Skip to main content

Grape

  • Chapter
  • First Online:

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 8))

Abstract

Grapes are grown worldwide, on about 7.9 million ha, and are used to produce wine, raisins, juice, jam, concentrate, and seed oils, as well as fresh fruit. Grapes (Vitis sp.) are members of the Vitaceae. Vitis includes two subgenera, Euvitis (38 chromosomes) and Muscadinia (40 chromosomes), with about 60 species in total. The primary centers of species diversity are North America and East Asia. Scion cultivars are derived chiefly from the European grape, Vitis vinifera, which was domesticated ca. 6,000–10,000 years ago in the region between the Black and Caspian Seas. Grapes spread east into Asia and west into the Mediterranean region. Rootstocks were developed from North American species, including V. riparia, V. rupestris, and V. berlandieri. Scion breeding programs focus on the development of cultivars adapted to biotic and abiotic stress, with high fruit quality, and time of ripening during desirable periods of market demand. Fungal disease resistance is a primary goal of many programs, while cold hardy cultivars help extend the limits of grape cultivation. Rootstock breeding focuses on providing protection against phylloxera and nematodes as well as adaptation to high pH, low pH, and/or water-stressed conditions. Rootstocks should propagate easily by grafting and cuttings. New cultivars are more rapidly adapted in the raisin and table grape sectors than in the wine industry, although there are several notable examples of successful wine grape cultivars developed by breeding. The availability of two published genomic DNA sequences has stimulated numerous projects to further understand the function of the ca. 30,000 grapevine genes. Marker-assisted selection, primarily for disease resistance and seedlessness, is being applied in many breeding programs. Projects that focus on breeding seedless cultivars commonly use embryo rescue techniques, enabling the crossing of two ­seedless parents, to increase the percentage of seedlings that are seedless. Genetic transformation is a routine procedure and is being used for both functional analysis of gene action as well as directly for cultivar improvement (both scions and rootstocks), although transgenic grape cultivars currently are not in commercial production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam-Blondon, A.-F., Lahogue-Esnault, F., Bouquet, A., Boursiquot, J.-M. and This, P. (2001) Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars. Vitis 40, 147–155.

    CAS  Google Scholar 

  • Adam-Blondon, A.-F., Roux, C., Claux, D., Butterlin, G., Merdinoglu, D. et al., (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor. Appl. Genet. 109, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  • Alleweldt, G. and Dettweiler, E. (1994) The genetic resources of Vitis - world list of grapevine collections. Geilweilerhof, Germany.

    Google Scholar 

  • Anderson, C., Choisne, N., Adam-Blondon, A.-F. and Dry, I.B. (2011) Positional cloning of disease resistance genes in grapevine. In: A.-F. Adam-Blondon and J. M. Martinez Zapater (Eds.), Genetics, Genomics and Breeding of Grapes. Science Publishers, St. Helier, Jersey, British Isles, pp. 186–210.

    Google Scholar 

  • Aradhya, M. K., Dangl, G.S., Prins, B.H., Boursiquot, J.-M., Walker, M.A. et al., (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet. Res. 81, 179–182.

    Article  PubMed  CAS  Google Scholar 

  • Arroyo-Garcia, R., Ruiz-Garcia, L., Bolling, L., Ocete, R., Lopez, M.A. et al., (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molec. Ecol. 15, 3707–3714.

    Article  CAS  Google Scholar 

  • Ashikawa, K. (1972) New grape variety ‘Takao’. Bul. Tokyo-to Agr. Expt. Sta. 7:1–9.

    Google Scholar 

  • Barker, C. L., Donald, T., Pauquet, J., Ratnaparkhe, M.B., Bouquet, A. et al., (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor. Appl. Genet. 111, 370–377.

    Article  PubMed  CAS  Google Scholar 

  • Barnaud, A., Lacombe, T. and Doligez, A. (2005) Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. Theor. Appl. Genet. 112, 708–716.

    Article  CAS  Google Scholar 

  • Barrett, H.C. and Arisumi, T. (1952) Methods of pollen collection, emasculation and pollination in fruit breeding. Proc. Amer. Soc. Hort. Sci. 59, 259–262.

    Google Scholar 

  • Barritt, B. H. and Einset, J. (1969) Inheritance of 3 major fruit colors in grapes. J. Amer. Soc. Hort. Sci. 94, 87–89.

    Google Scholar 

  • Basiouny, F. M. and Himelrick, D. G. (2001) Muscadine Grapes. ASHS Press, Alexandria, Virginia.

    Google Scholar 

  • Battilana, J., Costantini L., Emanuelli, F., Sevini, F., Segala, C., Moser, S., Velasco, R., Versini, G. and Grando, M.S. (2009) The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor. Appl. Genet. 118, 653–669.

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner, K. and Rizzo D. M. (2006) Relative resistance of grapevine rootstocks to Armillaria root disease. Amer. J. Enol. Vitic. 57, 408–414.

    Google Scholar 

  • Baumgartner, K., Bhat, R. and Fujiyoshi P. (2008) Characterizing resistance to infection by the root pathogen Armillaria mellea in tolerant and susceptible grapevine rootstocks. Phytopathology 98, S22.

    Google Scholar 

  • Bavaresco, L., Presutto, P., and Civardi, S. (2005) VR 043–43: a lime susceptible rootstock. Amer. J. Enol. Vitic. 56, 192–195.

    CAS  Google Scholar 

  • Beakbane, A. B. (1967) The dwarfing effect of a tetraploid sport of M.XIII apple rootstock. Rep. East Malling Res. Sta. for 1966, 96–97.

    Google Scholar 

  • Bellin, D., Peressotti, E., Merdinoglu, D., Wiedemann-Merdinoglu, S., Adam-Blondon, A.-F. et al., (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor. Appl. Genet. 120, 163–176.

    Article  PubMed  Google Scholar 

  • Bloodworth, P.J., Nesbitt, W.B. and Barker, K.R. (1980) Resistance to root knot nematodes in Euvitis x Muscadinia hybrids, In: Proceedings of the 3rd International Symposium on Grape Breeding, Davis, CA. pp. 275–292.

    Google Scholar 

  • Boss, P.K., and Thomas, M.R. (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416, 847–850.

    Article  PubMed  CAS  Google Scholar 

  • Bouquet, A., (1986) Introduction dans l’espéce Vitis vinifera L. d’un caractére de résistance à 1’oidium (Uncinula necator Schw. Burr.) issu de l’espéce Muscadinia rotundifolia (Michx) Small. Vignevini 13, Suppl. 12, 141–146.

    Google Scholar 

  • Bouquet, A., and Danglot, Y. (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L). Vitis 35, 35–42.

    Google Scholar 

  • Bouquet, A., Truel, P. and Wagner, R. (1981) Recurrent selection in grapevine breeding (in French, English summary). Agronomie 1, 65–73.

    Article  Google Scholar 

  • Bowers, J., Boursiquot, J.-M., This, P., Chu, K., Johansson, H. et al., (1999a) Historical Genetics: the parentage of Chardonnay, Gamay, and other wine grapes of Northeastern France. Science 285, 1562–1565.

    Article  PubMed  CAS  Google Scholar 

  • Bowers, J.E., Dangl, G.S. and Meredith, C. P. (1999b) Development and characterization of additional microsatellite DNA markers for grape. Amer. J. Enol. Vitic. 50, 243–246.

    CAS  Google Scholar 

  • Bowers, J.E., and Meredith, C. P. (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nature Genetics 16, 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Bowers, J.E., and Meredith, C.P. (1996) Genetic similarities among wine grape cultivars revealed by restriction fragment-length polymorphism (RFLP) analysis. J. Amer. Soc. Hort. Sci. 121, 620–624.

    Google Scholar 

  • Bowers, J.E., Bandman, E. B. and Meredith, C. P. (1993) DNA fingerprint characterization of some wine grape cultivars. Amer. J. Enol. Vitic. 44, 266–273.

    CAS  Google Scholar 

  • Bowers, J.E., Dangl, G.S., Vignani, R. and Meredith, C. P. (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape. Genome 39, 628–633.

    Article  PubMed  CAS  Google Scholar 

  • Boyden, L.E. (2005) Allelism of root-knot nematode resistance and genetics of leaf traits in grape rootstocks. Ph.D. Thesis. Cornell University, Ithaca.

    Google Scholar 

  • Boyden, L.E. and Cousins, P. (2003) Evaluation of Vitis aestivalis and related taxa as sources of resistance to root-knot nematodes. Acta Horticulturae 623, 283–290.

    Google Scholar 

  • Bronner, A. and Oliveira, J. (1990) Creation and study of the Pinot noir variety lineage. Vitis (special issue) Proc. 5th Intern. Symp. Grape Breeding, St. Martin/Pfalz, Germany, 12–16 September 1989, pp. 69–80.

    Google Scholar 

  • Burger, P., Bouquet, A. and Striem, M.J. (2009) Grape breeding. In: S.M. Jain and P.M. Priyadarshan (Eds.). Breeding Plantation Tree Crops: Tropical Species. Springer, pp. 161–189.

    Google Scholar 

  • Burr, T. J., Bazzi, C., Süle, S., and Otten, L. (1998) Crown gall of grape: biology of Agrobacterium vitis and the development of disease control strategies. Plant Dis. 82, 1288–1297.

    Article  Google Scholar 

  • Cabezas, J.A., Cervera, M. T., Ruiz-Garcia, L., Carreno, J. and Martinez-Zapater, J. M. (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49, 1572–1585.

    Article  PubMed  CAS  Google Scholar 

  • Cahoon, G.A. (1998) French hybrid grapes in North America, In: D.C. Ferree (Ed.), A history of fruit varieties. Good Fruit Grower Magazine, Yakima, Washington. pp. 152–168.

    Google Scholar 

  • Cain, D. W., McKenry, M. V., and Tarailo, R. E. (1984) A new pathotype of root-knot nematode on grape rootstocks. J. Nematol. 16, 207–208.

    PubMed  CAS  Google Scholar 

  • Camargo, U. A. and Ritschel, P. S. (2008) New table and wine grape cultivars: world scenario with emphasis on Brazil. Acta Horticulturae 785, 89–95.

    Google Scholar 

  • Campbell, C. (2005) The Botanist and the Vintner: How Wine Was Saved for the World. Algonquin Books of Chapel Hill, Chapel Hill.

    Google Scholar 

  • Carbonneau, A. (1985) The early selection of grapevine rootstocks for resistance to drought conditions. Amer. J. Enol. Vitic. 36, 195–198.

    Google Scholar 

  • Cattell, H., and Miller, L. S. (1980) The Wines of the East. Vol. III. Native American Grapes. L& H Photojournalism, Lancaster, PA.

    Google Scholar 

  • Cervera, M.-T., Cabezas, J. A., Sancha, J. C., Martinez de Toda, F. and Martinez-Zapater, J.M. (1998) Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor. Appl. Genet. 97, 51–59.

    Article  CAS  Google Scholar 

  • Chisholm, M.G., Guiher, L.A., Vonah, T.M. and Beaumont, J.L. (1994) Comparison of some French-American hybrid wines with White Riesling using Gas Chromatography-Olfactometry. Amer. J. Enol. Vitic. 45, 201–212.

    CAS  Google Scholar 

  • Clark, J. R. (1997) Grape. In: The American Society for Horticultural Sciences, (Ed.). The Brooks and Olmo Register of Fruit and Nut Varieties. ASHS Press, Alexandria, Virginia. pp 248–299.

    Google Scholar 

  • Coleman, C., Copetti, D., Cipriani, G., Hoffmann, S., Kozma, P., Kovács, L., Morgante, M., Testolin, R. and Di Gaspero, G. (2009) The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genet. 10, 89.

    Article  PubMed  CAS  Google Scholar 

  • Conradie, W. J. (1983) Liming and choice of rootstocks as cultural techniques for vines in acid soils. S. Afr. J. Enol. Vitic. 4, 39–44.

    Google Scholar 

  • Costantini, L., Battilana, J., Lamaj, F., Fanizza, G. and Grando, M. (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes. BMC Plant Biol. 8, 38.

    Article  PubMed  CAS  Google Scholar 

  • Cousins, P. (2007) Tiny grape could do big things. Agric. Res. 55, 23.

    Google Scholar 

  • Cousins, P., Johnston, D., Switras-Meyer, S. and Meyer, C. (2007) Recessive resistance to the root-knot nematode Meloidogyne incognita derived from the grapevine rootstock 3309 C. J. Nematology 39, 70–71.

    Google Scholar 

  • Cousins, P. and Lauver, M. (2003) Segregation of resistance to root-knot nematodes in a Vitis vulpina hybrid population. Acta Horticulturae 623, 313–318.

    Google Scholar 

  • Coutos-Thevenot, P., Poinssot, B., Bonomelli, A., Yean, H., Breda, C. et al., (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J. Exp. Bot. 52, 901–910.

    Article  PubMed  CAS  Google Scholar 

  • Crespan, M. (2003) The parentage of Muscat of Hamburg. Vitis 42, 193–197.

    CAS  Google Scholar 

  • Dalbó, M. A., Ye, G.N., Weeden, N.F., Steinkellner, H., Sefc, K.M. and Reisch, B.I. (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43, 333–340.

    Article  PubMed  Google Scholar 

  • Dalbó, M. A., Ye, G.N., Weeden, N.F., Wilcox, W.F. and Reisch, B.I. (2001) Marker-assisted selection for powdery mildew resistance in grape. J. Amer. Soc. Hort. Sci. 126, 83–89.

    Google Scholar 

  • Dangl, G. S., Mendum, M.L., Prins, B.H., Walker, M. A., Meredith, C. P. et al., (2001) Simple sequence repeat analysis of a clonally propagated species: A tool for managing a grape germplasm collection. Genome 44, 432–438.

    Article  CAS  Google Scholar 

  • Delas, J. J. (1992) Criteria used for rootstock selection in France. In: J.A. Wolpert, M.A. Walker and E. Weber. (Eds.). Proceedings Rootstock Seminar: A Worldwide Perspective, Reno, Nevada, June 24, 1992. The American Society for Enology and Viticulture, Davis, California. pp. 1–14.

    Google Scholar 

  • Dettweiler, E., Jung, A., Zyprian, E. and Töpfer, R. (2000) Grapevine cultivar Müller-Thurgau and its true to type descent. Vitis 2, 63–65.

    Google Scholar 

  • Dhekney, S. A., Li, Z.T., Zimmerman, T.W. and Gray, D.J. (2009) Factors influencing genetic transformation and plant regeneration of Vitis. Amer. J. Enol. Vitic. 60, 285–292.

    CAS  Google Scholar 

  • Di Gaspero, G. and Cattonaro, F. (2010) Application of genomics to grapevine improvement. Aust. J. Grape Wine Res. 16 (supplement S1), 122–130.

    Google Scholar 

  • Di Gaspero, G. and Cipriani, G. (2002) Resistance gene analogs are candidate markers for disease-resistance genes in grape (Vitis spp.). Theor. Appl. Genet. 106, 163–172.

    PubMed  Google Scholar 

  • Di Gaspero, G. and Cipriani, G. (2003) Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Molec. Genet. Genomics 269, 612–623.

    Google Scholar 

  • Doligez, A., Audiot, E., Baumes, R. and This, P. (2006) QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Molec. Breeding 18, 109–125.

    Article  CAS  Google Scholar 

  • Doligez, A., Bouquet, A., Danglot, Y., Lahogue, F., Riaz, S. et al., (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor. Appl. Genet. 105, 780–795.

    Article  PubMed  CAS  Google Scholar 

  • Donald, T. M., Pellerone, F., Adam-Blondon, A.-F., Bouquet, A., Thomas, M.R. et al., (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor. Appl. Genet. 104, 610–618.

    Article  PubMed  CAS  Google Scholar 

  • Doucleff, M., Jin, Y., Gao, F., Riaz, S., Krivanek, A.F. et al., (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor. Appl. Genet. 109, 1178–1187.

    Article  PubMed  CAS  Google Scholar 

  • Dutt, M., Li, Z.T., Dhekney, S.A. and Gray, D.J. (2008) A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci. 175, 423–430.

    Article  CAS  Google Scholar 

  • Eibach, R. and Töpfer, R. (2010) Progress in grapevine breeding. In: 10th International Conference on Grapevine Breeding and Genetics, Geneva, New York. New York State Agricultural Experiment Station. (abstract).

    Google Scholar 

  • Eibach, R., Diehl, H. and Alleweldt, G. (1989) Untersuchungen zur Vererbung von Resistenzeigenschaften bei Reben gegen Oidium tuckeri, Plasmopara viticola und Botrytis cinerea. Vitis 28, 209–228.

    Google Scholar 

  • Einset, J. and Lamb, B. (1951) Chimeral sports of grapes. J. Hered. 42, 158–162.

    Google Scholar 

  • Einset, J. and Pratt, C. (1954) Giant sports of grapes. Proc. Amer. Soc. Hort. Sci. 63, 251–256.

    Google Scholar 

  • Ellis, R.H., Hong, T.D. and Roberts, E.H. (1983) A note on the development of a practical procedure for promoting the germination of dormant seed of grape (Vitis spp.). Vitis 22, 211–219.

    Google Scholar 

  • Elshire, R., Glaubitz, J., Sun, Q., Poland, J., Kawamoto, K., Buckler, E. and Mitchell S. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5), e19379. doi:10.1371/journal.pone.0019379.

    Article  PubMed  CAS  Google Scholar 

  • Emanuelli, F., Battilana, J., Costantini, L., Le Cunff, L., Boursiquot, J.M., This, P. and Grando, M.S. (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol. 10, 241.

    Article  PubMed  CAS  Google Scholar 

  • Ergul, A., Kazan, K., Aras, S., Cevik, V., Celik, H. et al., (2006) AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis vinifera L.) varietal groups. Genome 49, 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Ewart, A.J.W. (1988) Sources of variation: Vineyard to wine judging. In: R. Smart, R. Thornton, S. Rodriguez and J. Young (Eds). Proc. 2nd Int. Cool Climate Viticulture and Oenology Symposium, 11–15 January 1988; New Zealand Society for Viticulture and Oenology, Auckland, New Zealand, pp. 209–210.

    Google Scholar 

  • Fanizza, G., Lamaj, F., Costantini, L., Chaabane, R. and Grando, M.S. (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor. Appl. Genet. 111, 658–664.

    Article  PubMed  CAS  Google Scholar 

  • Fatahi, R., Ebadi, A., Bassil, N., Mehlenbacher, S. A. and Zamani, Z. (2003) Characterization of Iranian grapevine cultivars using microsatellite markers. Vitis 42, 185–192.

    CAS  Google Scholar 

  • Fernandez, L., Romieu, C., Moing, A., Bouquet, A., Maucourt, M. et al., (2006) The grapevine fleshless berry mutation. A unique genotype to investigate differences between fleshy and nonfleshy fruit. Plant Phys. 140, 537–547.

    CAS  Google Scholar 

  • Fernandez, L., Torregrosa, L., Segura, V., Bouquet, A., and Martinez-Zapater, J.M. (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J. 61, 545–557.

    Article  PubMed  CAS  Google Scholar 

  • Firoozabady, E. and Olmo, H. P. (1982) The heritability of resistance to root-knot nematode (Meloidogyne incognita acrita CHIT.) in Vitis vinifera x V. rotundifolia hybrid derivatives. Vitis 21, 136–144.

    Google Scholar 

  • Fischer, B. M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K.J. et al., (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor. Appl. Genet. 108, 501–515.

    Article  PubMed  CAS  Google Scholar 

  • Flemion, F. (1937) After-ripening at 5°C favors germination of grape seeds. Contrib. Boyce Thompson Inst. 9, 7–15.

    Google Scholar 

  • Fournier-Level, A., Le Cunff, L., Gomez, C., Doligez, A., Ageorges, A. et al., (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp sativa) berry: A quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183, 1127–1139.

    Article  PubMed  CAS  Google Scholar 

  • Fráguas, J. C. (1999) Tolerância de porta-enxertos de vidiera ao alumínio do solo. Pesq. Agropec. Bras. 34, 1193–1200.

    Article  Google Scholar 

  • Franks, T., Botta, R. and Thomas, M.R. (2002) Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor. Appl. Genet. 104, 192–199.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, M., Cambra, M., Capote, N., Jelkmann, W., Kundu, J. et al., (2007) Safety assessment of transgenic plums and grapevines expressing viral coat protein genes: New insights into real environmental impact of perennial plants engineered for virus resistance. J. Plant Path. 89, 5–12.

    CAS  Google Scholar 

  • Garris, A., Clark, L., Owens, C., McKay, S., Luby, J. et al., (2009) Mapping of photoperiod-induced growth cessation in the wild grape Vitis riparia. J. Amer. Soc. Hort. Sci. 134, 261–272.

    Google Scholar 

  • Golino, D. A. (1993) Potential interactions between rootstocks and grapevine latent viruses. Amer. J. Enol. Vitic. 44, 148–152.

    Google Scholar 

  • Goto-Yamamoto, N., Mouri, H., Azumi, M., and Edwards, K.J. (2006) Development of grape microsatellite markers and microsatellite analysis including oriental cultivars. Amer. J. Enol. Vitic. 57, 105–108.

    CAS  Google Scholar 

  • Grando, M. S., Bellin, D., Edwards, K. J., Pozzi, C., Stefanini, M. et al., (2003) Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor. Appl. Genet. 106, 1213–1224.

    PubMed  CAS  Google Scholar 

  • Grassi, F., Labra, M., Imazio, S., Spada, A., Sgorbati, S. et al., (2003) Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor. Appl. Genet. 107, 1315–1320.

    Article  PubMed  CAS  Google Scholar 

  • Guillen, P., Guis, M., Martinez-Reina, G., Colrat, S., Dalmayrac, S. et al., (1998) A novel NADPH-dependent aldehyde reductase gene from Vigna radiata confers resistance to the grapevine fungal toxin eutypine. The Plant J. 16, 335–343.

    Article  CAS  Google Scholar 

  • Hardy, P.J. (1970) Changes in volatiles of muscat grapes during ripening. Phytochem. 9, 709–715.

    Article  CAS  Google Scholar 

  • Harmon, F.N. and Weinberger, J.H. (1959) Effects of storage and stratification on germination of vinifera grape seeds. Proc. Amer. Soc. Hort. Sci. 73, 147–150.

    Google Scholar 

  • Hébert, D., Kikkert, J. R., Smith, F. D. and Reisch, B. I. (1993) Optimization of biolistic transformation of embryogenic grape cell suspensions. Plant Cell Rep. 13, 405–409.

    Google Scholar 

  • Hedrick, U. P. and Anthony, R. D. (1915) Inheritance of certain characters of grapes. New York State Agricultural College Technical Bulletin No. 45, 3–19.

    Google Scholar 

  • Hirabayashi, T., Kozaki, I. and Akihama, T. (1976) In vitro differentiation of shoots from anther callus in Vitis. HortScience 11, 511–512.

    Google Scholar 

  • Hocquigny, S., Pelsey, F., Dumas, V., Kindt, S., Heloir, M.-C. et al., (2004) Diversification within grapevine cultivars goes through chimeric states. Genome 47, 579–589.

    Article  PubMed  CAS  Google Scholar 

  • Hvarleva, T., Rusanov, K., Lefort, F., Tsvetkov, I., Atanassov A., et al., (2004) Genotyping of Bulgarian Vitis vinifera L. cultivars by microsatellite analysis. Vitis 43, 27–34.

    CAS  Google Scholar 

  • Hwang, C. F., Xu, K. N., Hu, R., Zhou, R., Riaz, S. et al., (2010) Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape. Theor. Appl. Genet. 121, 789–799.

    Article  PubMed  CAS  Google Scholar 

  • Iocco, P., Franks, T. and Thomas, M. R. (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res. 10, 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C. et al., (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Kikkert, J. R., Hébert-Soule, D., Wallace, P. G., Striem, M. J. and Reisch, B. I. (1996) Transgenic plantlets of ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep. 15, 311–316.

    Article  CAS  Google Scholar 

  • Kikkert, J.R., Striem, M.J., Vidal, J.R. Wallace, P.G., Barnard, J. and Reisch, B.I. (2005) Long-term study of somatic embryogenesis from anthers and ovaries of 12 grapevine (Vitis sp.) genotypes. In Vitro Cell. Dev. Biol. - Plant 41, 232–239.

    Google Scholar 

  • Kobayashi, S., Goto-Yamamoto, N. and Hirochika, H. (2004) Retrotransposon-induced mutations in grape skin color. Science 304, 982.

    Article  PubMed  Google Scholar 

  • Krivanek, A. F., Famula, T.R., Tenscher A., and Walker, M.A. (2005) Inheritance of resistance to Xylella fastidiosa within a Vitis rupestris x Vitis arizonica population. Theor. Appl. Genet. 111, 110–119.

    Article  PubMed  CAS  Google Scholar 

  • Krivanek, A. F., Riaz, S. and Walker, M. A. (2006) Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor. Appl. Genet. 112, 1125–1131.

    Article  PubMed  CAS  Google Scholar 

  • Krul, W. R., and Worley, J. F. (1977) Formation of adventitious embryos in callus cultures of ‘Seyval’, a French hybrid grape. J. Amer. Soc. Hort. Sci. 102, 360–363.

    Google Scholar 

  • Labra, M., Imazio, S., Grassi, F., Rossoni, M., Citterio, S. et al., (2003) Molecular approach to assess the origin of cv. Marzemino. Vitis 42, 137–140.

    CAS  Google Scholar 

  • Labra, M., Winfield, M., Ghiani, A., Grassi, F., Sala, F. et al., (2001) Genetic studies on Trebbiano and morphologically related varieties by SSR and AFLP markers. Vitis 40, 187–190.

    CAS  Google Scholar 

  • Ladoukakis, E. D., Lefort, F., Sotiri, P., Bacu, A., Kongjika E., et al., (2005) Genetic characterization of Albanian grapevine cultivars by microsatellite markers. Journal International Des Sciences De La Vigne Et Du Vin 39, 109–119.

    CAS  Google Scholar 

  • Lahogue, F., This, P. and Bouquet, A. (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor. Appl. Genet. 97, 950–959.

    Article  CAS  Google Scholar 

  • Laucou, V., Lacombe, T., Dechesne, F., Siret, R., Bruno, J.-P., Dessup, M., Dessup, T., Ortigosa, P., Parra, P., Roux, C., Santoni, S., Vares, D., Peros, J.-P., Boursiquot, J.-M. and This, P. (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor. Appl. Genet. 122, 1233–1245.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L. S. (1988) Citrus polyploidy—origins and potential for cultivar improvement. Aust. J. Agric. Res. 39, 735–747.

    Article  Google Scholar 

  • Legrand, V., Dalmayrac, S., Latche, A., Pech, J.-C., Bouzayen, M. et al., (2003) Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci. 164, 809–814.

    Article  CAS  Google Scholar 

  • Levadoux, L. (1956) Les populations sauvages et cultivees de Vitis vinifera L. Ann. Amelior. Plantes 6, 59–118.

    Google Scholar 

  • Li, Z. J. T., Dhekney, S. A., Dutt, M. and Gray, D. J. (2008) Improved protocol for Agrobacterium-mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tissue and Organ Culture 93, 311–321.

    Article  CAS  Google Scholar 

  • Lider, L. A. (1954) Inheritance of resistance to a root-knot nematode (Meloidogyne incognita var. acrita Chitwood) in Vitis spp. Proc. Helminthol. Soc. Wash. 21, 53–60.

    Google Scholar 

  • Lider, L. A., Olmo, H. P. and Goheen, A. C. (1988) Hybrid grapevine rootstock named ‘VR O43-43’. United States Plant Patent 6, 319.

    Google Scholar 

  • Lijavetzky, D., Ruiz-Garcia, L., Cabezas, J. A., De Andres, M. T., Bravo, G. et al., (2006) Molecular genetics of berry colour variation in table grape. Molec. Genet. Genomics 276, 427–435.

    Article  CAS  Google Scholar 

  • Lodhi, M. A., Daly, M. J., Ye, G. N., Weeden, N. F. and Reisch, B. I. (1995) A molecular marker based linkage map of Vitis. Genome 38, 786–794.

    Article  PubMed  CAS  Google Scholar 

  • Lopes, M. S., dos Santos, M. R., Dias, J. E. E., Mendonca, D. and da Camara Machado, A. (2006) Discrimination of Portuguese grapevines based on microsatellite markers. J. Biotech. 127, 34–44.

    Article  CAS  Google Scholar 

  • Lopes, M. S., Sefc, K. M., Eiras Dias, E., Steinkellner, H., Laimer da Camara Machado, M. et al., (1999) The use of microsatellites for germplasm management in a Portuguese germplasm grapevine collection. Theor. Appl. Genet. 99, 733–739.

    Article  Google Scholar 

  • Lowe, K. M., and Walker, M. A. (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) x Riparia Gloire (Vitis riparia). Theor. Appl. Genet. 112, 1582–1592.

    Article  PubMed  CAS  Google Scholar 

  • Madero, E., Boubals, D. and Truel, P. (1986) Transmission hereditaire des principaux caracteres des cepages Cabernet Franc, Cabernet Sauvignon et Merlot (V. vinifera L.). Vignevini 13, Suppl. 12, 209–219.

    Google Scholar 

  • Maletic, E., Pejic, I., Kontic, J. K., Piljac, J., Dangl, G. S. et al., (2004) Zinfandel, Dobricic, and Plavac mali: The genetic relationship among three cultivars of the Dalmatian Coast of Croatia. Amer. J. Enol. Vitic. 55, 174–180.

    CAS  Google Scholar 

  • Mandl, K., Santiago, J. L., Hack, R., Fardossi, A. and Regner, F. (2006) A genetic map of Welschriesling x Sirius for the identification of magnesium-deficiency by QTL analysis. Euphytica 149, 133–144.

    Article  CAS  Google Scholar 

  • Martin, J. P., Borrego, J., Cabello, F. and Ortiz, J. M. (2003) Characterization of Spanish grapevine cultivar diversity using sequence-tagged microsatellite markers. Genome 46, 10–18.

    Article  PubMed  CAS  Google Scholar 

  • McGovern, P. E. (2003) Ancient wine: the search for the origins of viticulture. Princeton University Press, Princeton.

    Google Scholar 

  • McGovern, P. E. and Michel, R. H. (1995) The analytical and archaeological challenge of detecting ancient wine: two case studies from the ancient Near East, In: P. E. McGovern, S. J. Fleming and S. H. Katz (Eds.) The Origins and Ancient History of Wine. Gordon and Breach, Amsterdam. pp. 57–67.

    Google Scholar 

  • McLeRoy, S. S. and Renfro, R. E. Jr., (2004) Grape Man of Texas. Eaking Press, Austin, TX.

    Google Scholar 

  • Mejia, N., Soto, B., Guerrero, M., Casanueva, X., Houel, C. et al., (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol. 11, 57.

    Article  PubMed  CAS  Google Scholar 

  • Merdinoglu, D., Butterlin, G., Bevilacqua, L., Chiquet, V., Adam-Blondon, A.-F. et al., (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Molec. Breeding 15, 349–366.

    Article  CAS  Google Scholar 

  • Meredith, C. P, Lider, L. A., Raski, D. J. and Ferrari, N. L. (1982) Inheritance of tolerance to Xiphinema index in Vitis species. Amer. J. Enol. Vitic. 33, 154–158.

    Google Scholar 

  • Meredith, C. P., Bowers, J. E., Riaz, S., Handley, V., Bandman, E. B. et al., (1999) The identity and parentage of the variety known in California as Petite Syrah. Amer. J. Enol. Vitic. 50, 236–242.

    Google Scholar 

  • Moreira, F. M., Madini, A., Marino, R., Zulini, L., Stefanini, M. et al., (2011) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet. Genomes 7, 153–167.

    Google Scholar 

  • Morinaga, K. (2001) Grape Production in Japan. In: M.K. Papademetriou and F.J. Dent (Eds.), Grape Production in the Asia-Pacific Region. Food and Agriculture Office of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand. pp. 38–69.

    Google Scholar 

  • Mortensen, J. A. (1968) The inheritance of resistance to Pierce’s disease in Vitis. J. Amer. Soc. Hort. Sci. 92, 331–337.

    Google Scholar 

  • Motosugi, H., Naruo, T. and Kataoka, D. (1999) The growth of diploid and tetraploid grape rootstocks and ‘Kyoho’ grape grafted on them. J. Japan. Hort. Sci. 68 (Suppl. 2), 112.

    Google Scholar 

  • Motosugi, H., Okudo, K., Kataoka, D. and Naruo, T. (2002a) Comparison of growth characteristics between diploid and colchicines-induced tetraploid grape rootstocks. J. Japan. Hort. Sci. 71, 335–341.

    Article  Google Scholar 

  • Motosugi, H., Naruo, T., Komazaki, S., and Yamada, M. (2002b) Resistance of autotetraploids of grape rootstock cultivars to phylloxera (Daktulosphaira vitifoliae Fitch). Vitis 41, 103–106.

    Google Scholar 

  • Mullins, M. G., and Srinivasan, C. (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cultivar Cabernet Sauvignon) by apomixis in vitro. J. Exp. Bot.27, 1022–1030.

    Google Scholar 

  • Mullins, M. G., Bouquet, A. and Williams, L. E. (1992) Biology of the Grapevine. Cambridge University Press, Cambridge.

    Google Scholar 

  • Munson, T. (1909) Foundations of American Grape Culture. T.V. Munson & Son, Denison, Texas.

    Google Scholar 

  • Myles, S., Boyko, A.R., Owens, C.L., Brown, P.J., Grassi, F., Aradhya, M.K., Prins, B., Reynolds, A., Chia, J.-M., Ware, D., Bustamante, C.D. and Buckler, E.S. (2011) Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. (USA) 108, 3530–3535.

    Article  CAS  Google Scholar 

  • Myles, S., Chia, J.-M., Hurwitz, B., Simon, C., Zhong, G. Y., Buckler, E.S. and Ware, D. (2010) Rapid Genomic Characterization of the Genus Vitis. PLoS ONE 5, e8219.

    Article  PubMed  CAS  Google Scholar 

  • Neal, J. C. (1889) The root-knot disease of peach, orange, and other plants in Florida. U.S. Department of Agriculture, Division of Entomology, Bulletin 20, 1–31.

    Google Scholar 

  • Negrul, A. M. (1938) Evolucija kuljturnyx from vinograda. Doklady Akademii nauk SSSR 8, 585–588.

    Google Scholar 

  • Nicol, J.M., Stirling, G.R, Rose, B.J., May, P. and Heeswijck, R.V. (1999) Impact of nematodes on grapevine growth and productivity: current knowledge and future directions, with special reference to Australian viticulture. Austr. J. Grape Wine Res. 5, 109–127.

    Article  Google Scholar 

  • Office International de la Vigne et du Vin. (2006) Situation Report for the World Vitivinicultural Sector in 2005. Paris.

    Google Scholar 

  • Olmo, H.P. (1942) Storage of grape pollen. Proc. Amer. Soc. Hort. Sci. 41, 219–224.

    Google Scholar 

  • Olmo, H.P. (1971) Vinifera rotundifolia hybrids as wine grapes. Amer. J. Enol. Vitic. 22, 87–91.

    Google Scholar 

  • Olmo, H.P. (1995) The origin and domestication of the Vinifera grape, In: P. E. McGovern (Ed.). The origins and ancient history of wine. Gordon and Breach, Amsterdam. pp. 31–43.

    Google Scholar 

  • Ong, P.K.C. and Acree, T.E. (1999) Similarities in the aroma chemistry of Gewürztraminer variety wines and lychee (Litchi chinesis Sonn.) fruit. J. Agric. Food Chem. 47, 665–670.

    Article  CAS  Google Scholar 

  • Owens, C. L. (2011) Linkage disequilibrium and prospects for association mapping in Vitis. In: A.-F. Adam-Blondon and J.M. Martinez Zapater (Eds.). Genetics, Genomics and Breeding of Grapes. Scientific Publishers, St. Helier, Jersey, British Isles. pp. 93–110.

    Google Scholar 

  • Owens, C.L. (2008) Grapes. In: J.F. Hancock (Ed.), Temperate Fruit Crop Breeding. Springer, pp. 197–233.

    Google Scholar 

  • Paul, H. W. (1996) Science, vine, and wine in modern France. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pauquet, J., Bouquet, A., This, P. and Adam-Blondon, A.-F. (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor. Appl. Genet. 103, 1201–1210.

    Article  CAS  Google Scholar 

  • Pelsy, F. (2010) Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity 104, 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Perl, A. and Eshdat, Y. (1998) DNA transfer and gene expression in transgenic grapes. Biotech. Genet. Engineering Rev. 15, 365–386.

    CAS  Google Scholar 

  • Perl, A., Saad, S., Sahar, N. and Holland, D. (1995) Establishment of long-term embryogenic cultures of seedless Vitis vinifera cultivars -- a synergistic effect of auxins and the role of abscisic acid. Plant Sci. 104, 193–200.

    Article  CAS  Google Scholar 

  • Perrin, M., Gertz, C. and Masson, J. E. (2004) High efficiency initiation of regenerable embryogenic callus from anther filaments of 19-grapevine genotypes grown worldwide. Plant Sci. 167, 1343–1349.

    Article  CAS  Google Scholar 

  • Perrin, M., Martin, D., Joly, D., Demangeat, G., This, P. et al., (2001) Medium-dependent response of grapevine somatic embryogenic cells. Plant Sci. 161, 107–116.

    Article  CAS  Google Scholar 

  • Pezzuto, J.M. (2008) Grapes and human health: A perspective. J. Agric. Food Chem. 56, 6777–6784.

    Article  PubMed  CAS  Google Scholar 

  • Pinkerton, J. N, Vasconcelos, M. C., Sampaio, T. L. and Shaffer, R. G. (2005) Reaction of grape rootstocks to ring nematode Mesocriconema xenoplax. Amer. J. Enol. Vitic. 56, 377–385.

    Google Scholar 

  • Polášková, P., Herszage, J. and Ebeler, S.E. (2008) Wine flavor: chemistry in a glass. Chem. Soc. Rev. 37, 2478–2489.

    Article  PubMed  Google Scholar 

  • Pouget, R. and Ottenwalter, M. (1984) Recherche de nouveaux porte-greffes adaptés aux sols acides. Prog. Agric. Vitic. 101, 73–75.

    Google Scholar 

  • Pratt, C. (1971) Reproductive anatomy in cultivated grapes--a review. Amer. J. Enol. Vitic. 22, 92–109.

    Google Scholar 

  • Prescott, J. A. (1965) The climatology of the vine: The cool limits of cultivation. Trans. Roy. Soc. South Aust. 89, 5–23.

    Google Scholar 

  • Qiu, B.X., Sleper, D.A. and Arelli, A.P.R. (1997) Genetic and molecular characterization of resistance to Heterodera glycines race isolates 1, 3, and 5 in Peking. Euphytica 96, 225–231.

    Article  Google Scholar 

  • Rajasekaran, K. and Mullins, M.G. (1979) Embryos and plantlets from cultured anthers of hybrid grapevines. J. Exp. Bot.30, 399–407.

    Google Scholar 

  • Raman, H., Moroni, J. S., Sato, K., Read, B. J. and Scott, B. J. (2002) Identification of AFLP and microsatellite markers linked with an aluminum tolerance gene in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105, 458–464.

    Article  PubMed  CAS  Google Scholar 

  • Raman, H., Zhang, K., Cakir, M., Appels, R., Garvin, D.F., Maron, L.G., Kochian, L.V., Moroni, J.S., Raman, R., Imtiaz, M., Drake-Brockman, F., Waters, I., Martin, P., Sasaki, T., Yamamoto, Y., Matsumoto, H., Hebb, D.M., Delhaize, E. and Ryan, P.R. (2005) Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48, 781–791.

    Article  PubMed  CAS  Google Scholar 

  • Ramming, D. W., Emershad, R. L. and Tarailo, R. (2000) A stenospermocarpic, seedless Vitis vinifera x Vitis rotundifolia hybrid developed by embryo rescue. HortScience 35, 732–734.

    Google Scholar 

  • Ramming, D.W., Gabler, F., Smilanick, J., Cadle-Davidson, M., Barba, P., Mahanil, S. and Cadle-Davidson, L. (2011) A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathol. 101, 502–508.

    Article  Google Scholar 

  • Regner, F., Stadlbauer, A., Eisenheld, C. and Kaserer, H. (2000) Genetic relationships among Pinots and related cultivars. Amer. J. Enol. Vitic. 51, 7–14.

    CAS  Google Scholar 

  • Reisch, B.I. and Pratt, C. (1996) Grapes. In: J. Janick and J.N. Moore (Eds.), Fruit Breeding. Volume II. Vine and Small Fruits. John Wiley and Sons, New York. pp. 297–359.

    Google Scholar 

  • Riaz, S., Dangl, G. S., Edwards, K. J. and Meredith, C. P. (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor. Appl. Genet. 108, 864–872.

    Article  PubMed  CAS  Google Scholar 

  • Riaz, S., Garrison, K. E., Dangl, G. S., Boursiquot, J.-M. and Meredith, C. P. (2002) Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J. Amer. Soc. Hort. Sci. 127, 508–514.

    CAS  Google Scholar 

  • Riaz, S., Krivanek, A. F., Xu, K. and Walker, M. A. (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V. arizonica. Theor. Appl. Genet. 113, 1317–1329.

    Article  PubMed  CAS  Google Scholar 

  • Riaz, S., Tenscher, A. C., Ramming, D. W. and Walker, M. A. (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor. Appl. Genet. 122, 1059–1073.

    Article  PubMed  CAS  Google Scholar 

  • Riaz, S., Tenscher, A. C., Rubin, J., Graziani, R., Pao, S. S. et al., (2008) Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theor. Appl. Genet. 117, 671–681.

    Article  PubMed  CAS  Google Scholar 

  • Riaz, S., Tenscher, A.C., Graziani, R., Krivanek A.F. and Walker, M.A. (2009) Using marker assisted selection to breed for Pierce’s disease resistance in grapevine. Amer. J. Enol. Vitic. 60, 199–206.

    Google Scholar 

  • Rives, M. (1965) The germination of grape seeds. l. Preliminary experiments (in French, English summary). Ann. Amélior. Plantes 15, 79–91.

    Google Scholar 

  • Rosenfield, C. L., Samuelian, S., Vidal, J. R. and Reisch, B. I. (2010) Transgenic disease resistance in Vitis vinifera: Potential use and screening of antimicrobial peptides. Amer. J. Enol. Vitic. 61, 348–357.

    CAS  Google Scholar 

  • Rossoni, M., Labra, M., Imazio, S., Grassi, F., Scienza, A. et al., (2003) Genetic relationships among grapevine cultivars grown in Oltrepo Pavese (Italy). Vitis 42, 31–34.

    CAS  Google Scholar 

  • Rowhani,, A., Uyemoto, J. K., Golino, D. A. and Martelli, G. P. (2005) Pathogen testing and certification of Vitis and Prunus species. Annu. Rev. Phytopathol. 2005. 43, 6.1–6.18.

    Google Scholar 

  • Sauer, W. and Antcliff, A. J. (1969) Polyploid mutants of grapes. HortScience 4, 226–227.

    Google Scholar 

  • Scott, D.H. and Ink, D.P. (1950) Grape seed germination experiments. Proc. Amer. Soc. Hort. Sci. 56, 134–139.

    Google Scholar 

  • Scott, K. D., Eggler, P., Seaton, G., Rossetto, M., Ablett, E. M. et al., (2000) Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet. 100, 723–726.

    Article  CAS  Google Scholar 

  • Sefc, K. M., Lopes, M. S., Lefort, F., Botta, R., Roubelakis-Angelakis, K. A. et al., (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100, 498–505.

    Article  Google Scholar 

  • Shure, K.B. and Acree, T.E. (1994) Changes in odor-active compounds in Vitis labruscana Cv. Concord during growth and development. J. Agric. Food Chem. 42, 350–353.

    CAS  Google Scholar 

  • Snyder, E. and Harmon, F. N. (1939) Grape progenies of self-pollinated vinifera varieties. Proc. Amer. Soc. Hort. Sci. 37, 625–626.

    Google Scholar 

  • Snyder, E. and Harmon, F. N. (1952) Grape breeding summary 1923–1951. Proc. Amer. Soc. Hort. Sci. 60, 243–246.

    Google Scholar 

  • Spiegel-Roy, P., Shulman, Y., Baron, I. and Ashbel, E. (1987) Effect of cyanamide in overcoming grape seed dormancy. HortScience 22, 208–210.

    CAS  Google Scholar 

  • Stobbs. L. W., Potter, J. W., Killins, R. and Van Schagen, J. G. (1988) Influence of grapevine understock in infection of De Chaunac scion by tomato ringspot virus. Can. J. Plant Pathol. 10, 228–231.

    Article  Google Scholar 

  • This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R. et al., (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109, 1448–1458.

    Article  PubMed  CAS  Google Scholar 

  • This, P., Lacombe, T. and Thomas, M. R. (2006) Historical origins and genetic diversity of wine grapes. Trends Genet. 22, 511–519.

    Article  PubMed  CAS  Google Scholar 

  • This, P., Lacombe, T., Cadle-Davidson, M. and Owens, C. L. (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor. Appl. Genet. 114, 723–730.

    Article  PubMed  Google Scholar 

  • Thomas, M. R. and Scott, N. S. (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as Sequence-Tagged Sites (STSs). Theor. Appl. Genet. 86, 985–990.

    CAS  Google Scholar 

  • Thomas, M. R., Cain, P. and Scott, N. S. (1994) DNA typing of grapevines - a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Molec. Biol. 25, 939–949.

    Article  CAS  Google Scholar 

  • Thomas, M. R., Matsumoto, S., Cain, P. and Scott, N. S. (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor. Appl. Genet. 86, 173–180.

    CAS  Google Scholar 

  • Thompson, M. M. and Olmo, H. P. (1963) Cytohistological studies of cytochimeric and tetraploid grapes. Amer. J. Bot. 50, 901–906.

    Article  Google Scholar 

  • Torregrosa, L. (1998) A simple and efficient method to obtain stable embryogenic cultures from anthers of Vitis vinifera L. Vitis 37, 91–92.

    Google Scholar 

  • Valat, L., Fuchs, M. and Burrus, M. (2006) Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of grapevine fanleaf virus: Characterization and reaction to virus infection upon protoplast electroporation. Plant Sci. 170, 739–747.

    Article  CAS  Google Scholar 

  • Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D. A., Cestaro, A. et al., (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326.

    Article  PubMed  CAS  Google Scholar 

  • Viala, P. and Ravaz, L. (1903) American Vines. 2nd ed. (Translated from French by R. Dubois and E.H. Twight). Freygang-Leary, San Francisco.

    Google Scholar 

  • Vidal, J. R., Kikkert, J. R., Malnoy, M. A., Wallace, P. G., Barnard, J. and Reisch, B.I. (2006) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res. 15, 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Vidal, J. R., Kikkert, J. R., Wallace, P. G. and Reisch, B.I. (2003) High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep. 22, 252–260.

    Article  PubMed  CAS  Google Scholar 

  • Vigne, E., Komar, V. and Fuchs, M. (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Res. 13, 165–179.

    Article  PubMed  CAS  Google Scholar 

  • Vouillamoz, J. F. and Grando, M. S. (2006) Genealogy of wine grape cultivars: ‘Pinot’ is related to ‘Syrah’. Heredity 97, 102–110.

    Article  PubMed  CAS  Google Scholar 

  • Waffo-Téguo, P., Hawthorne, M.E., Cuendet, M., Mérillon, J.-M., Kinghorn, A.D., Pezzuto, J.M. and Mehta, R.G. (2001) Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutrition and Cancer 40, 173–179.

    Article  PubMed  Google Scholar 

  • Wagner, R. (1967) Study of some segregation in progenies of Chasselas, Muscat Ottonel and small-berried Muscat (in French). Vitis 6, 353–363.

    Google Scholar 

  • Walker, A.R., Lee, E., Bogs, J., McDavid, D. A. J., Thomas, M. R. et al., (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 49, 772–785.

    Article  PubMed  CAS  Google Scholar 

  • Walker, G. E. and Stirling, G. R. (2008) Plant-parasitic nematodes in Australian viticulture: key pests, current management practices and opportunities for future improvements. Australasian Plant Pathol. 37, 268–278.

    Article  Google Scholar 

  • Walker, M. A. (1992) Future directions for rootstock breeding. In: J.A. Wolpert, M.A. Walker and E. Weber (Eds.). Proceedings Rootstock Seminar: A Worldwide Perspective, Reno, Nevada, June 24, 1992. The American Society for Enology and Viticulture, Davis, California. pp 60–66.

    Google Scholar 

  • Walker, M. A., Ferris, H. and Eyre, M. (1994a) Resistance in Vitis and Muscadinia to Meloidogyne incognita. Plant Dis. 78, 1055–1038.

    Article  Google Scholar 

  • Walker, M. A., Wolpert, J. A. and Weber, E. (1994b) Viticultural characteristics of VR hybrid rootstocks in a vineyard site infected with grapevine fanleaf virus. Vitis 33, 19–23.

    Google Scholar 

  • Walker, M. A., Lider, L. A., Goheen, A. C., and Olmo, H. P. (1991) VR O39-16 grape rootstock. HortScience 26, 1224–1225.

    Google Scholar 

  • Walker, M.A, Jin, Y., Min, B.E. and Hajdu, E. (1998) Development of resistant rootstocks to control Xiphinema index and fanleaf degeneration. Acta Horticulturae 473, 113–120.

    Google Scholar 

  • Walters, S.A., Wehner, T.C., and Barker, K.R. (1997) A single recessive gene for resistance to the root-knot nematode (Meloidogyne javanica) in Cucumis sativus var hardwickii. J. Hered. 88, 66–69.

    Google Scholar 

  • Wang, M. and Goldman, I.L. (1996) Resistance to root knot nematode (Meloidogyne hapla Chitwood) in carrot is controlled by two recessive genes. J. Hered. 87, 119–123.

    Google Scholar 

  • Wang, Q., Mawassi, M., Sahar, N., Li, P., Violeta, C.-T., Gafny, R., Sela, I., Tanne, E. and Perl, A. (2004) Cryopreservation of grapevine (Vitis spp.) embryogenic cell suspensions by encapsulation-vitrification. Plant Cell, Tissue and Organ Culture 77, 267–275.

    Article  CAS  Google Scholar 

  • Weinberger, J. H. and Harmon, F. N. (1966) Harmony, a new nematode and phylloxera resistant rootstock for vinifera grape. Fruit Var. Hort. Dig. 20, 63–65.

    Google Scholar 

  • Wellington, R. (1939) The Ontario grape and its seedlings as parents. Proc. Amer. Soc. Hort. Sci. 37, 630–634.

    Google Scholar 

  • Welter, L. J., Gokturk-Baydar, N., Akkurt, M., Maul, E., Eibach, R. et al., (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Molec. Breeding 20, 359–374.

    Article  CAS  Google Scholar 

  • Wen, J. (2007) Vitaceae. In: K. Kubitzki (Ed.). The Families and Genera of Vascular Plants. Volume IX: Flowering Plants-Eudicots. Springer-Verlag, Berlin. pp. 467–479.

    Google Scholar 

  • Winkler, A.J. (1949) Grapes and wine. Econ. Bot. 3, 46–70.

    Article  Google Scholar 

  • Xu, K., Riaz, S., Roncoroni, N. C., Jin, Y., Hu, R. et al., (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theor. Appl. Genet. 116, 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Xue, B., Ling, K.-S., Reid, C. L., Krastanova, S., Sekiya, M. et al., (1999) Transformation of five grape rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol.--Plant 35, 226–231.

    Google Scholar 

  • Yamamoto, T., Iketani, H., Ieki, H., Nishizawa, Y., Notsuka, K. et al., (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19, 639–646.

    Article  CAS  Google Scholar 

  • Ye, G. N., Soylemezoglu, G., Weeden, N. F., Lamboy, W. F., Pool, R. M. et al., (1998) Analysis of the relationship between grapevine cultivars, sports and clones via DNA fingerprinting. Vitis 37, 33–38.

    Google Scholar 

  • Zhang, J. K., Hausmann, L., Eibach, R., Welter, L. J., Töpfer, R. et al., (2009) A framework map from grapevine V3125 (Vitis vinifera ‘Schiava grossa’ x ‘Riesling’) x rootstock cultivar ‘Börner’ (Vitis riparia x Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor. Appl. Genet. 119, 1039–1051.

    Article  PubMed  CAS  Google Scholar 

  • Zohary, D. and Hopf, M. (2000) Domestication of Plants in the Old World. Oxford University Press, London.

    Google Scholar 

  • Zohary, D. and Spiegel-Roy, P. (1975) Beginnings of fruit growing in the old world. Science 187, 319–327.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce I. Reisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reisch, B.I., Owens, C.L., Cousins, P.S. (2012). Grape. In: Badenes, M., Byrne, D. (eds) Fruit Breeding. Handbook of Plant Breeding, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0763-9_7

Download citation

Publish with us

Policies and ethics