Advertisement

Fruit Breeding pp 697-728 | Cite as

Almond

  • Rafel Socias i Company
  • José Manuel Alonso
  • Ossama Kodad
  • Thomas M. Gradziel
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 8)

Abstract

The almond is economically the most important tree nut in the world. Its production is limited to areas characterized by a Mediterranean climate, including regions in the Mediterranean countries, the Central Valley of California, the Middle East, Central Asia, the Himalayan slopes, and the Southern Hemisphere, including Chile, Argentina, South Africa, and Australia. The main production region in the world is the Central Valley of California. The cultivation of almond in the eastern Mediterranean area occurred as early as the second millennium BC. Selection for domesticated almond types favored sweet kernels and larger nut size among these wild populations. Traditional seed propagation resulted in extensive genetic variability due, in part, to the obligate out-crossing nature of the self-incompatible almond. Local cultivars and landraces were selected over centuries of almond growing and in the twentieth century breeding activities began. Currently, there is active almond breeding programs in Spain, France, the USA and Israel. Self-compatibility has become the main objective along with late blooming, frost tolerance, resistance to diseases, and tree architecture. Despite the difficulties in defining a kernel quality ideotype due to the differences in consumer preferences, almond quality is currently an important breeding goal.

Keywords

Almond P. amygdalus P. dulcis Breeding Cultivars Roostocks Germplasm Self-compatibility Quality Nut Stone fruit Drupe 

References

  1. Almeida, C.R.M. de. 1945. Âcerca da improdutividade na amandoeira. An. Inst. Agron. Lisboa 15:1–186.Google Scholar
  2. Alonso, J.M. and Socias i Company, R. 2005. Self-incompatibility expression in self-compatible almond genotypes may be due to inbreeding. J. Amer. Soc. Hort. Sci. 130:865–869.Google Scholar
  3. Alonso, J.M., Ansón, J.M., Espiau, M.T. and Socias i Company, R. 2005. Determination of endo-dormancy break in almond flower buds by a correlation model using the average temperature of different day intervals and its application to the estimation of chill and heat requirements and blooming date. J. Amer. Soc. Hort. Sci. 130:308–318.Google Scholar
  4. Alonso Segura, J.M. and Socias i Company, R. 2007. Negative inbreeding effects in tree fruit breeding: self-compatibility transmission in almond. Theor. Appl. Genet. 115:151–158.Google Scholar
  5. Alston, J., Carman, H., Christian, J.E., Doreman, J., Murua, J.R. and Sexton, R. 1995. Optimal reserve and export policies for the California almond industry: theory, econometrics and simulation. Univ. California, Giannini Foundation Monograph 42, 130 p.Google Scholar
  6. Aranzana, M.J., Cosson, P., Dirlewanger, E., Ascasibar, J., Cipriani, G., Arús, P., Testolin, R., Abbott, A., King, G.J. and Iezzoni, A.F. 2003. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor. Appl. Genet. 106:819–825.Google Scholar
  7. Arteaga, N. and Socias i Company, R. 2002. Heritability of fruit and kernel traits in almond. Acta Hort. 591:269–274.Google Scholar
  8. Arulsekar, S., Parfitt, D.E. and Kester, D.E. 1986. Comparison of isozyme variability in peach and almond cultivars. J. Hered.77:272–274.Google Scholar
  9. Arús, P., Olarte, C., Romero, M. and Vargas, F.J. 1994a. Linkage analysis of ten isozyme genes in F1 segregating progenies of almond. J. Amer. Soc. Hort. Sci. 119:339–344.Google Scholar
  10. Arús, P., Messeguer, R., Viruel, M.A., Tobutt, K., Dirlewanger, E., Santi, F., Quarta, R. and Ritter, E. 1994b. The European Prunus mapping project. Euphytica 77:97–100.Google Scholar
  11. Arús, P., Ballester, J., Jáuregui, B., Joobeur, T., Truco, M.J. and Vicente, M.C. de. 1999. The European Prunus mapping project: update of marker development in almond. Acta Hort 484:331–336.Google Scholar
  12. Arús, P., Yamamoto, T., Dirlewanger, E. and Abbott A.G. 2006. Synteny in the Rosaceae. Plant Breed. Rev. 27:175–211.Google Scholar
  13. Bacarella A., Chironi, G. and Barbera, G. 1991. Aspetti tecnici economici e di mercato del mandorlo in Sicilia. Quarderni di Ricerca di Sperimentazione (Palermo, Sicily) 40:1–191.Google Scholar
  14. Bacchetta, L., Avanzato, D., Drogoudi, P., Duval, H., Socias i Company, R. and Spera, D. 2008. The European SAFENUT project for improving almond genetic resources utilization. XIV GREMPA, 30 March – 4 April 2008, Athens, Greece.Google Scholar
  15. Ballester, J., Bošković, R., Batlle, I., Arús, P., Vargas, F. and Vicente, M.C. de. 1998. Location of the self-incompatibility gene on the almond linkage map. Plant Breed. 117:69–72.Google Scholar
  16. Ballester, J., Socias i Company, R., Arús, P. and Vicente, M.C. de. 2001. Genetic mapping of a major gene delaying blooming time in almond. Plant Breed. 120:268–270.Google Scholar
  17. Barckley, K.K., Uratsu, S.L., Gradziel T.M. and Dandekar, A.M. 2006. Multidimensional analysis of S-alleles from cross-incompatible groups of California almond cultivars. J. Amer. Soc. Hort. Sci. 131:632–636.Google Scholar
  18. Bartolozzi, F., Warburton, M.L., Arulsekar, S. and Gradziel, T.M. 1998. Genetic characterization and relatedness among California almond cultivars and breeding lines detected by randomly am-plified polymorphic DNA (RAPD) analysis. J. Amer. Soc. Hort. Sci. 123:381–387.Google Scholar
  19. Berger, P. 1969. Aptitude à la transformation industrielle de quelques variétés d’amandier. Bull. Techn. Inf. 241:577–580.Google Scholar
  20. Bernad, D. and Socias i Company, R. 1994. Caracterización morfológica y bioquímica de algunas selecciones autocompatibles de almendro. Inf. Técn. Econ. Agrar. 90V:103–110.Google Scholar
  21. Bliss, F.A., Arulsekar, S., Foolad, M.R., Becerra, A.M., Gillen, A., Warburton, M.L., Dandekar, A.M., Kocsisne, G.M. and Mydin, K.K. 2002. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529.Google Scholar
  22. Bošković, R., Tobutt, K.R., Batlle, I., Duval, H., Martínez-Gómez, P. and Gradziel, T.M. 2003. Stylar ribonucleases in almond: correlation with and prediction of self-incompatibility genotypes. Plant Breed. 122:70–76.Google Scholar
  23. Bošković, R., Tobutt, K.R., Ortega, E., Sutherland, B.G. and Godini A. 2007. Self-(in)compatibility of the almonds P. dulcis and P. webbii: detection and cloning of ‘wild-type S f’ and new self-compatibility alleles encoding inactive S-RNases. Mol. Genet. Genomics. 278:665–676.Google Scholar
  24. Browicz K. and Zohary D. 1996. The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication. Genet. Resour. Crop Evol. 43: 229–247.Google Scholar
  25. Campalans, A., Pagès, M. and Messeguer, R. 2001. Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol. 21:633–643.Google Scholar
  26. Cerdá Juan, D. 1973. Economía antigua de Mallorca, p. 417–448. In: J. Mascaró Pasarius (ed.): Historia de Mallorca, vol I. Ed. J. Mascaró Pasarius, Palma de Mallorca, Spain.Google Scholar
  27. Cerezo, M., Socias i Company, R. and Arús, P. 1989. Identification of almond cultivars by pollen isoenzymes. J. Amer. Soc. Hort. Sci. 114:164–169.Google Scholar
  28. Channuntapipat, C., Wirthensohn, M., Ramesh, S.A., Batlle, I., Arús, P., Sedgley, M. and Collins, G. 2003. Identification of incompatibility genotypes in almond using specific primers based on the introns of the S-alleles. Plant Breed. 122:164–168.Google Scholar
  29. Cinelli, F. and Loreti, F. 2004. Evaluation of some plum rootstocks in relation to lime-induced chlorosis by hydroponic culture. Acta Hort. 658:421–427.Google Scholar
  30. Columella, L.J.M. 1988. De re rustica. Spanish edition by A. Holgado Redondo, MAPA, Madrid.Google Scholar
  31. Corredor, E., Román, M., García, E., Perera, E., Arús, P. and Naranjo, T. 2004. Physical mapping of rDNA genes enables to establish the karyotype of almond. Ann. Appl. Biol. 144:219–222.Google Scholar
  32. Darlington, C.G. 1930. Studies in Prunus. III. J. Genet. 22:65–93.Google Scholar
  33. Denisov V.P. 1988. Almond genetic resources in the USSR and their uses in production and breeding. Acta Hort. 224:229–236.Google Scholar
  34. Dicenta, F., García, J.E. and Carbonell, E.A. 1993. Heritability of flowering, productivity and maturity in almond. J. Hort. Sci. 68:113–120.Google Scholar
  35. Dicenta, F., Ortega, E., Martínez-Gómez, P., Sánchez-Pérez, R., Gambín, M. and Egea, J. 2009. Penta and Tardona: two new extra-late flowering self-compatible almond cultivars. Acta Hort. 814:189–192.Google Scholar
  36. Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Calderé, F., Cosson, P., Howad, W. and Arús, P. 2004a. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc. Natl. Acad. Sci. USA 101:9891–9896.Google Scholar
  37. Dirlewanger. E., Cosson, P., Howad, W., Capdeville, G., Bosselut, N., Claverie, M., Voisin, R., Poizat, C., Lafargue, B., Baron, O., Laigret, F., Kleinhentz, M., Arús, P. and Esmenjaud, D. 2004b. Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid - location of root-knot nematode resistance genes. Theor. Appl. Genet. 109:827–832.Google Scholar
  38. Duval, H. 1999. ‘Mandaline’, a new French almond vatiety. Nucis 8:36.Google Scholar
  39. Duval, H. and Grasselly, C. 1994. Behaviour of some self-fertile almond selections in the southeast of France. Acta Hort. 373:69–74.Google Scholar
  40. Egea, J., Dicenta, F., Berenguer, T. and García, J.E. 2000. Antoñeta and Marta almonds. HortScience 35:1358–1359.Google Scholar
  41. Espiau, M.T., Ansón, J.M. and Socias i Company, R. 2002. The almond germplasm bank of Zaragoza. Acta Hort. 591:275–278.Google Scholar
  42. Estelrich, P. 1907. El almendro y su cultivo en el mediodía de España e Islas Baleares. Hijos de J. Cuesta, Madrid - Antonio López, Barcelona.Google Scholar
  43. Felipe, A.J. 1984. Enrancinement de l’amandier par bouturage ligneux. Options Méditerr. CIHEAM/IAMZ 84/II:97–100.Google Scholar
  44. Felipe, A.J. 1988. Observaciones sobre comportamiento frente a heladas tardías en almendro. Rap. EUR 11557:123–130.Google Scholar
  45. Felipe, A.J. 1989. Rootstock for almond. Present situation. Options Méditerr. Ser. A 5:13–17.Google Scholar
  46. Felipe, A.J. 1992. Aptitude pour la propagation chez l’amandier ‘Garrigues’ et sa descendence. Rap. EUR 14081:73–79.Google Scholar
  47. Felipe, A.J. 2000. El almendro: El material vegetal. Integrum, Lérida.Google Scholar
  48. Felipe, A.J. 2009. ‘Felinem’, ‘Garnem’, and ‘Monegro’ almond  ×  peach hybrid rootstocks. HortScience 44:196–197.Google Scholar
  49. Felipe, A.J. and Socias i Company, R. 1987. ‘Aylés’, ‘Guara’, and ‘Moncayo’ almonds. HortScience 22:961–962.Google Scholar
  50. Felipe, A.J., Gómez-Aparisi, J., Socias i Company, R. and Carrera, M. 1997. The almond  ×  peach hybrid rootstock breeding program at Zaragoza (Spain). Acta Hort. 451: 259–262.Google Scholar
  51. Fernández i Martí, À., Alonso, J.M., Espiau, M.T., Rubio-Cabetas, M.J. and Socias i Company, R. 2009a. Genetic diversity in Spanish and foreign almond germplasm assessed by molecular characterization with simple sequence repeats. J. Amer. Soc. Hort. Sci. 134:535–542.Google Scholar
  52. Fernández i Martí, A., Hanada, T., Alonso, J.M., Yamane, H., Tao, R. and Socias i Company, R. 2009b. A modifier locus affecting the expression of the S–RNase gene could be the cause of breakdown of self-incompatibility in almond. Sex. Plant Reprod. 22:179–186.Google Scholar
  53. Font i Forcada, C., Kodad, O., Juan, T., Estopañan, G. and Socias i Company, R. 2011. Genetic variability and pollen effect on the transmission of the chemical components of the almond kernel. Span. J. Agric. Res. 9:781–789.Google Scholar
  54. Foolad, M.R., Arulsekar, S., Becerra, V. and Bliss, F.A. 1995 A genetic map of Prunus based on an interspecific cross between peach and almond. Theor. Appl. Genet. 91:262–269.Google Scholar
  55. Gagnard, J.M. 1954. Recherches sur les caractères systematiques et sur les phénomènes de stérilité chez les variétés d’amandiers cultivées en Algérie. Ann. Inst. Agric. Serv. Rech. Exp. Agric. Algérie 8:1–163.Google Scholar
  56. Garcia-Mas, J., Messeguer, R., Arús, P. and Puigdomènech, P. 1996. Accumulation of specific mRNAs during almond fruit development. Plant Sci. 113:185–192.Google Scholar
  57. Godini A. 1979. Ipotesi sulla comparsa dell’autocompatibilità nel mandorlo. Riv. Sci. Tecn. Agrar. 19(2/3):3–10.Google Scholar
  58. Godini A. 2000. About the possible relationship between Amygdalus webbii Spach and Amygdalus communis L. Nucis 9:17–19.Google Scholar
  59. Gómez Aparisi, J. and Felipe, A.J. 1984. Surgreffage d’amandiers. Options Méditerr. CIHEAM/IAMZ 1984/II: 41–49.Google Scholar
  60. Gómez Aparisi, J., Carrera, M., Felipe, A.J. and Socias i Company, R. 2002. ‘Garnem’, ‘Monegro’ y ‘Felinem’: nuevos patrones híbridos almendro × melocotonero resistentes a nematodos y de hoja roja para frutales de hueso. Inf. Técn. Econ. Agrar. 97V:282–288.Google Scholar
  61. Gradziel, T.M. 2003. Interspecific hybridizations and subsequent gene introgression within Prunus subgenus Amygdalus. Acta Hort. 622: 249–255.Google Scholar
  62. Gradziel, T.M. 2008. Almond (Prunus dulcis), p. 1–33. In: M. Priyadarshan and S.M. Jain (eds). Breeding of plantation crops. Springer Sci. Publ. Berlin.Google Scholar
  63. Gradziel, T.M. and Kester, D.E. 1998. Breeding for self-fertility in California almond cultivars. Acta Hort. 470:109–117.Google Scholar
  64. Gradziel, T.M., Martínez-Gómez, P., Dicenta, F. and Kester, D.E. 2001. The utilization of related almond species for almond variety improvement. J. Amer. Pomol. Soc. 55:100–108.Google Scholar
  65. Gradziel, T.M., Lampinen, B., Connell, J.H. and Viveros, M. 2007. ‘Winters’ almond: an early-blooming, productive and high-quality pollenizer for ‘Nonpareil’. HortScience 42:1725–1727.Google Scholar
  66. Grasselly, C. 1972. L’amandier: caractères morphologiques et phsyiologiques des variétés, modalité de leurs transmissions chez les hybrids de première génération. PhD Thesis, Univ. Bordeaux, France.Google Scholar
  67. Grasselly C. 1976. Les espèces sauvages d’amandier. Options Méditerr. 32: 28–43.Google Scholar
  68. Grasselly C. and Crossa-Raynaud P. 1980. L’amandier. G.P. Maisonneuve et Larose, Paris, XII + 446 pp.Google Scholar
  69. Grasselly, C., Olivier, G. and Niboucha, A. 1992. Le caractère “autocompatibilité” de l’amandier dans le programme de l’I.N.R.A. Rap. EUR 14081:9–17.Google Scholar
  70. Graves, R. 1955. The Greek myths. George Brazillier Inc. New York, USA.Google Scholar
  71. Gustafson W.A., Morrisey T.M. and Bishop C. 1989. Plant exploration and germplasm collection of cold hardy woody plants for Nebraska from the People’s Republic of China. Univ. Nebaraska, Lincoln, Neb.Google Scholar
  72. Hansen, J. and Renfrew, J.M. 1978. Palaeolithic-Neolithic seed remains at Franchthi Cave, Greece. Nature 271:349–352.Google Scholar
  73. Hauagge, R., Kester, D.E. and Asay, R.A. 1987a. Isozyme variation among California almond cultivars: II Cultivar characterization and origins. J. Amer. Soc. Hort. Sci. 112:693–698.Google Scholar
  74. Hauagge, R., Kester, D.E. and Asay, R.A. 1987b. Isozyme variation among California almond cultivars: I. Inheritance. J. Amer. Soc. Hort. Sci. 112:687–693.Google Scholar
  75. Holland, D., Bar-Ya’akov, I, Hatib, K., Albert, T., Mani, Y. and Spiegel-Roy, P. 2006. ‘Shefa’ almond. HortScience 41:1502–1503.Google Scholar
  76. Janick, J. 2005. Breeding intractable traits in fruit crops: dream the impossible dream. Introduction. HortScience 40:1944.Google Scholar
  77. Jáuregui, B. 1998. Localización de marcadores moleculares ligados a caracteres agronómicos en un cruzamiento interespecífico almendro  ×  melocotonero. PhD Thesis, Univ. Barcelona, Spain.Google Scholar
  78. Jáuregui. B., Vicente, M.C. de, Messeguer, R., Felipe, A., Bonnet, A., Salesses, G. and Arús, P. 2001. A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor. Appl. Genet. 102:1169–1176.Google Scholar
  79. Joobeur, T., Viruel, M.A., Vicente, M.C. de, Jáuregui, B., Ballester, J., Dettori, M.T., Verde, I., Truco, M.J., Messeguer, R., Batlle, I., Quarta, R., Dirlewanger, E. and Arús, P. 1998. Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor. Appl. Genet. 97:1034–1041.Google Scholar
  80. Joobeur, T., Periam, N., Vicente, M.C. de, King, G.J. and Arús, P. 2000. Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655.Google Scholar
  81. Juniper, B.E., Watkins, R. and Harris, S.A. 1999. The origin of the apple. Acta Hort. 484: 27–33.Google Scholar
  82. Kester, D.E. and Asay, R. 1975. Almonds, p. 387–419. In: J. Janick and J.N. Moore (eds.): Advances in fruit breeding. Purdue Univ. Press, West Lafayette, IN, USA.Google Scholar
  83. Kester, D.E. and Gradziel, T.M. 1996. Almonds, p. 1–97. In: J. Janick and J.N. Moore (eds.): Fruit breeding, vol 3, John Wiley & Sons, New York, USA.Google Scholar
  84. Kester, D.E. and Grasselly, C. 1987. Almond rootstocks, p. 265–293. In: R.C. Rom and R.F. Carlson (eds.). Rootstocks for fruit crops. Wiley, New York, USA.Google Scholar
  85. Kester, D.E., Raddi, P. and Asay, R. 1973. Correlation among chilling requirements for germination, blooming and leafing in almond (Prunus amygdalus Batsch). Genetics 74:s135.Google Scholar
  86. Kester, D.E., Hansche, P.E., Beres, V. and Asay R.N. 1977. Variance components and heritability of nut and kernel traits in almond. J. Amer. Soc. Hort. Soc. 102:264–266.Google Scholar
  87. Kester D.E., Gradziel T.M. and Grasselly C. 1990. Almonds (Prunus). Acta Hort. 290:699–758.Google Scholar
  88. Kester, D.E., Asay, R.A. and Gradziel, T.M. 2001. ‘Nickels’ almond  ×  peach hybrid clonal rootstock. HortScience 37:415–417.Google Scholar
  89. Kester, D.E., Shackel, K.A., Micke, W.C., Viveros, M. and Gradziel, T.M. 2004. Noninfectious bud failure in ‘Carmel’ almond: I. Pattern of development in vegetative progeny trees. J. Amer. Soc. Hort. Sci. 129:244–249.Google Scholar
  90. Kochba, J. and Spiegel-Roy, P. 1976. Alnem 1, Alnem 88, Alnem 201: nematode resistant rootstock seed sources. HortScience 11:270.Google Scholar
  91. Kodad, O. and Socias i Company, R. 2006. Influence of genotype, year and type of fruiting branches on the productive behaviour of almond. Scientia Hort. 109:297–302.Google Scholar
  92. Kodad, O and Socias i Company, R. 2008 Significance of flower bud density for cultivar evaluation in almond. HortScience 43:1753–1758.Google Scholar
  93. Kodad, O., Alonso, J.M., Sánchez, A., Oliveira, M.M. and Socias i Company, R. 2008. Evaluation of genetic diversity of S-alleles in an almond germplasm collection. J. Hort. Sci. Biotechnol. 83:603–608.Google Scholar
  94. Kodad, O., Socias i Company, R., Sánchez, A. and Oliveira, M.M. 2009. The expression of self-compatibility in almond may not only be due to the presence of the Sf allele. J. Amer. Soc. Hort. Sci. 134:221–227.Google Scholar
  95. Kodad, O., Alonso, J.M., Fernández i Martí, À., Oliveira, M.M. and Socias i Company, R. 2010. Molecular and physiological identification of new S-alleles associated with self-(in)compatibility in local Spanish almond cultivars. Scientia Hort. 123:308–311.Google Scholar
  96. Kovalyov N.V. and Kostina K.F. 1935. A contribution to the study of the genus Prunus Focke. Questions of taxonomy and plant breeding (in Russian). Tr. Prikl. Bot. Genet. Selek. Ser. 8, 4:1–76.Google Scholar
  97. Ladizinsky, G. 1999. On the origin of almond. Genet. Resour. Crop Evol. 46:143–147.Google Scholar
  98. López, M., Mnejja, M., Rovira, M., Collins, G., Vargas F.J., Arús, P. and Batlle, I. 2004. Self-incompatibility genotypes in almond re-evaluated by PCR, stylar ribonucleases, sequencing analysis and controlled pollinations. Theor. Appl. Genet. 109:954–964.Google Scholar
  99. López, M., Romero, M.A., Vargas, F.J. and Batlle, I. 2005. ‘Francolí’, a late flowering almond cultivar re-classified as self-compatible. Plant Breed. 124:502–506.Google Scholar
  100. Loreti, F. and Massai, R. 1998. Sirio: new peach  ×  almond almond  ×  peach hybrid rootstock for peach. Acta Hort. 465:229–236.Google Scholar
  101. Ma, R.C. and Oliveira, M.M. 2001. Molecular cloning of the incompatibility genes S 1 and S 3 from almond (Prunus dulcis cv. Ferragnès). Sex. Plant Reprod. 14:163–167.Google Scholar
  102. Maggioni, L. and Lipman, E. 2006. Report of a working group on Prunus. Bioversity International, Rome, Italy, 128 p.Google Scholar
  103. Martínez-Gómez, P. and Gradziel, T.M. 2003. Sexual polyembryony in almond. Sex. Plant Reprod. 16:135–139.Google Scholar
  104. Martínez-Gómez, P., Arulsekar, S., Potter, D. and Gradziel, T.M 2003a. An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131:313–322.Google Scholar
  105. Martínez-Gómez, P., Arulsekar, S., Potter, D. and Gradziel, T.M. 2003c. Relationships among peach and almond and related species as detected by SSR markers. J. Amer. Soc. Hort. Sci. 128:667–671.Google Scholar
  106. Martínez-Gómez, P., Sozzi, G.O., Sánchez-Pérez, R., Rubio, M. and Gradziel, T.M. 2003b. New approaches to Prunus tree crop breeding. J. Food Agric. Environ. 1:52–63.Google Scholar
  107. Martínez-Gómez, P., Sánchez-Pérez, R., Rubio, M., Gradziel, T. M., Sozzi, G.O. 2005. Application of recent biotechnologies to Prunus tree crop genetic improvement. Ciencia Investigacion Agraria 32:55–78.Google Scholar
  108. Martínez-Gómez, P., Sánchez-Pérez, R., Dicenta, F., Howad, W. and Gradziel, T.M. 2006. Almond, p. 229–242. In: C. Kole (ed.). Genome mapping and molecular breeding, vol. 4, Fruits and nuts. Springer-Verlag, Heidelberg, Berlin.Google Scholar
  109. Martins, M., Tenreiro, R. and Oliveira, M.M. 2003. Genetic relatedness of Portuguese almond cultivars assessed by RAPD and ISSR markers. Plant Cell Rep. 22:71–78.Google Scholar
  110. Monastra, F. and Raparelli, E. 1997. Inventory of almond research, germplasm and references. FAO REUR Technical Series 51, Rome, 232 p.Google Scholar
  111. Moreno, M.A. 2004. Breeding and selection of Prunus rootstocks at the Aula Dei Experimental Station, Zaragoza, Spain. Acta Hort. 658:519–528.Google Scholar
  112. Niklasson, M. 1989. The European almond catalogue. Nordic Gene Bank, Alnarp, Sweden, 38 p.Google Scholar
  113. Ortega, E., Sutherland, B.G., Dicenta, F., Bošković, R. and Tobutt, K.R. 2005. Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S alleles and correction of reported S genotypes. Plant Breed. 124:188–196.Google Scholar
  114. Ortega, E., Bošković, R., Sargent, D.J. and Tobutt, K.R. 2006. Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of new synonyms and evidence of intragenic recombination. Mol. Genet. Genomics 276:413–426.Google Scholar
  115. Popov, M.G., Kostina, K.F. and Poyarkova, A.I. 1929. Wild trees and shrubs in Central Asia (in Russian). Tr. Prikl. Bot. Genet. Selek. 2: 241–483.Google Scholar
  116. Rikhter, A.A. 1969. Ways and methods of almond breeding (in Russian). Tr. Gos. Nikit. Sad 43:81–94.Google Scholar
  117. Rikhter, A.A. 1972. Biological basis for the creation of almond cultivars and commercial orchards (in Russian). Ed. AN SSSR, Glavny Bot. Sad, Moscow, Russia.Google Scholar
  118. Sánchez-Pérez, R., Dicenta, F. and Martínez-Gómez, P. 2004. Identification of S-alleles in almond using multiplex-PCR. Euphytica 138:263–269.Google Scholar
  119. Sánchez-Pérez, R., Howad, W., Dicenta, F., Arús, P. and Martínez-Gómez, P. 2007. Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed. 126:310–318.Google Scholar
  120. Sarvisé, R. and Socias i Company, R. 2005. Variability and heritability of bud density and branching habit in almond. Acta Hort. 663:401–404.Google Scholar
  121. Sathe, S.K., Teuber, S.S., Gradziel, T.M. and Roux, K.H. 2001. Electrophoretic and immunological analyses of almond genotypes and hybrids. J. Agric. Food Chem. 49:2043–2052.Google Scholar
  122. Schirra, M. 1997. Postharvest technology and utilization of almonds. Hort. Rev. 20:267–292.Google Scholar
  123. Shiran, B., Amirbakhtiar, N., Kiani, S., Mohammadi, S., Sayed-Tabatabaei, B.E. and Moradi, H. 2007. Molecular characterization and genetic relationship among almond cultivars assessed by RAPD and SSR markers. Scientia Hort. 111:280–292.Google Scholar
  124. Socias i Company, R. 1984. A genetic approach to the transmission of self-compatibility in almond (Prunus amygdalus Batsch). Options Méditerr. CIHEAM/IAMZ 84/II:123–127.Google Scholar
  125. Socias i Company R. 1990. Breeding self-compatible almonds. Plant Breed. Rev. 8:313–338.Google Scholar
  126. Socias i Company R. 1998. Fruit tree genetics at a turning point: the almond example. Theor. Appl. Genet. 96:588–601.Google Scholar
  127. Socias i Company, R. 2001. Almendro, p. 271–274. In: F. Nuez and G Llácer (eds.): La horticultura española. SECH – Ed. Horticultura, Reus, Spain.Google Scholar
  128. Socias i Company, R. 2001b. Differential growth of almond pollen tubes in three environments. Cah. Options Méditerr. 56: 59–64.Google Scholar
  129. Socias i Company, R. 2002. Latest advances in almond self-compatibility. Acta Hort. 591:205–212.Google Scholar
  130. Socias i Company, R. 2004. The contribution of Prunus webbii to almond evolution. Plant Genet. Resour. Newsl. 14:9–13.Google Scholar
  131. Socias i Company, R. and Felipe, A.J. 1977. Heritability of self-compatibility in almond. III Coll.GREMPA, 3–7 October 1977, Bari, 181–183.Google Scholar
  132. Socias i Company, R. and Felipe, A.J. 1988. Self-compatibility in almond: transmission and recent advances in breeding. Acta. Hort. 224:307–317.Google Scholar
  133. Socias i Company, R. and Felipe, A.J. 1992 Almond: a diverse germplasm. HortScience 27:717–718, 803.Google Scholar
  134. Socias i Company, R. and Felipe, A.J. 1999. ‘Blanquerna’, ‘Cambra’ y ‘Felisia’: tres nuevos cultivares autógamos de almendro. Inf. Técn. Econ. Agrar. 95V:111–117.Google Scholar
  135. Socias i Company, R. and Felipe, A.J. 2007. ‘Belona’ and ‘Soleta’ almonds. HortScience 42:704–706.Google Scholar
  136. Socias i Company, R., Felipe, A.J., Gómez Aparisi, J., García, J.E. and Dicenta, F. 1998. The ideotype concept in almond. Acta Hort. 470:51–56.Google Scholar
  137. Socias i Company, R., Felipe, A.J. and Gómez Aparisi, J. 1999. A major gene for flowering time in almond. Plant Breed. 118:443–448.Google Scholar
  138. Socias i Company, R., Felipe, A.J. and Gómez Aparisi, J. 2003. Almond bloom in a changing climate. J. Amer. Pomol. Soc. 57: 89–92.Google Scholar
  139. Socias i Company, R., Alonso, J.M. and Gómez Aparisi, J. 2004. Fruit set and productivity in almond as related to self-compatibility, flower morphology and bud density. J. Hort Sci. Biotechnol. 79:754–758.Google Scholar
  140. Socias i Company, R., Kodad, O., Alonso, J.M. and Gradziel, T.M. 2008a. Almond quality: a breeding perspective. Hort. Rev. 34:197–238.Google Scholar
  141. Socias i Company, R., Kodad, O., Alonso, J.M. and Felipe, A.J. 2008b. ‘Mardía’ almond. HortScience 43: 2240–2242.Google Scholar
  142. Sorkheh, K., Shiran, B., Aranzana, M.J., Mohammadi, S.A. and Martinez-Gomez, P. 2007a. Application of amplified fragment length polymorphism (AFLP) analysis to plant breeding and genetics: procedures, applications and prospects. J. Food Agric. Environ. 5:197–204.Google Scholar
  143. Sorkheh, K., Shiran, B., Gradziel, T.M., Epperson, P., Martinez-Gomez, P., and Asadi, E. 2007b. Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: Genetic diversity among genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 1563:327–344.Google Scholar
  144. Spiegel-Roy P. 1986. Domestication of fruit trees, p. 201–211. In: C. Barigozzi (ed.) The origin and domestication of cultivated plants. Elsevier, Amsterdam.Google Scholar
  145. Suelves, M. and Puigdomènech, P. 1998. Molecular cloning of the cDNA coding for the (R)-(+)-mandelonitrile lyase of Prunus amygdalus: temporal and spatial expression patterns in flowers and mature seeds. Planta 206:388–393.Google Scholar
  146. Tabuenca, M.C, Mut, M. and Herrero, J. 1972. Influencia de la temperatura en la época de floración del almendro. An. Estac. Exp. Aula Dei 11:378–395.Google Scholar
  147. Tamura, M., Ushijima, K., Sassa, H., Hirano, H., Tao, R., Gradziel, T.M. and Dandekar, A.M. 2000. Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor. Appl. Genet. 101:344–349.Google Scholar
  148. Tao, R., Watari, A., Hanada, T., Habu, T., Yaegaki, H., Yamaguchi, M. and Yamane, Y. 2007. Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol. Biol. 63:109–123.Google Scholar
  149. Testolin, R., Messina, R., Lain, O., Marrazo, T., Huang, G. and Cipriani, G. 2004. Microsatellites isolated in almond from an AC-repeat enriched library. Mol. Ecol. Notes 4:459–461.Google Scholar
  150. Tufts, W.P. 1919. Almond pollination. Calif. Agric. Sta. Bull. 306.Google Scholar
  151. Ushijima, K., Sassa, H., Tao, R., Yamane, H., Dandekar, A.M., Gradziel, T.M. and Hirano, H. 1998. Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol. Gen. Genet. 260:261–268.Google Scholar
  152. Ushijima, K., Sassa, H., Kusaba, M., Tao, R., Tamura, M., Gradziel, T.M., Dandekar, A.M. and Hirano, H. 2001. Characterization of the S-locus region of almond (Prunus dulcis): analysis of a somaclonal mutant and a cosmid conting for an S haplotype. Genetics 158:379–386.Google Scholar
  153. Ushijima, K., Sassa, H., Dandekar, A.M., Gradziel, T.M., Tao, R. and Hirano, H. 2003. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781.Google Scholar
  154. Vargas, F.J. and Romero, M. 1994. ‘Masbovera’, ‘Glorieta’ and ‘Francolí’, three new almond varieties from IRTA. Acta Hort. 373:75–82.Google Scholar
  155. Vargas, F.J., Romero, M.A., Clavé, J., and Batlle, I. 2005. Early selection in the almond breeding programme at IRTA Mas Bové. Options Méditerr. Ser. A 63: 17–21.Google Scholar
  156. Vargas, F., Romero, M., Clavé, J., Vergés, J., Santos, J. and Batlle, I. 2008. ‘Vayro’, ‘Marinada’, ‘Constantí’, and ‘Tarraco’ almonds. HortScience 43:535–537.Google Scholar
  157. Vezvaei, A., Hancock, T.W., Giles, L.C., Clarke, G.R. and Jackson, J.F. 1995. Inheritance and linkage of isozyme loci in almond. Theor. Appl. Genet. 91:432–438.Google Scholar
  158. Viruel, M.A., Messeguer, R., Vicente, M.C. de, Garcia-Mas, J., Puigdomènech, P., Vargas, F. and Arús, P. 1995. A linkage map with RFLP and isozyme markers for almond. Theor. Appl. Genet. 91:964–971.Google Scholar
  159. Watkins, R. 1979. Cherry, plum, peach, apricot and almond. Prunus spp., p. 242–247. In: N.W. Simmonds (ed.), Evolution of crop plants. Logman, London, UK.Google Scholar
  160. Wu, S.B., Wirthensohn, M., Hunt, P., Gibson, J.P. and Sedgley, M. 2008. High resolution melting analysis of almond SNPs derived from ESTs. Theor. Appl. Genet. 118:1–14.Google Scholar
  161. Wu, S.B., Franks, T.K., Hunt, P., Wirthensohn, M., Gibson, J.P. and Sedgley, M. 2010. Discrimination of SNP genotypes associated with complex haplotypes by high resolution melting analysis in almond: implications for improved marker efficiencies. Mol. Breed. 35:351–357.Google Scholar
  162. Xie, H., Sui, Y., Chang, F.Q., Xu, Y. and Ma, R.C. 2006. SSR allelic variation in almond (Prunus dulcis Mill.). Theor. Appl. Genet. 112:366–372.Google Scholar
  163. Xiloyannis, C., Dichio, B., Tuzio, A.C., Kleinhentz, M., Salesses, G., Gómez-Aparisi, J., Rubio-Cabetas, M.J. and Esmenjaud, D. 2007. Characterization and selection of Prunus rootstocks resistant to abiotic stresses: waterlogging, drought and iron chlorosis. Acta Hort. 732: 247–251.Google Scholar
  164. Zohary, D. and and Hopf, M. 1993. Domestication of plants in the old world. Clarendon Press, Oxford, UK.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rafel Socias i Company
    • 1
  • José Manuel Alonso
    • 1
  • Ossama Kodad
    • 1
  • Thomas M. Gradziel
    • 2
  1. 1.Unidad de FruticulturaCentro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)ZaragozaSpain
  2. 2.Department of Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations