Skip to main content

American Cranberry

  • Chapter
  • First Online:

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 8))

Abstract

Cranberry breeding has undergone relatively few breeding and selection cycles since domestication in the nineteenth century. The first cranberry breeding program’s objective was to develop varieties with a reduced feeding preference to the blunt-nosed leafhopper, the vector of the phytoplasma ‘false-blossom’ disease. From this program, six varieties were released, of which ‘Stevens,’ released in 1950, became the most widely planted cultivar. Improved consistent yields, fruit color, and season of ripening continue to be objectives of breeding efforts. However, disease resistance, especially against the fruit rot disease complex, and insect resistance are increasingly necessary objectives. Much of the cranberry germplasm has not been fully explored for disease and insect resistance, and other traits of interest. Recent development of genomic resources in cranberry will provide for innovative plant breeding systems that will reduce the time and field space required and facilitate the breeding of unique superior cranberry cultivars to meet the current and future challenges of this important American crop. The cranberry industry continues to be a strong supporter of genetic enhancement efforts, providing land space and funding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Aceto-carmine staining of pollen provides a measure of pollen viability. The cranberry pollen stain survey found that percent stainable pollen from different flowers within an upright was similar, whereas between uprights in a germplasm plot, it was variable. Pollen stainability within Vaccinium has a low environmental effect, thus the most likely cause of variable pollen stainability was due to genotypic variation, i.e., multiple varieties within a plot.

  2. 2.

    Individuals heterozygous for a translocation exhibit reduced gametic viability due to recombination within the interstitial region followed by chromosome segregation which results in generation of genetically unbalanced gametic constitutions (Burnham 1984).

References

  • Averill, A.L. and Sylvia, M.M. (1998) Cranberry insects of the northeast: A guide to identification, biology, and management. Gazette Printing, Easthamptom, MA.

    Google Scholar 

  • Bain, H.F. (1933) Cross pollinating the cranberry. Proc. Wisc. State Cranberry Growers’ Assoc. 47,7–11.

    Google Scholar 

  • Bain H.F. and Dermen, H. (1944) Sectorial polyploidy and phyllotaxy in the cranberry (Vaccinium macrocarpon Ait.). Amer. J. Bot. 31,581–587.

    Article  Google Scholar 

  • Bassil, N., Oda, A., and Hummer, K.E. (2009) Blueberry microsatellite markers identify cranberry cultivars. Acta Horticulturae 810,181–186.

    CAS  Google Scholar 

  • Bergman, H.F. (1950) Cranberry flower and fruit production in Massachusetts. Cranberries 15(4),6–10.

    Google Scholar 

  • Boches, P.S., Bassil, N.V., and Rowland, L.J. (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Molecular Ecology Notes 5,657–660.

    Article  CAS  Google Scholar 

  • Bruederle, L.P., Hugan, M.S., Dignan, J.M. and Vorsa, N. (1996) Genetic variation in natural populations of the large cranberry, Vaccinium macrocarpon Ait. (Ericaceae). Bull. Torrey Bot. Club 123,41–47.

    Article  Google Scholar 

  • Burnham, CR. (1984) Discussion in Cytogenetics. Burgess Publishing Company, St. Paul, Minnesota.

    Google Scholar 

  • Camp, W.H. (1944) A preliminary treatment of the biosystematy of Oxycoccus. Bul. Torrey Bot. Club 71,426–437.

    Article  Google Scholar 

  • Camp, W.H. (1945) The North American blueberries with notes on other groups of Vacciniaceae. Brittonia 5,203–275.

    Article  Google Scholar 

  • Cane, J.H., Schiffhauer, D., and Kervin, L.J. (1996) Pollination, foraging, and nesting ecology of the leaf-cutting bee Megachile (Delomegachile) addenda (Hymenoptera: Megachilidae) on cranberry beds. Ann. Entomol. Soc. Am. 89(3),361–367.

    Google Scholar 

  • Cane, J.H. and Schiffhauer, D. (1997) Nectar production of cranberries: genotypic differences and insensitivity to soil fertility. J. Amer. Soc. Hort. Sci. 122,665–667.

    Google Scholar 

  • Cane, J.H. and Schiffhauer, D. (2001) Pollinator genetics and pollination: do honey bee colonies selected for pollen-hoarding field better pollinators of cranberry Vaccinium macrocarpon? Ecol. Ent. 26,117–123.

    Article  Google Scholar 

  • Caruso, F.L., Bristow, P.R. and Oudemans, P.V. (2000) Cranberries: The Most Intriguing Native North American Fruit. APSnet Features. Online. doi:10.1094/APSnetFeature-2000-1100.

  • Caruso, F. L., and Wilcox, W. F. (1990) Phytophthora cinnamomi as a cause of root rot and dieback of cranberry in Massachusetts. Plant Disease. 74,664–667.

    Article  Google Scholar 

  • Cech, R., and Tudor, G. (2005) Butterflies of the East Coast. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Chandler, F.B., Wilcox, R.B., Bain, H.F., Bergman, H.F. and Dermen H. (1947) Cranberry breeding investigation of the U.S. Dept. of Agriculture. Cranberries 12, 6–9 (May); 12,6–10 (June).

    Google Scholar 

  • Chandler, F.B., Bain, H.F., and Bergman, H.F. (1950). The Beckwith, the Stevens and the Wilcox cranberry varieties. Cranberries 14(11), 6–7 (March).

    Google Scholar 

  • Chandler, F.B. and Demoranville, I. (1958) Cranberry varieties of North America. Exp. Sta. College of Agric. Univ. Mass. Bull. 513.

    Google Scholar 

  • Clark, J.R. and Finn, C.E. (2010) Register of New Fruit and Nut Cultivars List 45. HortSci. 45,716–756.

    Google Scholar 

  • Coppola, E.D., Conrad, E.C., and Cotter, R. (1978) High pressure liquid chromatographic determination of major organic acids in cranberry juice. JAOAC 61,1490–2.

    CAS  Google Scholar 

  • Costich, D.E., Ortiz, R., Meagher, T.R., Bruederle, L.P. and Vorsa, N. (1993) Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry. TAG 86,1001–1006.

    CAS  Google Scholar 

  • Dana, M. N. (1983) Cranberry cultivar list. Fruit Var. J. 37:88–95.

    Google Scholar 

  • Davenport, R.J. and Vorsa, N. (1999) Cultivar fruiting and vegetative response to nitrogen fertilizer in cranberry. J. Amer. Soc. Hort. Sci. 124,90–93.

    Google Scholar 

  • Debnath, S.C. (2006) An assessment of the genetic diversity collection within a collection of wild cranberry (Vaccinium macrocarpon Ait.) clones with RAPD-PCR. Genetic Resources and Crop Evolution 54,509–517.

    Article  Google Scholar 

  • Derman, H. (1947) Periclinal cytochimeras and histogenesis. Amer. J. Bot. 34,32–43.

    Article  Google Scholar 

  • Doughty, C.C. and Garren, R. (1970) ‘Crowley’ a new early maturing cranberry variety for Washington and Oregon. Fruit Varieties and Horticulture Digest 15,65.

    Google Scholar 

  • Eck, P. (1990) The American Cranberry. Rutgers University Press. New Brunswick and London.

    Google Scholar 

  • Elle, E. (1996) Reproductive trade-offs in genetically distinct clones of Vaccinium macrocarpon, the American cranberry. Oecologia 107,61–70.

    Article  Google Scholar 

  • Foo, L.Y., Lu, Y., Howell, A.B. and Vorsa, N. (2000) Structural characterization of A-Type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli, Phytochemistry 54(2),173–181.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, H.J. (1948) Cranberry insects in Massachusetts. Mass. Bul. 445, Part I, pp.64.

    Google Scholar 

  • Franklin, H.J. (1950) Cranberry insects in Massachusetts. Mass. Bul. 445, Parts II–VII, pp.88.

    Google Scholar 

  • Galletta, G.J. (1975) Blueberries and cranberries. In Advances in Fruit Breeding. Eds. J. Janick and J.N. Moore, Purdue Univ. Press, West Lafayette, pp.154–196.

    Google Scholar 

  • Georgi, L., Herai, R.H., Vidal, R., Falsarella Carazzolle, M., Guimarães Pereira, G., Polashock, J., and Vorsa, N. (2011) Cranberry microsatellite marker development from assembled next-generation genomic sequence. Molecular Breeding: DOI 10.1007/S11032-011-9613-7.

    Google Scholar 

  • Jaakola, L., Poole, M., Jones, M.O., Kämäräinen-Karppinen, T., Koskimäki, J.J., Hohtola, A., Häggman, H., Fraser, P.D., Manning, K., King, G.J., Thomson, H., and Seymour, G.B. (2010) A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiology 153,1619–1629.

    Article  PubMed  CAS  Google Scholar 

  • Jacquemart, A.-L. (1997) Vaccinium oxycoccos L. (Oxycoccus palustris Pers.) and Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh. (Oxycoccus microcarpus Turcz. ex Rupr.). J. Ecol. 85,381–396.

    Article  Google Scholar 

  • Jeffers, S. N. (1988) Phytophthora Species Associated with a Cranberry Decline Syndrome in Wisconsin. Phytopathology. 78,1572.

    Google Scholar 

  • Johnson-Cicalese, J., Vorsa, N., and Polashock, J. (2009) Breeding for fruit rot resistance in Vaccinium macrocarpon. Acta Hort. 810,191–198.

    Google Scholar 

  • Koes R., Verweij, W., and Quattrocchio, F. (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10,236–242.

    Article  PubMed  CAS  Google Scholar 

  • Kust, T. (1965) The need for a cranberry breeding program. Univ. Wis. Dept. Hort. Mimeo 627.

    Google Scholar 

  • Laluk, K., and Megiste, T. (2010) Necrotroph attacks on plants: Wanton destruction or covert extortion? The Arabidopsis Book 8:e0136. doi:10.1199/tab.0136

    PubMed  Google Scholar 

  • Mahy, G.; Bruederle, L. P.; Connors, B.; Hofwegen, M. V. and Vorsa, N. (2000) Allozyme evidence for genetic autopolyploidy and high genetic diversity in tetraploid cranberry, Vaccinium oxycoccus (Ericaceae). Amer J Bot. 87, 1882–1889.

    Article  CAS  Google Scholar 

  • McCown, B.H., and Zeldin, E.L. (2003) ’HyRed’, an early, high fruit color cranberry hybrid. HortScience 38,304–305.

    Google Scholar 

  • McCown, B.H. and Zeldin, E.L. (2005) Vaccinium spp. Cranberry. In: Biotechnology of Fruit and Nut Crops. Ed. R.E. Litz. Biotechnology Series No. 29. CABeBooks. pp.247–261.

    Google Scholar 

  • McMurrough, I. and McDowell, J. 1978. Chromatographic separation and automated analysis of flavanols. Anal. Biochem. 91,92–100.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J., Koren, S, and Sutton, G. (2010) Assembly algorithms for next-generation sequencing data. Genomics 95,315–327.

    Article  PubMed  CAS  Google Scholar 

  • Morgante, M., and Olivieri, A.M. (1993) PCR-amplified microsatellites as markers in plant genetics. Plant Journal 3,175–182.

    Article  PubMed  CAS  Google Scholar 

  • Neto, C.C., Dao, C.A., Salvas, M.R., Autio, W.R., and Vanden Heuvel, J.E. (2010) Variation in concentration of phenolic acid derivatives and quercetin glycosides in foliage of cranberry that may play a role in pest deterrence. J. Amer. Soc. Hort. Sci. 135,494–500.

    Google Scholar 

  • Novy, R.G., Kobak, C., Goffreda, J., and Vorsa, N. (1994) RAPDs identify varietal misclassification and regional divergence in cranberry (Vaccinium macrocarpon Ait.). Theor. and Appl. Genet. 88(8),1004–1010.

    Google Scholar 

  • Novy, R.G. and Vorsa, N. (1995) Identification of intracultivar genetic heterogeneity in cranberry using silver-stained RAPDs. HortSci. 30,600–604.

    CAS  Google Scholar 

  • Novy, R.G., Patten, K. and Vorsa, N. (1996) Identifying genotypic heterogeneity in the ‘McFarlin’ cranberry: A randomly-amplified polymorphic DNA (RAPD) and phenotypic analysis. J. Amer. Soc. Hort. Sci. 121,210–215.

    Google Scholar 

  • Novy, R.G. and Vorsa, N. (1996) Evidence for RAPD heteroduplex formation in cranberry: Implications for pedigree and genetic relatedness studies and a source of codominant RAPD markers. Theor. and Appl. Genet. 92,840–849.

    Article  CAS  Google Scholar 

  • Ortiz, R. and Vorsa, N. (1998) Tetrad analysis with translocation heterozygotes in cranberry (Vaccinium macrocarpon Ait.): Interstitial chiasma and directed segregation of centromeres. Hereditas 129,75–84.

    Article  Google Scholar 

  • Ortiz, R. and Vorsa, N. (2004) Transmission of a cyclical translocation in two cranberry cultivars. Hereditas 140,81–86.

    Article  PubMed  CAS  Google Scholar 

  • Oudemans, P. V. (1999) Phytophthora species associated with cranberry root rot and surface irrigation water in New Jersey. Plant Disease. 83,251–258.

    Article  Google Scholar 

  • Oudemans, P. V., Caruso, F. L., and Stretch, A.W. (1998) Cranberry fruit rot in the northeast: A complex disease. Plant Dis. 82,1176–1184.

    Article  Google Scholar 

  • Polashock, J., and Vorsa, N. (2002a) American Cranberry (Vaccinium macrocarpon) Transformation and Regeneration. In: Transgenic Fruit Crops. Eds. Khachatourians, G.G., McHughen, A., Scorza, R., Nip, W.K., and Hui, Y.H. Marcel Dekker Inc., New York, NY.

    Article  CAS  Google Scholar 

  • Polashock, J. and Vorsa, N. (2002b) Development of SCARs for DNA fingerprinting and germplasm analysis of cranberry. J. Amer. Soc. Hort. Sci. 127(4), 677–684.

    CAS  Google Scholar 

  • Ravanko, O. (1990) The taxonomic value of morphological and cytological characteristics in Oxycoccus (subgenus of Vaccinium, Ericaceae) species in Finland. Annales Botanici Fennici, 27,235–239.

    Google Scholar 

  • Rigby, B. and Dana, M.N. (1972) Flower opening, pollen shedding, stigma receptivity and pollen tube growth in the cranberry. HortSci. 7,84–85.

    Google Scholar 

  • Roberts, R.H. and Struckmeyer, B.E. (1942) Growth and fruiting of the cranberry. Proc. Amer. Soc. Hort. Sci. 40,373–379.

    Google Scholar 

  • Rodriguez-Saona, C., Vorsa, N., Singh, A.P., Johnson-Cicalese, J., Szendrei, Z., Mescher, M.C. and Frost, C.J. (2011) Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defenses. J. Exper. Bot. 62(8),2633–2644.

    Google Scholar 

  • Roper, T.R. (2006) The physiology of cranberry yield. Wisconsin Cranberry Crop Management Newsletter, Vol. XIX. www.hort.wisc.edu/cran.

  • Roper, T.R., Stang, E.J., and Hawker, G.M. (1992) Early season leaf removal reduces fruit set and size in cranberry. HortScience 27,75.

    Google Scholar 

  • Roper, T.R. and Klueh, J.S. (1994) Removing new growth reduced fruiting in cranberry. HortScience 29,199–201.

    Google Scholar 

  • Roper, T.R., Klueh, J., and Hagidimitriou, M. (1995) Shading timing and intensity influences fruit set and yield in cranberry. HortScience 30,525–527.

    Google Scholar 

  • Roper, T.R. and Vorsa, N. (1997) Cranberry:Botany and Horticulture. Hort. Rev. 21,215–249.

    Google Scholar 

  • Rowland, L.J., Dhanaraj, A.L., Polashock, J.J., and Arora, R. (2003) Utility of blueberry-derived EST-PCR primers in related Ericaceae species. HortSci. 38:1428–1432.

    CAS  Google Scholar 

  • Sapers, G.M. and Hargrave, D.L. (1987) Proportions of individual anthocyanins in fruits of cranberry cultivars. J. Amer. Soc. Hort. Sci. 112,100–104.

    CAS  Google Scholar 

  • Sapers, G.M., Phillips, J.G., Rudolf, H.M., and DiVito, A.M. (1983) Cranberry quality: selection procedures for breeding programs. J. Amer. Soc. Hort. Sci. 108,241–246.

    CAS  Google Scholar 

  • Sarracino, J.M. and Vorsa, N. (1991) Self and cross fertility in cranberry. Euphytica 58, 129–136.

    Article  Google Scholar 

  • Schmid, P. (1977) Long term investigation with regard to the constituents of various cranberry varieties (Vaccinium macrocarpon Ait.). Acta Hort. 61,241–254.

    Google Scholar 

  • Serres, R., Stang, E., McCabe, D., Russell, D., Mahr, D. and McCown, B. (1992) Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plants. J. Amer. Soc. Hort. Sci. 117,174–180.

    CAS  Google Scholar 

  • Serres, R.A., Zeldin, E.I., and McCown, B.H. (1997) Applying biotechnological approaches to Vaccinium improvement: A review. Acta Hort. 446, 221–226.

    Google Scholar 

  • Singh, A. P., Wilson, T., Kalk, A.J., Cheong, J., and Vorsa, N. (2009) Isolation of specific cranberry flavonoids for biological activity assessment. Food Chem. 116, 963–968.

    Article  PubMed  CAS  Google Scholar 

  • Vander Kloet, S.P. (1983) The taxonomy of Vaccinium & Oxycoccus. Rhodora 85,1–43.

    Google Scholar 

  • Vander Kloet, S.P. (1988) The genus Vaccinium in North America. Res. Branch Agric. Can. Publ. 1828.

    Google Scholar 

  • Varshney, R.K., Graner, A., and Sorrells, M.E. (2005) Genic microsatellite markers in plants: features and applications. Trends in Biotechnology 23,48–55.

    Article  PubMed  CAS  Google Scholar 

  • Vorsa, N. and Welker, W.V. (1985) Relationship between fruit size and extractable anthocyanin content in cranberry. HortScience 20,402–403.

    CAS  Google Scholar 

  • Vorsa, N., Polashock, J., Howell, A., Cunningham, D., and Roderick, R. (2002). Evaluation of fruit chemistry in cranberry germplasm: potential for breeding varieties with enhanced health constituents. Acta Hort. 574,215–219.

    CAS  Google Scholar 

  • Vorsa, N., Polashock, J., Cunningham, D., and Roderick, R. (2003) Genetic inferences and breeding implications from analysis of cranberry germplasm anthocyanin profiles. J Amer Soc Hort Sci 128, 691–697.

    CAS  Google Scholar 

  • Vorsa, N. and Polashock, J. (2005) Alteration of anthocyanin glycosylation in cranberry through interspecific hybridization. J. Amer. Soc. Hort. Sci. 130,711–715.

    CAS  Google Scholar 

  • Vorsa, N. and Johnson-Cicalese, J. (2005) Breeding the American cranberry for health constituents: genetic variation for proanthocyanidin content. Acta Hort. 715,243–251.

    Google Scholar 

  • Vorsa, N., Johnson-Cicalese, J., and Polashock, J.J. (2009) A blueberry by cranberry hybrid derived from a Vaccinium darrowii x (V. macrocarpon x V. oxycoccus) intersectional cross. Acta Hort. 810,187–189.

    CAS  Google Scholar 

  • Vvedenskaya, I.O. and Vorsa, N. (2004) Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Sci. 167,1043–1054.

    CAS  Google Scholar 

  • Wilcox, R.B. (1951) Tests of cranberry varieties and seedlings for resistance to the leafhopper vector of false blossom disease. Phytopath 41,722–735.

    Google Scholar 

  • Wilcox, R.B. and Beckwith, C.S. (1933) A factor in the varietal resistance of cranberries to the false blossom disease. J. Agric. Res. 47,583–590.

    Google Scholar 

  • Winkel-Shirley, B. (2001) Flavonoid Biosynthesis. A colorful model for genetics, biochemistry cell biology, and biotechnology. Plant Physiology 126,485–493.

    Article  PubMed  CAS  Google Scholar 

  • Zeldin, E.L. and McCown, B.H. (1997) Intersectional hybrids of lingonberry Vaccinium vitis-idaea, sect. Vitis-idaea) and cranberry (V. macroacrpon, sect. Oxycoccus to V. reticulatum, sect. Macropelma). Acta Hort. 446,235–238.

    Google Scholar 

Download references

Acknowledgments

The authors thank Laura Georgi and Juan Zalapa for their contribution to the Biotechnology and Molecular Tools section. Funding sources: Ocean Spray Cranberries, Inc.; USDA-NIFA Research Initiative Grant No. 2009-34155-19957; USDA-CSREES SCRI Grant No. 2008-51180-04878.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholi Vorsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vorsa, N., Johnson-Cicalese, J. (2012). American Cranberry. In: Badenes, M., Byrne, D. (eds) Fruit Breeding. Handbook of Plant Breeding, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0763-9_6

Download citation

Publish with us

Policies and ethics