in corn. Crop Sci. 49:763–70.

    Article  CAS  Google Scholar 

  • Duvick, D.N. 1977. Genetic rates of gain in hybrid maize during the last 40 years. Maydica 22:187–96.

    Google Scholar 

  • East, E.M. 1908. Inbreeding in corn. Connecticut Agric. Exp. Stn. Rep. 1907. pp. 419–28.

    Google Scholar 

  • Eberhart, S. A. 1970. Factors affecting efficiencies of breeding methods. African Soils 15:669–80.

    Google Scholar 

  • Eberhart, S. A., S. Debela, and A. R. Hallauer. 1973. Reciprocal recurrent selection in the BSSS and BSCB1 maize populations and half-sib selection in BSSS. Crop Sci. 13:451–56.

    Article  Google Scholar 

  • Eberhart, S. A., M. N. Harrison, and F. Ogada. 1967. A comprehensive breeding system. Züchter 37:169–74.

    Google Scholar 

  • Elston, R. C. 1963. A weight free index for the purpose of ranking or selection with respect to several traits at a time. Biometrics 19:85–97.

    Article  Google Scholar 

  • Empig, L. T., C. O. Gardner, and W. A. Compton. 1972. Theoretical gains for different population improvement procedures. Nebraska Agric. Exp. Stn. Bull. 26:3–22.

    Google Scholar 

  • Eno, C., and M. J.Carena. 2008. Adaptation of elite temperate and tropical maize populations to North Dakota. Maydica 53:217–26.

    Google Scholar 

  • Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. 4th ed., Longman Group Ltd., Edinburgh.

    Google Scholar 

  • Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans. Roy. Soc. Edinburgh 52:399–433.

    Article  Google Scholar 

  • Fisher, R. A., and F. Yates. 1948. Statistical Tables for Biological, Agricultural, and Medical Research, 3rd ed., Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Gardner, C. O. 1961. An evaluation of effects of mass selection and seed irradiation with thermal neutrons on yields of corn. Crop Sci. 1:241–45.

    Article  Google Scholar 

  • Gardner, C. O., and S. A. Eberhart. 1966. Analysis and interpretation of the variety cross diallel and related populations. Biometrics 22:439–52.

    Article  PubMed  CAS  Google Scholar 

  • Geldermann, H. 1975. Investigations on inheritance in quantitative characters in animals by gene markers. I. Methods. Theor. Appl. Genet. 46:319–30.

    Article  Google Scholar 

  • Geraldi, I. O., J. B. Miranda Fo., and E. Paterniani. 1975. Estimativas de parâmetros genéticos e fenotipicos em caracteres do pendão de milho (Zea mays L.). Rel. Cient. Inst. Genét. (ESALQ–USP) 9:87–91.

    Google Scholar 

  • Good, R. L. 1990. Experiences with recurrent selection in a commercial seed company. Annu. Corn Sorghum Res. Conf. Proc. 45:80–92.

    Google Scholar 

  • Goulas, C. K., and J. H. Lonnquist. 1976. Combined half-sib and S1 family selection in a maize composite population. Crop Sci. 16:461–64.

    Article  Google Scholar 

  • Guzman, P. S., and K. R. Lamkey. 2000. Effective population size and genetic variability in the BS11 maize population. Crop Sci. 40:338–46.

    Article  Google Scholar 

  • Hallauer, A. R. 1967. Development of single-cross hybrids from two-eared maize populations. Crop Sci. 7:192–95.

    Article  Google Scholar 

  • Hallauer, A. R. 1974. Heritability of prolificacy in maize. J. Hered. 65:163–68.

    Google Scholar 

  • Hallauer, A. R. 1985. Compendium of recurrent selection methods and their application. Crit. Rev. Plant Sci. 3:1–33.

    Article  Google Scholar 

  • Hallauer, A. R. 1990. Germplasm sources and breeding strategies for line development in the 1990’s. Annu. Corn Sorghum Res. Conf. Proc. 45:64–79.

    Google Scholar 

  • Hallauer, A. R. 1992. Recurrent selection in maize. Plant Breed. Rev. 9:115–79.

    Google Scholar 

  • Hallauer, A. R. 1999. Temperate maize and heterosis. In The Genetics and Exploitation of Heterosis in Crops. J. G. Coors, and S. Pandey (eds.), pp. 353–61. ASA, CSSA, and SSSA, Madison, WI.

    Google Scholar 

  • Hallauer, A. R., and M. J. Carena. 2009. Maize breeding. In Handbook of Plant Breeding: Cereals, M. J. Carena (ed.), pp. 3–98. Springer, New York, NY.

    Google Scholar 

  • Hallauer, A.R., and S.A. Eberhart. 1970. Reciprocal full-sib selection. Crop Sci. 10:315–16.

    Article  Google Scholar 

  • Hallauer, A. R., and J. H. Sears. 1969. Mass selection for yield in two varieties of maize. Crop Sci. 9:47–50.

    Article  Google Scholar 

  • Hallauer, A. R., W. A. Russell, and K.R. Lamkey. 1988. Corn Breeding. In Corn and Corn Improvement, 3rd Ed., G. F. Sprague and J.W. Dudley (ed.), pp. 469–64. ASA-CSSA-SSSA, Madison, Wisconsin, WI.

    Google Scholar 

  • Hayes, H. K., and R. J. Garber. 1919. Synthetic production of high protein corn in relation to breeding. J. Am. Soc. Agron. 11: 308–18.

    Google Scholar 

  • Hazel, L. N. 1943. The genetic basis for constructing selection indexes. Genetics 28:476–90.

    PubMed  CAS  Google Scholar 

  • Hazel, L. N., and J. L. Lush. 1942. The efficiency of three methods of selection. J. Hered. 33:393–99.

    Google Scholar 

  • Heffner, E. L., M. E. Sorrells, and J. J. Jannink. 2009. Genomic selection for crop improvement. Crop Sci. 49:1–12.

    Article  CAS  Google Scholar 

  • Hopkins, C. G. 1899. Improvement in the chemical composition of the corn kernel. Bull. Ill. Agric. Exp. Stn. 55:205–40.

    CAS  Google Scholar 

  • Horner, E. S. 1956. Recurrent selection. Annu. Corn Sorghum Res. Conf. Proc. 11:75–9.

    Google Scholar 

  • Hull, F. H. 1945. Recurrent selection and specific combining ability in corn. J. Am. Soc. Agron. 37:134–45.

    Article  Google Scholar 

  • Hunter, R. B., C. G. Mortimore, and L. W. Kannenberg. 1973. Inbred maize performance following tassel and leaf removal. Agron. J. 65:471–72.

    Article  Google Scholar 

  • Hunter, R. R., T. B. Daynard, L. J. Hume, J. W. Tanner, J. L. Curtis, and L. W. Kannenberg. 1969. Effect of tassel removal on grain yield of corn (Zea mays L.). Crop Sci. 9:405–6.

    Article  Google Scholar 

  • Jenkins, M. T. 1940. The segregation of genes affecting yield of grain in maize. J. Am. Soc. Agron. 32:55–63.

    Article  Google Scholar 

  • Johnson, R. 2004. Marker-assisted selection. Plant Breed. Rev. 24:293–309.

    Google Scholar 

  • Jones, L. P., W. A. Compton, and C. O. Gardner. 1971. Comparisons of full-and half-sib reciprocal recurrent selection. Theor. Appl. Genet. 41:36–39.

    Google Scholar 

  • Jumbo, M.B., and Carena, M.J. 2008. Combining ability, maternal, and reciprocal effects of elite early-maturing maize population hybrids. Euphytica 162:325–33.

    Article  Google Scholar 

  • Kauffman, K. D., and J. W. Dudley. 1979. Selection indices for corn grain yield, percent protein, and kernel depth. Crop Sci. 19:583–88.

    Article  Google Scholar 

  • Kearsey, M. J. 1993. Biometrical genetics in breeding. In. Plant Breeding: Principles and Prospects, 1st edition, M.D. Hayward, N.O. Bosemark, and I. Romagosa (eds.) pp. 163–83. Chapman & Hall, London, UK.

    Chapter  Google Scholar 

  • Kempthorne, O. 1952. Design and analysis of experiments. Wiley, New York, NY.

    Google Scholar 

  • Kempthorne, O. 1957. An Introduction to genetic statistics. Wiley, New York, NY.

    Google Scholar 

  • Kempthorne, O., and A.W. Nordskog. 1959. Restricted selection indices. Biometrics 15:10–19.

    Article  Google Scholar 

  • Laible, C. A., and V. A. Dirks. 1968. Genetic variances and selection value of ear number in corn (Zea mays L.). Crop Sci. 8:540–43.

    Article  Google Scholar 

  • Lerner, I. M. 1958. The genetic basis of selection. Wiley, New York, NY.

    Google Scholar 

  • Lonnquist, J. H. 1949. The development and performance of synthetic varieties of corn. Agron. J. 41:153–56.

    Article  Google Scholar 

  • Lonnquist, J. H. 1952. Recurrent selection. Annu. Corn Sorghum Res. Conf. Proc. 7:20–32.

    Google Scholar 

  • Lonnquist, J. H. 1963. Gene action and corn yields. Annu. Corn Sorghum Res. Conf. Proc. 18:37–44.

    Google Scholar 

  • Lonnquist, J. H. 1964. Modification of the ear-to-row procedure for the improvement of maize populations. Crop Sci. 4:227–28.

    Article  Google Scholar 

  • Lonnquist, J. H. 1967a. Mass selection for prolificacy in maize. Züchter 37:185–87.

    Google Scholar 

  • Lonnquist, J. H. 1967b. Intra-population improvement: combination S1 and HS selection. Maize 5, CIMMYT.

    Google Scholar 

  • Lonnquist, J. H. 1967c. Inter-population improvement: combined S1, mass, and reciprocal recurrent selection. Maize 6, CIMMYT.

    Google Scholar 

  • Lonnquist, J. H., and M. Castro G. 1967. Relation of intra-population genetic effects to performance of S1 lines of maize. Crop Sci. 7:361–64.

    Google Scholar 

  • Lonnquist, J. H., and N. E. Williams. 1967. Development of maize hybrids through selection among full-sib families. Crop Sci. 7:369–70.

    Article  Google Scholar 

  • Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Marquez-Sanchez, F. 1982. Modifications to cyclic hybridization in maize with single-eared plants. Crop Sci. 22:314–19.

    Article  Google Scholar 

  • Martin, G. O., and R. A. Salvioli. 1973. A study of the association between yield components and a selection index in maize (Zea mays L.). Plant Breed. Abstr. 43:216.

    Google Scholar 

  • Mather, K. 1941. Variation and selection of polygenic characters. J. Genetics 41:159–93.

    Article  Google Scholar 

  • Melani, M. D., and M. J. Carena. 2005. Alternative heterotic patterns for the northern Corn Belt. Crop Sci. 45:2186–94.

    Article  Google Scholar 

  • Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–29.

    PubMed  CAS  Google Scholar 

  • Mickelson, H. R., H. Cordova, K.V. Pixley, and M. S. Bjarnason. 2001. Heterotic relationships among nine temperate and subtropical maize populations. Crop Sci. 41:1012–20.

    Article  Google Scholar 

  • Mock, J. J., and S. Schuetz. 1974. Inheritance of tassel branch number in maize. Crop Sci. 14:885–88.

    Article  Google Scholar 

  • Mode, C. J., and H. F. Robinson. 1959. Pleiotropism and the genetic variance and covariance. Biometrics 15:518–37.

    Article  Google Scholar 

  • Moll, R. H., and C. W. Stuber. 1971. Comparisons of response to alternative selection procedures initiated with two populations of maize (Zea mays L.). Crop Sci. 11:706–11.

    Article  Google Scholar 

  • Moll, R. H., and C. W. Stuber. 1974. Quantitative genetics: Empirical results relevant to plant breeding. Adv. Agron. 26:277–13.

    Article  Google Scholar 

  • Moll, R. H., J. H. Lonnquist, J. V. Fortuno, and E. C. Johnson. 1965. The relationship of heterosis and genetic divergence in maize. Genetics 52: 139–44.

    PubMed  CAS  Google Scholar 

  • Moreno-Gonzalez, J. and J. I. Cubero. 1993. Selection strategies and choice of breeding methods. In. Plant Breeding: Principles and Prospects, 1st edn, M.D. Hayward, N.O. Bosemark, and I. Romagosa (eds.), pp. 282–13. Chapman & Hall, London.

    Google Scholar 

  • Mulamba, N. N., and J. J. Mock. 1978. Improvement of yield potential of the Eto Blanco maize (Zea mays L.) population by breeding for plant traits. Egypt. J. Genet. Cytol. 7:40–51.

    Google Scholar 

  • Osorno, J., and M. J. Carena. 2008. Creating groups of maize genetic diversity for grain quality: Implications for breeding. Maydica 53:131–41.

    Google Scholar 

  • Paterniani, E. 1967a. Inter-population improvement: Reciprocal recurrent selection variations. Maize 8, CIMMYT.

    Google Scholar 

  • Paterniani, E. 1967b. Selection among and within families in a Brazilian population of maize (Zea mays L.). Crop Sci. 7:212–16.

    Article  Google Scholar 

  • Paterniani, E. 1973. Recent studies on heterosis. In Agricultural Genetics, R. Moav (ed.), pp. 1–22. Natl. Counc. Res. Dev., Jerusalem, Israel.

    Google Scholar 

  • Paterniani, E., and R. Vencovsky. 1977. Reciprocal recurrent selection in maize (Zea mays L.) based on testcrosses of half-sib families. Maydica 22:141–52.

    Google Scholar 

  • Paterniani, E. 1978. Reciprocal recurrent selection based on half-sib progenies and prolific plants in maize (Zea mays L.). Maydica 23:209–19.

    Google Scholar 

  • Paterniani, E. A. Ando, J. B. Miranda, and R. Vencovsky. 1973. Efeitos de raios gama no comportamento e na variância de progênies de meios irmaõs em milho. Rel. Cient. Inst. Genét. (ESALQ-USP) 7:161–67.

    Google Scholar 

  • Penny, L. H., and S. A. Eberhart. 1971. Twenty years of reciprocal recurrent selection with two synthetic varieties of maize (Zea mays L.). Crop Sci. 11:900–903.

    Article  Google Scholar 

  • Penny, L. H., W. A. Russell, G. F. Sprague, and A. R. Hallauer. 1963. Recurrent selection. In Statistical Genetics and Plant Breeding, W. D. Hanson and H. F. Robinson (eds.), pp. 352–67. NAS-NRC Publ. 982.

    Google Scholar 

  • Pesek, J., and R. J. Baker. 1969. Desired improvement in relation to selection indices. Canadian J. Plant Sci. 49:803–4.

    Article  Google Scholar 

  • Pesek, J., and R. J. Baker. 1970. An application of index selection to improvement of self pollinated species. Canadian J. Plant Sci. 50:267–76.

    Article  Google Scholar 

  • Ramalho, M.A.P. 1977. Eficiência relativa de alguns processos de selecão intrapopulacional no milho baseados em familias não endógamas. Tese de Doutoramento, ESALQ-USP, Piracicaba, Brazil.

    Google Scholar 

  • Rawlings, J. O. 1970. Present status of research on long and short term recurrent selection in finite populations–choice of population size. Proc. Second Meet. Work. Group Quant. Genet., sect. 22. IUFRO: 1–15. Raleigh, NC.

    Google Scholar 

  • Robertson, A. 1960. A theory of limits in artificial selection. Proc. R. Soc. 153:234–49.

    Article  Google Scholar 

  • Robinson, H. F., R. E. Comstock, and P. H. Harvey. 1951. Genotypic and phenotypic correlations in corn and their implications in selection. Agron. J. 43:282–87.

    Article  Google Scholar 

  • Robinson, H. F., R. E. Comstock, and P. H. Harvey. 1955. Genetic variances in open pollinated varieties of corn. Genetics 40:45–60.

    PubMed  CAS  Google Scholar 

  • Russell, W. A. 1972. Registration of B70 and B73 parental lines of maize. Crop Sci. 12:721.

    Article  Google Scholar 

  • Russell, W. A., and S. A. Eberhart. 1975. Hybrid performance of selected maize lines from reciprocal recurrent and testcross selection programs. Crop Sci. 15:1–4.

    Article  Google Scholar 

  • Sanchez-Monge, E. 1993. Introduction: Plant Breeding and the Vavilov concept. In. Plant Breeding: Principles and Prospects, 1st edin, M.D. Hayward, N.O. Bosemark, and I. Romagosa (ed.), pp. 3–5. Chapman & Hall, London.

    Chapter  Google Scholar 

  • Sezegen, B., and M. J. Carena. 2009. Divergent recurrent selection for cold tolerance in two improved maize populations. Euphytica 167: 237–44.

    Article  Google Scholar 

  • Shull, G. H. 1909. A pure line method of corn breeding. Am. Breeders’ Assoc. Rep. 5:51–59.

    Google Scholar 

  • St. Martin, S. K. 1980. Selection indices for the improvement of opaque-2 maize. Ph.D. dissertation, Iowa State University., Ames, IA.

    Google Scholar 

  • Smith, H. F. 1936. A discriminant function for plant selection. Ann. Eugen. London 7:240–50.

    Article  Google Scholar 

  • Smith S., 2007. Pedigree background changes in U.S. hybrid maize between 1980 and 2004. Crop Sci. 47:1914–926.

    Article  Google Scholar 

  • Smith, O. S., A. R. Hallauer, and W. A. Russell. 1981. Use of index selection in recurrent selection programs in maize. Euphytica 30:611–618.

    Article  Google Scholar 

  • Sprague, G. F., 1946. Early testing of inbred lines of maize. J. Am. Soc. Agron. 38:108–117.

    Article  Google Scholar 

  • Sprague, G. F. and L. A. Tatum. 1942. General vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34:923–32.

    Article  Google Scholar 

  • Suwantaradon, K., S. A. Eberhart, J. J. Mock, J. C. Owens, and W. D. Guthrie. 1975. Index selection for several agronomic traits in the BSSS2 maize population. Crop Sci. 15:827–33.

    Article  Google Scholar 

  • Tabanao, D. A., and R. Bernardo. 2005. Genetic variation in maize breeding populations with different number of parents. Crop Sci. 45:2301–306.

    Article  Google Scholar 

  • Tallis, G. M. 1962. A selection index for optimum genotype. Biometrics 18: 120–22.

    Article  Google Scholar 

  • Turner, H.N., and S.S.Y. Young. 1969. Quantitative Genetics in Sheep Breeding. Cornell Univ. Press, Ithaca, New York, NY.

    Google Scholar 

  • Vasal, S. K., G. Srinivasan, F. Gonzalez, G. C. Han, S. Pandey, D. L. Beck, and J. Crossa 1992. Heterosis and combining ability of CIMMYT’s tropical and subtropical maize germplasm. Crop Sci. 32:1483–1489.

    Article  Google Scholar 

  • Vencovsky, R. 1969. Genética quantitativa. In Melhoramento e Genética, W. E. Kerr (ed.), pp. 17–38. University. São Paulo, São Paulo, Brazil.

    Google Scholar 

  • Vencovsky, R. 1977. Effective size of monoecious populations submitted to artificial selection. Institute de Genetica, ESALQ-USP, Piracicaba, Brazil.

    Google Scholar 

  • Vencovsky, R., and C. R. M. Godoi. 1976. Immediate response and probability of fixation of favorable alleles in some selection schemes. Proc. Int. Biom. Conf. pp: 292–97 Boston, MA.

    Google Scholar 

  • Weatherspoon, J. H., 1973. Usefulness of recurrent selection schemes in a commercial corn breeding program. Annu. Corn Sorghum Res. Conf. Proc. 28:137–43.

    Google Scholar 

  • Webel, O. D., and J. H. Lonnquist. 1967. An evaluation of modified ear-to-row selection in a population of corn (Zea mays L.). Crop Sci. 7:651–55.

    Article  Google Scholar 

  • Williams, J. S. 1962. The evaluation of a selection index. Biometrics 18:375–93.

    Article  Google Scholar 

  • Wolff, F. 1972. Mass selection in maize composites by means of selection indices. Meded. Landbouwhogesch. Wageningen 72:1–80.

    Google Scholar 

  • Yang, J., and M. J. Carena. 2008. Genetics of field dry down rate and test weight in early-maturing elite by elite maize hybrids. 50 th Maize Genetics Conference Proceedings P189 (Section Quantitative Traits/Breeding). Feb 27 – March 1. Washington, D.C.

    Google Scholar 

  • Young, S. S. Y. 1961. A further examination of the relative efficiency of three methods of selection for genetic gains under less restricted conditions. Genet. Res. 2:106–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnel R. Hallauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hallauer, A.R., Carena, M.J., Filho, J.B.M. (2010). Selection: Theory. In: Quantitative Genetics in Maize Breeding. Handbook of Plant Breeding, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0766-0_6

Download citation

Publish with us

Policies and ethics