Fruit Breeding pp 329-367 | Cite as

Apple

Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 8)

Abstract

The cultivated apple, Malus xdomestica Borkh., is a interspecific hybrid complex of allopolyploid origin. The progenitor species is thought to be M. sieversii (Lodeb.) Roem., which hybridized with both European and Asian species throughout its domestication. Modern breeding continues to employ relatively few of the 25–30 species of Malus from throughout the northern hemisphere for both scion and rootstock development. The apple is the most produced temperate tree crop and is widely grown throughout the temperate zone and recently it has been expanding into subtropical and tropical zones. Major goals of scion breeding programs include fruit quality, disease resistance (scab, fire blight, powdery mildew), nutritional components and excellent postharvest traits to allow long storage and use as a fresh-cut product. Rootstock breeding efforts emphasize resistance to abiotic and biotic stress as well as plant vigor control. Much progress has been seen in the integration of biotechnology with the development of transformation systems, multiple maps, a large number of markers, extensive EST libraries and, most recently, with the whole genome sequencing of apple. Research has identified marker–traits associations for various disease resistance, plant architecture, postharvest, and flavor traits. International collaborative efforts are actively working to exploit the biotechnological approaches to understand the genetic basis of a range of commercially important traits to improve the efficiency of breeding programs.

Keywords

Malus x domestica Pome fruit Pip fruit Allopolyploid Origin Apple scab Venturia Powdery mildew Podosphaera Fire blight Rootstock Dwarfing Allergenicity Fresh-cut Domestication Post harvest Antioxidants Marker traits association Incompatibility 

References

  1. Abe, K., Kotoda, N., Kato, H. and Soejima, J. (2007) Resistance sources to Valsa canker (Valsa ceratosperma) in a germplasm collection of diverse Malus species. Plant Breeding 126, 449–453.CrossRefGoogle Scholar
  2. Aikman, D.P. and Langton, F.A. (1983) Replication in initial selection trials of clonally propagated crops. Euphytica 32, 821–829.CrossRefGoogle Scholar
  3. Alspach, P.A. and Oraguzie, N.C. (2002)Estimation of genetic parameters of apple (Malus domestica) fruit quality from open pollinated families. New Zealand J. Crop Hort. Sci. 30, 219–228.CrossRefGoogle Scholar
  4. Alston, F.H., Philipps, K.L. and Evans, K.M. (2000) A Malus gene list. Acta Hort. 538, 561–570.Google Scholar
  5. Antofie, A., Lateur, M., Oger, R., Patocchi, A., Durel, C.E. and van de Weg, W.E. (2007) A new versatile database created for geneticist and breeders to link molecular and phenotypic data in perennial crops: the AppleBreed DataBase. Bioinformatics 23, 882–891.PubMedCrossRefGoogle Scholar
  6. Ban, Y., Honda, C., Hatsuyama, Y., Igarashi, M., Bessho, H. and Moriguchi, T. (2007) Isolation and functional analysis of a myb transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48, 958–970.PubMedCrossRefGoogle Scholar
  7. Batlle, I. and Alston, F. H. (1996) Genes determining leucine aminopeptidase and mildew resistance from ornamental apple, ‘White Angel’. Theor. Applied Genetics 93, 179–182.CrossRefGoogle Scholar
  8. Belfanti, E., Silfverberg-Dilworth, E., Tartarini, S., Patocchi, A., Barbieri, M., Zhu, J., Vinatzer, B.A., Gianfranceschi, L., Gessler, C. and Sansavini, S. (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc. Natl. Acad. Sci. USA 101, 886–890.PubMedCrossRefGoogle Scholar
  9. Biedrzycka, E. and Amarowicz, R. (2008) Diet and Health: Apple polyphenols as antioxidants. Food Reviews Internat. 24, 235–251.CrossRefGoogle Scholar
  10. Biggs, A.R. and Miller, S.S. (2001) Relative susceptibility of selected apple cultivars to Colletotrichum acutatum. Plant Disease 85, 657–660.CrossRefGoogle Scholar
  11. Blanpied, D. and Silsby, K. (1992) Predicting harvest date windows for apples. Cornell Cooperative Extension Information Bulletin 221.Google Scholar
  12. Blazek, J., Opatova, H., Golias, J. and Homutova, I. (2007) Ideotype of apples with resistance to storage disorders. Hort. Sci. (Prague) 24, 107–113.Google Scholar
  13. Bolar, J.P., Norelli, J., Harman, G.E., Brown, S.K., and Aldwinckle, H.S. (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma harzianum against the pathogenic fungus (Venturia inaequalis) in transgenic plants. Transgenic Research 10, 533–543.PubMedCrossRefGoogle Scholar
  14. Boyer, J. and Liu, R.H. (2004) Apple phytochemicals and their health benefits. Nutrition J. 3:5 (www.nutritionj.com/content/3/1/5).
  15. Braniste, N., Militaru, M. and Budan, S. (2008). Two scab resistant columnar apple cultivars. Acta Hort. 767, 351–354.Google Scholar
  16. Broothaerts, W. (2003) New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor. Appl. Genet. 106, 703–714.PubMedGoogle Scholar
  17. Brown, S.K. (2008) Breeding and biotechnology for flavor development in apple (Malus x domestica Borkh.) pp. 147–156. In: Havkin-Frenkel, D. and Belanger, F.C. (eds.): Biotechnology in flavor production. Blackwell Publishing.Google Scholar
  18. Brown, S.K. and Maloney, K. E. (2004) Malus x domestica Apple. pp. 475–511. In: R. Litz (ed.) Biotechnology of Fruit and Nut Crops. CAB International, Oxon, United Kingdom.Google Scholar
  19. Brown, S.K. and Maloney, K.E. (2003) Genetic improvement of apple: Breeding, markers, mapping and biotechnology. pp. 31–59. In: Ferree, D. and Warrington, I. (eds.) Apples: Botany, Production and Uses. CAB International, Cambridge, MA, USA.Google Scholar
  20. Bulley, S.M., F.M. Wilson, P. Hidden, A.L. Phillips, S.J. Croker and D.J. James. (2005) Modification of gibberellin biosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotech. J. 3, 215–223.CrossRefGoogle Scholar
  21. Bus, V. G. M., Chagne, D., Bassett, C.M., Bowatte, D., Calenge, F., Celton, J.M., Durel, C.E., Malone, M.T., Patocchi, A., Ranatunga, A.C., Rikkerink, E.H.A., Tustin, D.S., Zhou, J. and Gardiner, S.E. (2007) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genetics Genomics 4, 223–236.CrossRefGoogle Scholar
  22. Bus V.G.M., Laurens F.N.D., van de Weg W.E., Rusholme R.L., Rikkerink E.H.A., Gardiner S.E., Bassett H.C.M., Kodde L.P. and Plummer K.M. (2005a) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in M. pumila R12740-7A. New Phytologist 166,1035–1049.PubMedCrossRefGoogle Scholar
  23. Bus V.G.M., Rikkerink E.H.A., van de Weg E.W., Gardiner S.E., Bassett H.C.M., Kodde L.P., Parisi L., Laurens F.N.D., Rusholme R., Meulenbroek B. and Plummer, K.M. (2005b) The Vr and Vx scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Mol. Breeding 15, 103–116.CrossRefGoogle Scholar
  24. Bus, V. G. M. (2006) A partial diallel study of powdery mildew resistance in six apple cultivars under three growing conditions with different disease pressures. Euphytica 148, 235–242.CrossRefGoogle Scholar
  25. Büttner, R., Fischer, M., Forsline, P.L., Geibel, M. and Ponomarenko, V.V. (2004) Gene banks for the preservation of wild apple genetic resources. J. Fruit Ornamental Plant Research 12, 99–104.Google Scholar
  26. Caffier, V. and Laurens, F. (2005) Breakdown of Pl2, a major gene of resistance to apple powdery mildew, in a French experimental orchard. Plant Path. 54, 116–124.CrossRefGoogle Scholar
  27. Caffier, V. and Parisi, L. (2007) Development of apple powdery mildew on sources of resistance to Podosphaera leucotricha, exposed to an inoculum virulent against the major resistance gene Pl-2. Plant Breeding 126, 319–322.CrossRefGoogle Scholar
  28. Calenge, F., Drouet, D., Denance, C., van de Weg, W.E., Brisset, M.-N., Paulin, J.P. and Durel, C.-E. (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor. Appl. Genet. 111,128–135.PubMedCrossRefGoogle Scholar
  29. Calenge, F. and Durel, C.-E. (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol. Breeding 17, 329–339.CrossRefGoogle Scholar
  30. Calenge F., Faure A., Goerre M., Gebhardt C., Van De Weg W.E., Parisi L., Durel C-E. (2004) Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopath. 94, 370–379.CrossRefGoogle Scholar
  31. Celton, J.M., Tustin, S., Chagne, D. and Gardiner, S. (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequencing. Tree Genetics and Genomes 5, 93–107.CrossRefGoogle Scholar
  32. Chagne, D., Carlisle, C.M., Blond, C., Volz, R.K., Whitworth, C.J., Oraguzie, N.C., Crowhurst, R.N., Allan, A.C., Espley, R.V., Hellens, R.P. and Gardiner, S.E. (2007) Mapping a candidate gene (MDMYB10) for red flesh and foliage color in apple. BMC Genomics 8, 212.PubMedCrossRefGoogle Scholar
  33. Chagne, D., Gasic, K., Crowhurst, R.N., Han, Y., Bassett, H.C., Bowatte, D.R., Lawrence, T.J., Rikkerink, E.H.A., Gardiner, S.E. and Korban, S.S. (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92, 353–358.PubMedCrossRefGoogle Scholar
  34. Cheng, F.S., Weeden, N.F., Brown, S.K., Aldwinckle, H.S., Gardiner, S.E. and Bus, V.G. (1998) Development of a DNA marker for V m, a gene conferring resistance to apple scab. Genome 41, 208–214.Google Scholar
  35. Cheng, F.S., Weeden, N.F. and Brown, S.K. (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor. Appl. Genet. 93, 222–227.CrossRefGoogle Scholar
  36. Coart, E., Vekemans, X., Smulders, M.J.M., Wagner, I., Van Huylenbroek, J., Van Bockstaele, E. and Roldan-Ruiz, I. (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol. Ecology 12, 845–857.Google Scholar
  37. Coart, E.L.S., Van Glabeke, S., DeLoose, M., Larsen, A.S. and Roldan-Ruiz, I. (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Mol. Ecology 15, 2171–2182.Google Scholar
  38. Conner, P.J., Brown, S.K. and Weeden, N.F. (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J. Amer. Soc. Hort. Sci. 122, 350–359.Google Scholar
  39. Conner, P.J., Brown, S.K. and Weeden, N.F. (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor. Appl. Genet. 96, 1027–1035.CrossRefGoogle Scholar
  40. Costes, E., Lauri, P.E. and Regnard, J.L. (2006) Analyzing fruit tree architecture, implication for tree management and fruit production. Hort. Rev. 32, 1–61.Google Scholar
  41. Cummins, J.N. and Aldwinckle, H.S. (1983) Breeding apple rootstocks. Plant Breeding Rev. x, 294–394.Google Scholar
  42. Currie, A. J., Ganeshanandam, S., Noiton, D. A., Garrick, D., Shelbourne, C. J. A. and Orgaguzie, N. (2000) Quantitative evaluation of apple fruit shape (Malus × domestica Borkh.) by principal component analysis of Fourier descriptors. Euphytica 11, 221–227.CrossRefGoogle Scholar
  43. Dal Cin, V., Boschetti, A., Dorigoni, A. and Ramina, A. (2007) Benzylaminopurine application on two different apple cultivars (Malus domestica) displays new and unexpected fruit abscission features. Ann. Bot. 99, 1195–1202.PubMedCrossRefGoogle Scholar
  44. Dandekar, A.M., Teo, G., Defillippi, B.G., Uratsu, S.L., Passey, A.J., Kader, A.A., Stow, J.R., Colgan, R.J. and James, D.J. (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Research 13, 373–384.CrossRefGoogle Scholar
  45. Davey, M.W., Kenis, K. and Keulemans, J. (2006) Genetic control of fruit vitamin C contents. Plant Physiol. 142, 343–351.PubMedCrossRefGoogle Scholar
  46. Davey, M.W. and Keulemans, J. (2004) Determining the potential to breed for enhanced antioxidant status in Malus: Mean inter- and intra-varietal fruit vitamin C and glutathione contents at harvest and their evolution during storage. J. Agric. Food Chem. 52, 8031–8038.PubMedCrossRefGoogle Scholar
  47. Dayton, D.F. (1977) Genetic immunity to apple mildew incited by Podosphaera leucotricha. Hortscience 12, 225–226.Google Scholar
  48. Dolgov, S.V. and Hanke, V. (2006) Transgenic temperate fruit tree rootstocks. p. 335–350. In; Fladung, M. and Ewald, E. (eds.). Tree Transgenesis. Recent Developments. Springer-Verlag.Google Scholar
  49. Dunemann, F., Bracker, G., Markussen, T. and Roche, P. (1999) Identification of molecular markers for the major mildew resistance gene Pl2 in apple. Acta Hort. 484, 411–416.Google Scholar
  50. Dunemann, F., Peil, A., Urbanietz, A., and Garcia-Libreros, T. (2007) Mapping of the powdery mildew resistance gene Pl1 and its genetic association with an NBS-LRR candidate resistance gene. Plant Breeding 126, 476–481.CrossRefGoogle Scholar
  51. Dunemann, F., Ulrich, D., Boudichevskaia,A.. Grafe, C. and Weber, W.E. (2009) QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ x ‘Prima’. Mol. Breeding 23, 501–521.CrossRefGoogle Scholar
  52. Dunemann, F., Ulrich, D., Malysheva-Otto, L., Weber, W.E., Longhi, S. Velasco, R. and Costa, F. (2011) Functional allelic diversity of the apple alcohol acyl-transferase gene mdAAT1 associated with fruit ester volatile contents in apple cultivars. Mol. Breeding (on-line early).Google Scholar
  53. Durel, C.-E., Denance, C. and Brisset, M.-N. (2009) Two distinct major QTL for fire blight ­co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 52, 139–147.PubMedCrossRefGoogle Scholar
  54. Durel, C.E., Laurens, F., Fouillet, A. and Lespinasse, Y. (1998) Utilization of pedigree information to estimate genetic parameters from large unbalanced data sets in apple. Theor. Appl. Genet. 91, 1077–1085.CrossRefGoogle Scholar
  55. Eberhardt, M.V., Lee, C.Y. and Liu, R.H. (2000) Antioxidant activity of fresh apples. Nature 405, 903–904.PubMedGoogle Scholar
  56. Erdin, N., Tartarini, S., Broggini, G.A.L., Gennari, F., Sansavini, S., Gessler, C., and Patocchi, A. (2006) Mapping of the apple scab-resistance gene Vb. Genome 49, 1238–1245.PubMedCrossRefGoogle Scholar
  57. Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty-Amma, S., and Allan, A.C. (2007) Red coloration in apple fruit is due to the activity of the MYB transcription factor. MdMYB10. The Plant Journal 49, 414–427.PubMedCrossRefGoogle Scholar
  58. Evans, K.M. and James, C.M. (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor. Appl. Genet. 106, 1178–1183.PubMedGoogle Scholar
  59. Evans, K., Lespinasse, Y. and Durel, C. (2000) Durable resistance to scab and mildew in apple- A European project. Pesticide Outlook, 84–87.Google Scholar
  60. Fazio, G., Aldwinckle, H., Mcquinn, R., Robinson, T. (2006a) Differential susceptibility to fire blight in commercial and experimental apple rootstock cultivars. Acta Hort. 704, 527–530.Google Scholar
  61. Fazio, G., Robinson, T., Aldwinckle, H., Mazzola, M., Leinfelder, M., Parra, R. (2006b) Traits of the next wave of Geneva apple rootstocks. Compact Fruit Tree 38, 7–11.Google Scholar
  62. Fernandez-Fernandez, F., Evans, K.M., Clarke, J.B., Govan, C.L., James, C.M., Maric, S. and Tobutt, K.R. (2008) Development of an STS map of an interspecific progeny of Malus. Tree Genetics & Genomes 4, 469–479.CrossRefGoogle Scholar
  63. Ferree, D. C. and Carlson, R.F. (1987) Apple Rootstocks. pp. 107–143. In: Rom, R.C. and Carlson, R.F. (eds.). Rootstocks for Fruit Crops. John Wiley & Sons. US.Google Scholar
  64. Fischer, M. (2001) New dwarfing and semi-dwarfing apple and pear rootstocks. Acta Hort. 557, 55–62.Google Scholar
  65. Fischer, M. and Dunemann, F. (2000) Search for polygenic scab and mildew resistance in apple varieties cultivated at the Fruit Genebank Dresden-Pillnitz. Acta Hort. 538, 71–77.Google Scholar
  66. Fischer, M. And Fischer, C. (2008) The Pillnitz Re-series of apple cultivars-Do they hold promise? -80 years of professional German fruit breeding. Erwerbs-Obstbau 50, 63–67.CrossRefGoogle Scholar
  67. Forsline, P.L., Aldwinckle, H.S., Dickson, E.E., Luby, J.J. and Hokanson, S.C. (2003) Collection, maintenance, characterization and utilization of wild apples of central Asia. Hort. Rev. 29, 1–62.Google Scholar
  68. Gallot J.C., Lamb, R.C. and Aldwinckle, H.S. (1985). Resistance to powdery mildew from some small-fruited Malus cultivars. Hortscience 20, 1085–1087.Google Scholar
  69. Gao, Z.S. and van de Weg, W. E. (2006) The Vf gene for scab resistance is linked to sub-lethal genes. Euphytica 151, 123–132.CrossRefGoogle Scholar
  70. Gao, Z.S., van de Weg, W.E., Schaart, J.G., Schouten, H.J., Tran, D.H., Kodde, L.P., van der Meer, I.M., van der Geest, A.H.M., Kodde, J., Breiteneder, H., Hoffmann-Sommergruber, K., Bosch, D. and Gilissen, L.J.W.J. (2005a) Genomic cloning and linkage mapping of the Mal d1 (PR-10) gene family in apple (Malus domestica). Theor. Appl. Genet. 111, 171–183.PubMedCrossRefGoogle Scholar
  71. Gao, Z.S., van de Weg, W.E., Schaart, J.G., van der Meer, I.M., Kodde, L.P., Laimier, M., Breiteneder, H., Hoffmann-Sommergruber, K., and Gilissen, L.J.W.J. (2005b) Linkage map positions and allelic diversity of two Mal d 3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica) Theor. Appl. Genet. 110, 479–491.CrossRefGoogle Scholar
  72. Gao, Z.S., van de Weg, W.E., Schaart, van Arkel, G., Breiteneder, H., Hoffmann-Sommergruber, K., and Gilissen, L.J.W.J. (2005c) Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin). Theor. Appl. Genet. 111, 1087–1097.Google Scholar
  73. Gardiner, S.E., Bus, V.G.N., Rusholme, R.L., Chagne, D., and Rikkerink, E. (2007) Apples: pp.1-62. In: Kole, C. (ed.) Genome Mapping and Molecular Breeding in Plants: Fruits and Nuts. Springer, NY.Google Scholar
  74. Gasic, K., Han, Y., Kertbundit, S., Shulaev, V., Iezzoni, A.F., Stover, E.W., Bell, R.L., Wisniewski, M.E., and Korban, S.S. (2009) Characterization and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol. Breeding (on-line early).Google Scholar
  75. Gessler, C., Patocchi, A., Sansavini, S., Tartarini, S. and Gianfranceschi. L. (2006) Venturia inaequalis resistance in apple. Critical Reviews Plant Sci. 25, 473–503.CrossRefGoogle Scholar
  76. Gessler, C. and Patocchi, A. (2007) Recombinant DNA technology in apple. Adv. Biochem. Engin./Biotechnology 107, 113–132.Google Scholar
  77. Gianfranceschi, L. and Soglio, V. (2004). The European project HIDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Hort. 663, 327–330.Google Scholar
  78. Gleave, A.P., Ampomah-Dwamena, C., Berthold, S., Dejnoprat, S., Karunairetnam, S., Nain, B., Wang, Y.Y., Crowhurst, R.N. and MacDiarmid, R.M. (2008) Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags. Tree Genetics & Genomes 4, 343–358.CrossRefGoogle Scholar
  79. Guarino, C., Arena, S., De Simopne, L., D’Ambrosia, C., Sanotora, Simona, Rocco, M., Scaloni, A. and Marra, M. (2007) Proteomic analysis of the major soluble components in Annurca apple flesh. Mol. Nutr. Food Res. 51, 255–262.PubMedCrossRefGoogle Scholar
  80. Gygax, M., Gianfranceshi, L., Liebhard, R., Kellerhals, M., Gessler, C. and Patocchi, A. (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor. Appl. Genet. 109, 1702–1709.PubMedCrossRefGoogle Scholar
  81. Harada, T., Sunako, T., Wakasa, Y., Soejima, J., Satoh, T. and Niizeki, I. (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor. Appl. Genet. 101, 742–746.CrossRefGoogle Scholar
  82. Harker F.R., Kupferman, E.M., Marin, A.B., Gunsun, F.A., and Triggs, C.M. (2008) Eating quality standards for apples based on consumer preferences. Postharvest Biol. Technol. 50, 70–78.CrossRefGoogle Scholar
  83. Harker, F.R., Maindonald, J.H. and Jackson, P.J. (1996) Penetrometer measurement of apple and kiwi firmness: operator and instrument differences. J. Amer. Soc. Hort. Sci. 121, 927–936.Google Scholar
  84. Harker, F.R., Maindonald, J.H., Murray, S.H., Gunson, F.A., Hallet, I.C. and Walker, S.B. (2002a) Sensory interpretation of instrumental measurements 1: texture of apple fruit. Postharvest Biol. Technol. 24, 225–239.CrossRefGoogle Scholar
  85. Harker, F.R., Marsh, K.B., Young, H., Murray, S.H., Gunson, F.A. and Walker, S.B. (2002b) Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biol. Technol. 24, 241–250.CrossRefGoogle Scholar
  86. Hemmat, M., Brown, S.K., Aldwinckle, H.S., Mehlenbacher, S.A. and Weeden, N.F. (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata #2’. Acta Hort. 622, 153–162.Google Scholar
  87. Hemmat, M., Brown, S.K. and Weeden, N.F. (2002) Tagging and mapping scab resistance genes from R12740-7A apple. J. Amer. Soc. Hort. Sci. 127, 365–370.Google Scholar
  88. Hemmat, M., Weeden, N.F., Conner, P.J. and Brown, S.K. (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat J. Amer. Soc. Hort. Sci. 122, 347–349.Google Scholar
  89. Hemmat, M., Weeden, N.F., Manganaris, A.G. and Lawson, D.M. (1994) Molecular marker linkage map for apple. J. Heredity 85, 4–11.Google Scholar
  90. Heo, S., Kim, D., Yun, H.R., Hwang, J.H., Lee, H.J. and Shin, Y.U. (2006) Development of AFLP markers linked to resistance against Alternaria blotch in apple (Malus domestica). Hort. Environ. Biotech. 47, 324–328.Google Scholar
  91. Iezzoni, A., Weebadde, C., Luby, J., Chengyan, Y., Van de Weg, E., Fazio, G., Mann, D., Peace, C.P., Bassil, N.V. and McFerson, J. (2010) RosBREED: Enabling marker assisted breeding in Rosaceae. Acta Hort. 859, 389–394.Google Scholar
  92. Igarashi, M., Abe, Y., Hatsuyama, Y., Ueda, T., Fukasawa-Akada, T., Kon, T., Kudo, T., Sato, T. and Suziki, M. (2008) Linkage maps of the apple (Malus x domestica Borkh.) cvs. ‘Ralls Janet’ and ‘Delicious’ include newly developed EST markers. Mol. Breeding 22, 95–118.CrossRefGoogle Scholar
  93. Ikase, L and Dumbras, R. (2004) Breeding of columnar apple trees in Latvia. Biologia 2, 8–10.Google Scholar
  94. Iwanami, H., Ishiguro, M., Kotoda, N., Takahashi, S. and Soejima, J. (2005) Optimal sampling strategies for evaluating fruit softening after harvest in apple breeding. Euphytica 144, 169–175.CrossRefGoogle Scholar
  95. Iwanami, H., Moriya, S., Kotoda, N., Takahashi, S. and Abe, K. (2008) Estimations of heritability and breeding value for postharvest fruit softening in apple. J. Amer. Soc. Hort. Sci. 133, 92–99.Google Scholar
  96. Jakubowski, T. and Zagaja, S.W. (2000) 45 years of apple rootstock breeding in Poland. Acta Hort. 538, 723–727.Google Scholar
  97. James, C.M., Clarke, J.B. and Evans, K.M. (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor. Appl. Genet. 110, 175–181.PubMedCrossRefGoogle Scholar
  98. Janick, J., Cummins, J.N., Brown, S.K., Hemmat, M. (1996) Apples. pp 1–77. In: Janick J., Moore J.N. (eds). Fruit Breeding Volume 1. Tree and Tropical Fruits. John Wiley, New York, NY.Google Scholar
  99. Janssen, B.J., Thoday, K., Schaffer, T.J., Alba, R., Balakrishan, L., Bishop, R., Bowen, J.H., Crowhurst, R.N., Gleave, A.P., Ledger, S., McArtney, S., Pichler, F.B., Snowden, K.C. and Ward, S. (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biology 8, 16.PubMedCrossRefGoogle Scholar
  100. Jung, S., Staton, M., Le, T., Blenda, A., Svancara, R., Abbott, A. and Main, D. (2007) GDR (Genome Database for Rosaceae): integrated web database for Rosaceae genomics and genetics data. Nucleic Acids Research 1–7.Google Scholar
  101. Juniper, B.E., Watkins, R. and Harris, S.A. (1998) The origins of apple. Acta Hort. 484, 27–33.Google Scholar
  102. Kenis, K. and Keulemans, J. (2005) Genetic linkage maps of two apple cultivars (Malus domestica Borkh.) based on AFLP and microsatellite markers. Mol. Breeding 15, 205–219.CrossRefGoogle Scholar
  103. Kenis, K. and Keulemans, J. (2007) Study of tree architecture of apple (Malus x domestica Borkh.) by QTL analysis of growth traits. Mol. Breeding 19, 193–208.CrossRefGoogle Scholar
  104. Kenis, K. and Keulemans, J. (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics & Genomes 4, 647–661.CrossRefGoogle Scholar
  105. Khanizadeh, S., Groleau, Y., Granger, R., Cousineau, J. and Rousselle, G.L. (2000) New hardy rootstocks from the Quebec apple breeding program. Acta Hort. 538, 719–721.Google Scholar
  106. Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M.T. and Vasantha Rupasinghe, H.P. (2007) Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. J. Food Comp. Analysis 21, 396–401.CrossRefGoogle Scholar
  107. Kim, M.Y., Song, K.J., Hwang, J.-H., Shin, Y.U. and Lee, H.J. (2003) Development of RAPD and SCAR markers linked to the Co gene conferring columnar growth habit in apple (Malus pumilla Mill.). J. Hort.Sci. Biotech 78, 512–517.Google Scholar
  108. King, G.J., Lynn, J.R., Dover, C.J., Evans, K.M. and Seymore, G.B. (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor. Appl Genet. 102, 1227–1235.CrossRefGoogle Scholar
  109. King, G.J., Maliepaard, C., Lynn, J.R., Alston, F.H., Durel, C.E., Evans, K.M., Griffon, B., Laurens, F., Manganaris, A.G., Schrevens, E., Tartarini, S. and Verhaegh, J. (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor. Appl. Genet. 100, 1074–1084.CrossRefGoogle Scholar
  110. Knight, R. L. and Alston, F.H. (1968) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Can. J. Genet. Cytol. 10, 294–298.Google Scholar
  111. Knight, V.H., Evans, K.M., Simpson, D.W. & Tobutt, K.R. (2005) Report on a desktop study to investigate the current world resources in Rosaceous fruit breeding programmes. Submitted to Defra, August 2005.Google Scholar
  112. Korban, S.S. (1986) Interspecific hybridization in Malus. HortScience 21, 41–48.Google Scholar
  113. Korban, S.S. and Swiader, J.M. (1994) Genetic and nutritional status in bitter pit resistant and –susceptible apple seedlings. J. Amer. Soc. Hort. Sci. 109, 428–432.Google Scholar
  114. Kotoda, N., Iwanami, H., Takahashi, S., and Abe, K. (2006) Antisense expression of MdTFL1-like gene, reduces the juvenile phase in apple. J. Amer. Soc. Hort. Sci. 131, 74–81.Google Scholar
  115. Labuschagne, I. F., Louw, J. H., Schmidt, K., Sadie, A. (2003) Budbreak number in apple seedlings as selection criterion for improved adaptability to mild winter climates. HortScience 386, 1186–1190.Google Scholar
  116. Labuschagne, I.F., Louw, J.H., Schmidt, K. and Sadie, A. (2001) Genotypic variation in prolonged dormancy symptoms in apple families. HortScience 37, 157–163.Google Scholar
  117. Labuschagne, I.F., Louw, J.H., Schmidt, K. and Sadie, A. (2002) Genetic variation in chilling requirement in apple progenies. J. Amer. Soc. Hort. Sci. 127, 663–672.Google Scholar
  118. Lauri, P.E., Bourdel, G., Trottier, C. and Cochard, H. (2008) Apple shoot architecture: evidence for strong variability for bud size and composition and hydraulics within a branching zone. New Phytologist 178, 798–807.PubMedCrossRefGoogle Scholar
  119. Laurens, F. (1999) Review of the current apple breeding programs in the world: Objectives for scion cultivar improvement. Acta Hort. 484, 163–170.Google Scholar
  120. Laurens, F. and Pitiot, C. (2003) French apple breeding program: A new partnership between INRA and the nurserymen of Novadi. Acta Hort. 622, 575–582.Google Scholar
  121. Lata, B. (2008) Apple peel antioxidant status in relation to genotype, storage type and time. Scientia Hort. 117, 45–52.CrossRefGoogle Scholar
  122. Lee, K.W., Kim, Y.J., Kim, D-O, Lee, H.J. and Lee, C.Y. (2003) Major phenolics and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 51, 6516–6520.PubMedCrossRefGoogle Scholar
  123. Lee, Y.-P., Yu, G.-H., Seo, Y.S., Han, S.E., Choi, Y-O, Kim, D., Mok, I-G., Kim, W.T. and Sung, S.-K. (2007) Microarray analysis of apple gene expression engaged in early fruit development. Cell Biology Morphogenesis 26, 917–926.Google Scholar
  124. Liebhard, R., Gianfranceschi, L., Koller, B., Ryder, C.D., Tarchini, R., Van de Weg, E. and Gessler, C. (2002) Development and characterization of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol. Breeding 10, 217–241.CrossRefGoogle Scholar
  125. Liebhard, R., Kellerhals, M., Pfammatter, W., Jertmini, M. and Gessler, C. (2003a) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol. Biology 52, 511–526.Google Scholar
  126. Liebhard, R., Koller, B., Gianfranceschi, L. and Gessler, C. (2003b) Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome. Theor. Appl. Genet. 106, 1497–1508.PubMedGoogle Scholar
  127. Liebhard, R., Koller, B., Patocchi, A., Kellerhals, M., Pfammatter, W., Jermini, M. and Gessler, C. (2003c) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ x ‘Discovery’ progeny. Phytopath. 93, 493–501.CrossRefGoogle Scholar
  128. Luby, J. (2003) Taxonomic classification and brief history. pp. 1–14. Apples. Botany, Production and Use. In: Ferree, D.C. and Warrington, I.J. (eds.) CABI Publishing, Cambridge, MA.Google Scholar
  129. Luby, J., Forsline, P., Aldwinckle, H., Bus, V. and Geibel, M. (2001) Silk-road apples – Collection, evaluation and utilization of Malus sieversii from central Asia. HortScience 36, 225–231.Google Scholar
  130. Luby, J., Hoover, E., Paterson, M., Larson, D., and Bedford, D. (1999) Cold hardiness in the USDA Malus core germplasm collection. Acta Hort. 484, 109–114.Google Scholar
  131. Luby, J.J. and Shaw, D.V. (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program? HortScience 36, 872–879.Google Scholar
  132. Maliepaard, C., Alston, F., van Arkel, G., Brown, L.M., Chevreau, E., Dunemann, F., Evans, K.M., Gardiner, S., Guilford, P., van Heusden, A.W., Janse, J., Laurens, F., Lynn, J.R., Manganaris, A.G., den Nijs, A.P.M., Periam, N., Rikkerink, E., Roche, P., Ryder, C., Sansavini, S., Schmidt, H., Tartarini, S., Verhaegh, J.J., Vrielink-van Ginkel, M. and King, G.J. (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor. Appl. Genet. 97, 60–73.CrossRefGoogle Scholar
  133. Malnoy, M. and Aldwinckle, H.S. (2007) Development of fire blight resistance by recombinant DNA technology. Plant Breeding Rev. 26, 315–358.CrossRefGoogle Scholar
  134. Malnoy, M., Jin, Q., Borejsza-Wysocka, E. E. and Aldwinckle, H. S. (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Molecular Plant Microbe Interactions 20, 1568–1580.PubMedCrossRefGoogle Scholar
  135. Malnoy, M., Xu, M., Borejsza-Wysocka, E. E., Korban, S. and Aldwinckle, H. S. (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol. Plant-Microbe Interactions 21, 448–458.CrossRefGoogle Scholar
  136. Markussen T., Krüger J., Schmidt H. and Dunemann F. (1995) Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl1 from Malus robusta in cultivated apple. Plant Breeding 114, 530–534.CrossRefGoogle Scholar
  137. Matsumoto, S., Eguchi, T., Bessho, H. and Abe, K. (2007) Determination and confirmation of S-RNase genotypes of apple pollinators and cultivars. J. Hort. Sci. Biotech. 82, 323–329.Google Scholar
  138. Meyers, C.T., Leskey, T.C. and Forsline, P.T. (2007) Susceptibility of fruit from diverse apple and crabapple germplasm to attack by plum curculio (Coleoptera: Curculionidae). J. Econ. Entomol. 100, 1663–1671.CrossRefGoogle Scholar
  139. Meyers, C.T., Reissig, W., Forsline, P.L. (2008) Susceptibility of fruit from diverse apple and crabapple germplasm to attack from apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). J. Econ. Entomol. 101, 206–215.CrossRefGoogle Scholar
  140. Miller, S., C. Hampson, R. McNew, L. Berkett, S. Brown, J. Clements, R. Crassweller, E. Garcia, D. Greene and G. Greene. (2005) Performance of apple cultivars in the 1995 NE-183 Regional project planting: 111. Fruit sensory characteristics. J. Amer. Pomol. Soc. 59, 28–43.Google Scholar
  141. Miñaro, and Depena, E. (2008) Tolerance of some scab-resistant apple cultivars to the rosy apple aphid, Dysaphis plantaginea Crop Protection 27, 391–395.Google Scholar
  142. Moore, J.N. and Janick, J. (1983) Methods in Fruit Breeding. Purdue University Press.Google Scholar
  143. N’Diaye, A., Van de Weg, E., Kodde, L.P., Koller, B., Dunemann, F., Thiermann, M., Tartarini, S, Gennari, F. and Durel, C.E. (2008) Construction of an integrated consensus map of the apple genome based on four mapping populations. Tree Genetics & Genomes 4, 727–743.CrossRefGoogle Scholar
  144. Newcomb, R.D., Crowhurst, R.N., Gleave, A.P., Rikkerink, E.H.A., Allan, A.C., Beuning, L.L., Bowen, J.H., Gera, E., Jamieson, K.R., Janssen, B.J., Laing, W.A., McArtney, S., Nain, B., Ross, G.S., Snowden, K.C., Souleyre, E.J.F., Walton, E.F., and Yauk, Y.-K. (2006) Analyses of expressed sequence tags from apple. Plant Physiol. 141,147–166.PubMedCrossRefGoogle Scholar
  145. Noiton, D.A.M. and Alspach, P.A. (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J. Amer. Soc. Hort. Sci. 121, 773–782.Google Scholar
  146. Norelli, J.L., Farrell, R.E., Bassett, C.L., Baldo, A.M., Lalli, D.A., Aldwinckle, H.A., and Wisniewski, M. E. (2009) Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genetics & Genomes 5, 27–41.CrossRefGoogle Scholar
  147. Nybom, H., Rumpunen, K., Persson Hovmalm, H., Marttila, S., Rur, M., Garkava-Gustavsson, L. and Ollsson, M. (2008) Towards a healthier apple – Chemical characterization of an apple gene bank. Acta Hort. 765, 157–164.Google Scholar
  148. Nybom, H., Sehic, J. and Garkava-Gustavsson, L. (2008a) Self-incompatibility alleles of 104 apple cultivars grown in northern Europe. J. Hort. Sci. Biotech. 83, 339–344.Google Scholar
  149. Nybom, H., Sehic, J. and Garkava-Gustavsson, L. (2008b) Modern apple breeding is associated with a significant change in the allelic ratio of ethylene production gene Md-ACS1. J. Hort. Sci. Biotech. 83, 673–677.Google Scholar
  150. Oraguzie, N.C., Hofstee, M.E., Brewer, L.R. and Howard, C. (2001) Estimation of genetic parameters in a recurrent selection program in apple. Euphytica 118, 29–37.CrossRefGoogle Scholar
  151. Oraguzie, N.C., Rikkerink, E.H.A., Gardner, S.E. and De Slva, H.N. (2007a) Association Mapping in Plants. Springer, New York, NY.CrossRefGoogle Scholar
  152. Oraguzie, N.C., Volz, R.K., Whitworth, C.J., Bassett, H.C.M., Hall, A.J. and Gardiner, S.E. (2007b) Influence of Md-ACS1 allelotype and harvest season within an apple germplasm collection on fruit softening during cold air storage. Postharvest Biol. Technol. 44, 212–219.CrossRefGoogle Scholar
  153. Paris, R., Cova, V., Pagliani, G, Tartarini, S., Komjanc, M. and Sansavini, S. (2009) Expression profiling in Hcr-Vf-2-transformed apple plants with in response to Venturia inaequalis. Tree Genetics and Genome 5, 81–91.CrossRefGoogle Scholar
  154. Park, S., Sugimoto, N., Larson, M.D., Beaudry, R. and van Nocker, S. (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol. 141, 811–824.PubMedCrossRefGoogle Scholar
  155. Patocchi, A., Walser, M., Tartarini, S., Broggini, G.A.L., Gennari, F., Sansavini, S. and Gessler, C. (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48, 630–636.PubMedCrossRefGoogle Scholar
  156. Patocchi, A., Fernandez-Fernandez, F., Evans, K., Gobbin, D., Rezzonico, F., Boudichevskaia, A., Dunemann, F., Stankiewicz-Kosyl, M., Mathis-Jeanneteau. F., Durel, C.E., Gianfranceschi, L., Costa, F., Toller, C., Cova, V., Mott, D., Komjanc, M., Barbaro, E., Kodde, L., Rikkerink, E., Gessler, C. and van de Weg, W.E. (2008) Development and testing of 21 multiplexed PCRs composed of SSRs spanning most of the apple genome. Tree Genetics & Genomics 5, 211–223.CrossRefGoogle Scholar
  157. Peil, A., Garcia-Libreros, T., Richter, K., Trognitz, B., Hanke, M.V. and Flachowsky, H. (2007a) Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breeding 126, 470–475.CrossRefGoogle Scholar
  158. Peil, A., Hanke, M.V., Flachowsky, H., Richter, K., Garcia, T. and Trognitz, B. (2007b) Developing molecular markers for marker assisted selection of fire blight resistant apple seedlings. Acta Hort. 763, 117–122.Google Scholar
  159. Pereira-Lorenzo, S., Ramos-Cabrer, A.M., Gonzalez-Diaz, A.J. and Diaz-Hernandez, M.B. (2008) Genetic assessment of local apple cultivars from La Palma, Spain, using simple sequence repeats (SSRs). Scientia Hort. 117, 160–166.CrossRefGoogle Scholar
  160. Pichler, F.B., Walton, E.F., Davy, M., Triggs, C., Janssen, B., Wunsche, J.N., Putterill, J. and Schaffer, R. J. (2007) Relative developmental, environmental, and tree-to-tree variability in buds from field-grown apple trees. Tree Genetics & Genomes 3, 329–339.CrossRefGoogle Scholar
  161. Pilcher, R.L., Celton, J.-M., Gardiner, S.E. and Tustin, D.S. (2008) Genetic markers linked to the dwarfing trait of apple rootstock ‘Malling 9’. J. Amer. Soc. Hort. Sci. 133, 100–106.Google Scholar
  162. Planchon, V., Lateur, M., Dupont, P. and Lognay, G. (2004) Ascorbic acid level of Belgian apple genetic resources. Scientia Hort. 100, 51–61.CrossRefGoogle Scholar
  163. Quamme, H.A. Hampson, C.R., Hall, J.W., Sholberg, P.L, Bedford, K.E. and Randall P. (2003) Inheritance of apple scab resistance from polygenic sources based on greenhouse and field evaluation. Acta Hort. 622, 317–321.Google Scholar
  164. Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood D, Reeves PA, Forsline PL. (2008) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genetics & Genomics (on-line early).Google Scholar
  165. Robinson, T.L, Aldwinckle, H.S., Fazio, G. and Holleran, T. (2003) The Geneva series of apple rootstocks from Cornell: Performance, disease resistance, and commercialization. Acta Hort. 622, 513–520.Google Scholar
  166. Rowan, D.D., Hunt, M.B., Dimourot, A., Alspach, P.A., Weskett, R., Volz, R.K., Gardiner, S.E. and Chagne, D. (2009) Profiling fruit volatiles in the progeny of a ‘Royal Gala’ x ‘Granny Smith’ apple (Malus x domestica) cross. J. Agric. Food Chem. 57, 7953–7961.PubMedCrossRefGoogle Scholar
  167. Rudell, D., Mattheis, J.P., Maarten, L.A. and Hertog, T.M. (2009) Metabolomic change precedes apple superficial scald symptoms. J. Agric. Food Chem. 57, 8459–8466.PubMedCrossRefGoogle Scholar
  168. Sancho, A.I., van Ree, R., van Leeuwen, A., Meulenbroek, B.J., van de Weg, E., Gilissen, L.J.W.J., Puehringer, H., Laimer, M., Martinelli, A., Zaccharini, M., Vazquez-Cortes, S., Fernandez-Rivas, M., Hoffmann-Sommergruber, K., Mills, E.N.C., and Zuidmeer, L. (2008) Measurement of lipid transfer protein in 88 apple cultivars. Allergy Immunology 146, 19–26.CrossRefGoogle Scholar
  169. Sansavini, S., Belfanti, E., Costa, F. and Donati, F. (2005) European apple breeding programs turn to biotechnology. Chronica Hort. 45, 16–19.Google Scholar
  170. Sargent, D.J., Marchese, A., Simpson, D.W., Howad, W., Fernandez-Fernandez, F., Monfort, A., Arus, P., Evans, K.M. and Tobutt, K.R. (2008) Development of “universal” gene-specific markers from Malus spp. cDNA sequences, their mapping and use in synteny within Rosaceae. Tree Genetics & Genomes (on-line early).Google Scholar
  171. Sato, T., Harada, T., Niizeki, M., Kudo, T., Akada, T., and Wakasa, Y. (2004) Allelotype of a ripening-specific 1-aminocyclopropane-1-carboxylate synthase gene defines the rate of fruit drop in apple. J. Amer. Soc. Hort. Sci. 129, 32–36.Google Scholar
  172. Sato, M., Nyui, T., Takahashi, H. and Kanda, H. (2007) Comparison of flowering and fruiting of seedlings from reciprocal crosses between diploid and triploid apple cultivars. J. Japan Soc. Hort Sci. 76, 97–102.CrossRefGoogle Scholar
  173. Sawamura K, 1990. Alternaria blotch. In: Jones AL, Aldwinckle HS, eds. Compendium of Apple and Pear Diseases. St. Paul, Minnesota, USA: APS Press, 24–25.Google Scholar
  174. Schaffer, R.J., Friel, E.N., Souleyre, E.J.F., Bolitho, K., Thodey, K., Ledger, S., Bowen, J. -H., Ma, J.H., Nain, B., Cohen D., Gleave, A.P., Crowhurst, R.N., Janssen, B.J., Yao, J.L. and Newcomb, R.D. (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology 144, 1899–1912.PubMedCrossRefGoogle Scholar
  175. Schouten, H.J. and Jacobsen, E. (2008) Cisgenesis and intragenesis, sisters in innovative plant breeding. Letters. Trends Plant Science 13, 260–261.CrossRefGoogle Scholar
  176. Schuster, M. (2000) Genetics of powdery mildew resistance in Malus species. Acta Hort. 583, 593–595.Google Scholar
  177. Sedov, E.N., Salina, E.S., Levgerova, N.S., Serova, C.M. (2007) Breeding apple varieties for orchards producing raw materials. Russian Agric. Sci. 33, 89–91.CrossRefGoogle Scholar
  178. Segura, V., Denance, C., Durel, C.-E. and Costes, E. (2007) Wide range QTL analysis for complex architectural trait in a 1-year-old apple progeny. Genome 50, 159–171.PubMedCrossRefGoogle Scholar
  179. Shulaev, V., Korban, S.S., Sosinski, B., Abbott, A.G., Aldwinckle, H.S., Folta, K.M., Iezzoni, A., Main, D., Arús, P., Dandekar, A.M., Lewers, K., Brown, S.K., Davis, T.M., Gardiner, S.E., Potter, D. and Veilleux, R.E. (2008) Multiple models for Rosaceae genomics. Plant Physiology 147, 985–1003.PubMedCrossRefGoogle Scholar
  180. Silfverberg-Dilworth, E., Matasci, C.L., Van de Weg, W.E., Van Kaauwen, M.P.W., Walser, M., Kodde, L.P., Soglio, V., Gianfranceschi, L., Durel, C.E., Costa, F., Yamamoto, T., Koller, B., Gessler, C. and Patocchi, A. (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genetics & Genome 2, 202–224.CrossRefGoogle Scholar
  181. Soejima, J., Abe, K., Kotoda, N. and Kato, H. (2000). Recent progress of apple breeding at the apple research center in Morioka. Acta Hort. 538, 211–214.Google Scholar
  182. Soufflet-Freslon, V., Gianfranceschi, L., Patocchi, A., and Durel, C. -E. (2008) Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome 51, 657–667.PubMedCrossRefGoogle Scholar
  183. Stankiewicz-Kosyl, M., Pitera, E. and Gawronski, S.W. (2005) Mapping QTL involved in powdery mildew resistance of the apple clone U 211. Plant Breeding 124, 63–66.CrossRefGoogle Scholar
  184. Stehr, R. (2009) Standard testing agreement for plant material developed by EUFRIN working group. Acta Hort. 814, 333–336.Google Scholar
  185. Stoeckli, S., Mody, K., Gessler, C., Patocchi, A., Jermini, M. and Dorn, S. (2008) QTL analysis of aphid resistance and growth traits in apple. Tree Genetics & Genome 4, 833–847.CrossRefGoogle Scholar
  186. Stushnoff, C., McSay, A.E., Forsline, P.L., and Luby, J. (2003) Diversity of phenolic antioxidant content and radical scavenging capacity in the USDA apple germplasm core collection. Acta Hort. 623, 305–311.Google Scholar
  187. Sun, L., Bukovac, M.J., Forsline, P.L., van Nocker, S. (2009) Natural variation in fruit abscission related traits in apple (Malus). Euphytica 165, 55–67.CrossRefGoogle Scholar
  188. Szankowski, I., Briviba, K., Fleschhut, J., Schonherr, J., Jacobsen, H.J. and Kiesecher, H. (2003)Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Report 22, 141–149.CrossRefGoogle Scholar
  189. Szankowski, I., Flachowsky, H., Li, H., Halwirth, H., Treutter, D., Regos, I., Hanke, M.-V., Stich, K. and Fischer, T.C. (2009a) Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta 229, 681–692.PubMedCrossRefGoogle Scholar
  190. Szankowski, I., Waldmann, S., Degenhardt, J., Patocchi, A., Paris, R., Silfverberg-Dillworth, E., Broggini, G. and Gessler, C. (2009b) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVF2 controlled by different native promoter lengths. Tree Genetics & Genomes 5, 349–358.CrossRefGoogle Scholar
  191. Tancred, S.J., Zeppa, A.G., Cooper, M. and Stringer, J.K. (1995). Heritability and patterns of inheritance of the ripening date of apples. HortScience 30, 325–328.Google Scholar
  192. Takos, A.M., Jaffee, F.W., Jacob, S.R., Bogs, J., Robinson, S.P. and Walker, A.R. (2006) Light induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 142, 1216–1232.PubMedCrossRefGoogle Scholar
  193. Teo G., Suzuki Y., Uratsu S.L, Lampinen B., Ormonde N., Hu W.K., DeJong T.M. and Dandekar A.M. (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc. Natl. Acad. Sci. USA 103, 18842–18847.PubMedCrossRefGoogle Scholar
  194. Tian, Y.-K., Wang, C.-H., Zhang, J.-S., James, C. and Dai, H.-Y. (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145, 181–188.CrossRefGoogle Scholar
  195. Toivonen, P.AQ.A. and Brummell, P.A. (2008) Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology Technol. 48, 1–14.CrossRefGoogle Scholar
  196. Tränkner, C., Lehmann, S., Hoenicka,H., Hanke, M.V., Fladung, M., Lenhardt, D., Dunemann, F., Gau, A., Schlangen, K., Malnoy, M. and Flachowsky, H. (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232, 1309–1324.PubMedCrossRefGoogle Scholar
  197. van de Weg, W.E., Voorrips, R.E., Finkers, R., Kodde, L.P., Jansen, J. and Bink, M.C.A.M. (2004) Pedigree genotyping: A new pedigree based approach of QTL identification and allele mining. Acta Hort. 663, 45–50.Google Scholar
  198. Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., Bhatnagar, S. K., Troggio, M., Pruss, D., Salvi, S., Pindo, M., Baldi, P., Castelletti, S., Cavaiuolo, M., Coppola, G., Costa, F., Cova, V., Dal Ri, A., Goremykin, V., Komjanc, M., Longhi, S., Magnago, P., Malacarne, G., Malnoy, M., Micheletti, D., Moretto, M., Perazzolli, M., Si-Ammour, A., Vezzulli, S., Zini, E., Eldredge, G.,Fitzgerald, L. M., Gutin, N., Lanchbury, J., Macalma, T., Mitchell, J. T., Reid, J., Wardell, B., Kodira, C., Chen, Z., Desany, B., Niazi, F., Palmer, M., Koepke, T., Jiwan, D., Schaeffer, S., Krishnan, V., Wu, C., Chu, V. T., King, S. T., Vick, J., Tao, Q., Mraz, A., Stormo, A., Stormo, K., Bogden, R., Ederle, D., Stella, A., Vecchietti, A., Kater, M. M., Masiero, S., Lasserre, P., Lespinasse, Y., Allan, A. C., Bus, V., Chagné, D., Crowhurst, R. N., Gleave, A. P., Lavezzo, E., Fawcett, J. A., Proost, S., Rouzé, P., Sterck, L., Toppo, S., Lazzari, B., Hellens, R. P., Durel, C. E, Gutin, A., Bumgarner, R. E., Gardiner, S. E., Skolnick, M., Egholm, M., Van de Peer, Y., Salamini, F., and Viola, R. (2010) The genome of the domesticated apple (Malus xdomestica Borkh.). Nature Genetics 42, 833–839.PubMedCrossRefGoogle Scholar
  199. Visser, T.and Verhaegh, J.J. (1976) Review of tree fruit breeding carried out at the Institute for Horticultural Plant Breeding at Wageningen from 1951 to 1976. Proc. Eucarpia tree fruit breeding, Wageningen. pp. 113–132.Google Scholar
  200. Volk, G.M. and Richards, C.M. (2008) Availability of genotypic data for USDA-ARS National Plant Germplasm System accessions using the Genetic Resources Information Network (GRIN) database. HortScience 43, 1365–1366.Google Scholar
  201. Volk, G. M., Richards, C. M., Reilley, A. A., Henk, A. D., Forsline, P. L., Aldwinckle, H. S. (2005) Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. J. Amer. Soc. Hort. Sci. 130, 203–210.Google Scholar
  202. Volk, G.M., Richards, C.M., Reilley, A., Henk, A.D., Reeves, P.A., Forsline, P.L., Aldwinckle, H. ( 2008) Genetic diversity and disease resistance of wild Malus orientalis from Turkey and southern Russia. J. Amer. Soc. Hort. Sci. 133, 383–389.Google Scholar
  203. Volz, R.K., Alspach, P.A., Fletcher, D.J. and Ferguson, I.B. (2006) Genetic variation in bitter pit and fruit calcium concentrations within a diverse germplasm collection. Euphytica 149, 1–10.CrossRefGoogle Scholar
  204. Way, R. D., Aldwinckle, H.S., Lamb, R. C., Rejman, A., Sansavini, S., Shen, S., Watkins, R., Westwood, M.N. and Yoshida, Y. (1990) Apples. (Malus). In: J. N. Moore, and J. R. Ballington Jr (eds), Genetic Resources of Temperate Fruit and Nut Crops, 3—62. ISHS, Leuven, Belgium. Acta Hort 290.Google Scholar
  205. Webster, A.D. and Wertheim, S.J. (2003) Apple rootstocks. pp. 91–124. In: Ferree, D. and Warrington, I (eds.): Apples: Botany, Production and Uses. CABI Publishing, Cambridge, MA.Google Scholar
  206. Weibel, F. and Haseli, A. (2003) Organic apple production – with emphasis on European experiences. pp, 551–583. Apples. Botany, Production and Use. In: Ferree, D.C. and Warrington, I.J. (eds.) CABI Publishing, Cambridge, MA.Google Scholar
  207. Wisniewski, M., Bassett, K., Norelli, J., Macarisin, D., Artlip, T., Gasic, K., and Korban, S. (2008) Expressed sequence tag analysis of the response of apple (Malus x domestica ‘Royal Gala’) to low temperature and water deficit. Physiologia Plantarum 133, 298–317.PubMedCrossRefGoogle Scholar
  208. Zhou, C., Lakso, A., Robinson, T. and Gan, S. (2008) Isolation and characterization of genes associated with shade-induced apple abscission. Mol. Genetics Genomics 280, 83–92.CrossRefGoogle Scholar
  209. Zhou, Z.-Q. (1999) The apple genetic resources in China: The wild species and their distributions, informative characteristics and utilization. Genetic Resources Crop Evolution 46, 599–609.CrossRefGoogle Scholar
  210. Zhu, L.H., Ahlman, A., Li, X.Y. and Welander, M. (2000) Integration of the rolA gene into the genome of the vigorous apple rootstock A2 reduced plant height and shortened internodes. J. Hort. Sci. Biotech. 76, 758–763.Google Scholar
  211. Zhu, Y. and Barritt, B.H. (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus x domestica Borkh.) breeding parents and suitability for marker assisted selection. Tree Genetics & Genomes 4, 555–562.CrossRefGoogle Scholar
  212. Zhu, Y., Rudell, D and Mattheis, J. (2008a) Characterization of cultivar differences in alcohol acyltransferase and 1-aminocyclopropane-1carboxylate synthase gene expression and volatile compound emission during apple fruit maturation and ripening. Postharvest Biol. Technol. 49, 330–339.CrossRefGoogle Scholar
  213. Zhu, L.H., Li, X.Y. and Welander, M. (2008b) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep. 27, 289–296.PubMedCrossRefGoogle Scholar
  214. Zhu, Y.D., Zhang, W., Li, G.C. and Wang, T. (2007) Evaluation of inter-simple sequence repeat analysis for mapping the Co gene in apple (Malus pumila Mill.). J. Hort. Sci. & Biotech. 82, 371–376.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of HorticultureCornell University, New York State Agricultural Experiment Station (NYSAES)GenevaUSA

Personalised recommendations