Skip to main content

Neurotransmitter Stimulation for Retinal Prosthesis: The Artificial Synapse Chip

  • Chapter
  • First Online:
Visual Prosthetics

Abstract

Retinal prostheses may one day improve the lives of hundreds of thousands of patients with retinitis pigmentosa (RP) or millions of blind patients with advanced age-related macular degeneration (ARMD), depending on their effectiveness. While considerable progress has been made in electrical stimulation of the retina, herein we explore some possible alternatives to electrical stimulation for retinal prosthesis. Since neurotransmitters normally shape visual responses, some groups have been developing visual prostheses based upon the spatially and temporally controlled delivery of neurotransmitters to the retina. This chapter examines the possibilities for utilizing these chemical messengers, as a means to effectively stimulate retinal ganglion cells and produce vision along established visual information channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5HT:

5-Hydoxytryphan, serotonin

AGB:

1-Amino-4-guanidobutane

AMPA:

α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate

EAAT:

Excitatory amino acid transporters

GABA:

Gamma-aminobutyrate

iGluR:

Ionotropic glutamate receptor (GluR1, GluR2, GluR3, GluR4)

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

mGlur:

Metabotropic glutamate receptor

NMDA:

N-methyl-d-aspartate

OPL:

Outer plexiform layer

P#:

Postnatal day

PR:

Photoreceptors

RCS:

Royal College of Surgeons

RD1:

Retinal degeneration type 1 mouse

RGC:

Retinal ganglion cell

RP:

Retinitis pigmentosa

S334ter:

Opsin gene bearing a termination codon at residue 334

References

  1. Armata IA, Giompres P, Smith A, et al. (2006), Genetically induced retinal degeneration leads to changes in metabotropic glutamate receptor expression. Neurosci Lett, 393(1): p. 12–7.

    Google Scholar 

  2. Bloomfield SA, Dacheux RF (2001), Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res, 20(3): p. 351–84.

    Google Scholar 

  3. Bloomfield SA, Dowling JE (1985), Roles of aspartate and glutamate in synaptic transmission in rabbit retina. II. Inner plexiform layer. J Neurophysiol, 53(3): p. 714–25.

    Google Scholar 

  4. Bloomfield SA, Xin D (1997), A comparison of receptive-field and tracer-coupling size of amacrine and ganglion cells in the rabbit retina. Vis Neurosci, 14(6): p. 1153–65.

    Google Scholar 

  5. Bloomfield SA, Xin D, Osborne T (1997), Light-induced modulation of coupling between aII amacrine cells in the rabbit retina. Vis Neurosci, 14(3): p. 565–76.

    Google Scholar 

  6. Bok D, Hall MO (1971), The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol, 49(3): p. 664–82.

    Google Scholar 

  7. Bowes C, Li T, Danciger M, et al. (1990), Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature, 347(6294): p. 677–80.

    Google Scholar 

  8. Bush RA, Hawks KW, Sieving PA (1995), Preservation of inner retinal responses in the aged Royal College of Surgeons rat. Evidence against glutamate excitotoxicity in photoreceptor degeneration. Invest Ophthalmol Vis Sci, 36(10): p. 2054–62.

    Google Scholar 

  9. Cai W, Pourcho RG (1999), Localization of metabotropic glutamate receptors mGluR1alpha and mGluR2/3 in the cat retina. J Comp Neurol, 407(3): p. 427–37.

    Google Scholar 

  10. Chen S, Diamond JS (2002), Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J Neurosci, 22(6): p. 2165–73.

    Google Scholar 

  11. Chen ZS, Yin ZQ, Chen S, Wang SJ (2005), Electrophysiological changes of retinal ­ganglion cells in Royal College of Surgeons rats during retinal degeneration. Neuroreport, 16(9): p. 971–5.

    Google Scholar 

  12. Cohen ED, Miller RF (1994), The role of NMDA and non-NMDA excitatory amino acid receptors in the functional organization of primate retinal ganglion cells. Vis Neurosci, 11(2): p. 317–32.

    Google Scholar 

  13. Cook PB, McReynolds JS (1998), Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci, 1(8): p. 714–9.

    Google Scholar 

  14. de Jong PT (2006), Age-related macular degeneration. N Engl J Med, 355(14): p. 1474–85.

    Google Scholar 

  15. Delyfer MN, Leveillard T, Mohand-Said S, et al. (2004), Inherited retinal degenerations: therapeutic prospects. Biol Cell, 96(4): p. 261–9.

    Google Scholar 

  16. Djamgoz MB, Hankins MW, Hirano J, Archer SN (1997), Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res, 37(24): p. 3509–29.

    Google Scholar 

  17. Dmitrieva NA, Strang CE, Keyser KT (2007), Expression of alpha 7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. J Histochem Cytochem, 55(5): p. 461–76.

    Google Scholar 

  18. Downing JE, Kaneko A (1992), Cat retinal ganglion cells show transient responses to acetylcholine and sustained responses to l -glutamate. Neurosci Lett, 137(1): p. 114–8.

    Google Scholar 

  19. Eggers ED, Lukasiewicz PD (2006), GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. J Physiol, 572(Pt 1): p. 215–25.

    Google Scholar 

  20. Eggers ED, Lukasiewicz PD (2006), Receptor and transmitter release properties set the time course of retinal inhibition. J Neurosci, 26(37): p. 9413–25.

    Google Scholar 

  21. Eggers ED, McCall MA, Lukasiewicz PD (2007), Presynaptic inhibition differentially shapes transmission in distinct circuits in the mouse retina. J Physiol, 582(Pt 2): p. 569–82.

    Google Scholar 

  22. Farber DB, Flannery JG, Bowes-Rickman C (1994), The rd mouse story: Seventy years of research on an animal model of inherited retinal degeneration. Vis Neurosci, 13: p. 31–64.

    Google Scholar 

  23. Fletcher EL (2000), Alterations in neurochemistry during retinal degeneration. Microsc Res Tech, 50(2): p. 89–102.

    MathSciNet  Google Scholar 

  24. Flores-Herr N, Protti DA, Wassle H (2001), Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. J Neurosci, 21(13): p. 4852–63.

    Google Scholar 

  25. Freed MA (2000), Parallel cone bipolar pathways to a ganglion cell use different rates and amplitudes of quantal excitation. J Neurosci, 20(11): p. 3956–63.

    Google Scholar 

  26. Freed MA (2000), Rate of quantal excitation to a retinal ganglion cell evoked by sensory input. J Neurophysiol, 83(5): p. 2956–66.

    MathSciNet  Google Scholar 

  27. Freed MA, Sterling P (1988), The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. J Neurosci, 8(7): p. 2303–20.

    Google Scholar 

  28. Fulton AB (1983), Background adaptation in RCS rats. Invest Ophthalmol Vis Sci, 24(1): p. 72–6.

    Google Scholar 

  29. Grunder T, Kohler K, Guenther E (2001), Alterations in NMDA receptor expression during retinal degeneration in the RCS rat. Vis Neurosci, 18(5): p. 781–7.

    Google Scholar 

  30. Grunfeld ED, Spitzer H (1995), Spatio-temporal model for subjective colours based on colour coded ganglion cells. Vision Res, 35(2): p. 275–83.

    Google Scholar 

  31. Gupta N, Drance SM, McAllister R, et al. (1994), Localization of M3 muscarinic receptor subtype and mRNA in the human eye. Ophthalmic Res, 26(4): p. 207–13.

    Google Scholar 

  32. Gupta N, McAllister R, Drance SM, et al. (1994), Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography. Br J Ophthalmol, 78(7): p. 555–9.

    Google Scholar 

  33. Haddad S, Chen CA, Santangelo SL, Seddon JM (2006), The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol, 51(4): p. 316–63.

    Google Scholar 

  34. Hamel C (2006), Retinitis pigmentosa. Orphanet J Rare Dis, 1: p. 40.

    Google Scholar 

  35. Hampson EC, Vaney DI, Weiler R (1992), Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci, 12(12): p. 4911–22.

    Google Scholar 

  36. Hare WA, Owen WG (1996), Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander. J Neurophysiol, 76(3): p. 2005–19.

    Google Scholar 

  37. Hille B (1992), Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer.

    Google Scholar 

  38. Hims MM, Diager SP, Inglehearn CF (2003), Retinitis pigmentosa: genes, proteins and prospects. Dev Ophthalmol, 37: p. 109–25.

    Google Scholar 

  39. Hoffpauir BK, Gleason EL (2002), Activation of mGluR5 modulates GABA(A) receptor function in retinal amacrine cells. J Neurophysiol, 88(4): p. 1766–76.

    Google Scholar 

  40. Hutchins JB, Hollyfield JG (1987), Cholinergic neurons in the human retina. Exp Eye Res, 44, 363–376.

    Google Scholar 

  41. Iezzi R, Auner G, McAllister P, Abrams GW (2003), Method and apparatus for activating molecules to stimulate neurological tissue, United States patent US 6, 668, 190.

    Google Scholar 

  42. Ikeda H, Kay CD, Robbins J (1989), Properties of excitatory amino acid receptors on sustained ganglion cells in the cat retina. Neuroscience, 32(1): p. 27–38.

    Google Scholar 

  43. Kamermans M, Werblin F (1992), GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. J Neurosci, 12(7): p. 2451–63.

    Google Scholar 

  44. Kaneda M, Hashimoto M, Kaneko A (1995), Neuronal nicotinic acetylcholine receptors of ganglion cells in the cat retina. Jpn J Physiol, 45(3): p. 491–508.

    Google Scholar 

  45. Kent TL, Glybina IV, Abrams GW, Iezzi R (2008), Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat. Invest Ophthalmol Vis Sci, 49(1): p. 372–9.

    Google Scholar 

  46. Keyser KT, Britto LR, Schoepfer R, et al. (1993), Three subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors are expressed in chick retina. J Neurosci, 13(2): p. 442–54.

    Google Scholar 

  47. Keyser KT, MacNeil MA, Dmitrieva N, et al. (2000), Amacrine, ganglion, and displaced amacrine cells in the rabbit retina express nicotinic acetylcholine receptors. Vis Neurosci, 17(5): p. 743–52.

    Google Scholar 

  48. Kittila CA, Massey SC (1997), Pharmacology of directionally selective ganglion cells in the rabbit retina. J Neurophysiol, 77(2): p. 675–89.

    Google Scholar 

  49. Koulen P, Kuhn R, Wassle H, Brandstatter JH (1997), Group I metabotropic glutamate receptors mGluR1alpha and mGluR5a: localization in both synaptic layers of the rat retina. J Neurosci, 17(6): p. 2200–11.

    Google Scholar 

  50. LaVail MM, Mullen RJ (1976), Role of the pigment epithelium in inherited retinal degeneration analyzed with experimental mouse chimeras. Exp Eye Res, 23(2): p. 227–45.

    Google Scholar 

  51. Lee CJ, Blumenkranz MS, Fishman HA, Bent SF (2004), Controlling cell adhesion on human tissue by soft lithography. Langmuir, 20(10): p. 4155–61.

    Google Scholar 

  52. Leng T, Wu P, Mehenti NZ, et al. (2004), Directed retinal nerve cell growth for use in a retinal prosthesis interface. Invest Ophthalmol Vis Sci, 45(11): p. 4132–7.

    Google Scholar 

  53. Lipton SA, Aizenman E, Loring RH (1987), Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells. Pflugers Arch, 410(1–2): p. 37–43.

    Google Scholar 

  54. Lukasiewicz PD, Shields CR (1998), Different combinations of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses. J Neurophysiol, 79(6): p. 3157–67.

    Google Scholar 

  55. Lukasiewicz PD, Shields CR (1998), A diversity of GABA receptors in the retina. Semin Cell Dev Biol, 9(3): p. 293–9.

    Google Scholar 

  56. MacDonald IM, Lines MA (2004), Genetics and ARMD. CMAJ, 170(10): p. 1518–9.

    Google Scholar 

  57. Majumdar S, Heinze L, Haverkamp S, et al. (2007), Glycine receptors of A-type ganglion cells of the mouse retina. Vis Neurosci, 24(4): p. 471–87.

    Google Scholar 

  58. Marc RE (1999), Kainate activation of horizontal, bipolar, amacrine, and ganglion cells in the rabbit retina. J Comp Neurol, 407(1): p. 65–76.

    Google Scholar 

  59. Marc RE (1999), Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation. J Comp Neurol, 407(1): p. 47–64.

    Google Scholar 

  60. Marc RE, Jones BW (2003), Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol, 28(2): p. 139–47.

    Google Scholar 

  61. Marc RE, Jones BW, Anderson JR, et al. (2007), Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci, 48(7): p. 3364–71.

    Google Scholar 

  62. Marc RE, Jones BW, Watt CB, Strettoi E (2003), Neural remodeling in retinal degeneration. Prog Retin Eye Res, 22(5): p. 607–55.

    Google Scholar 

  63. Masland RH, Ames A, 3 rd (1976), Responses to acetylcholine of ganglion cells in an isolated mammalian retina. J Neurophysiol, 39(6): p. 1220–35.

    Google Scholar 

  64. Maubaret C, Hamel C (2005), Genetics of retinitis pigmentosa: metabolic classification and phenotype/genotype correlations. J Fr Ophtalmol, 28(1): p. 71–92.

    Google Scholar 

  65. McMahon MJ, Packer OS, Dacey DM (2004), The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. J Neurosci, 24(15): p. 3736–45.

    Google Scholar 

  66. Mehenti NZ, Tsien GS, Leng T, et al. (2006), A model retinal interface based on directed neuronal growth for single cell stimulation. Biomed Microdevices, 8(2): p. 141–50.

    Google Scholar 

  67. Michaelides M, Hunt DM, Moore AT (2003), The genetics of inherited macular dystrophies. J Med Genet, 40(9): p. 641–50.

    Google Scholar 

  68. Molnar A, Werblin F (2007), Inhibitory feedback shapes bipolar cell responses in the rabbit retina. J Neurophysiol, 98(6): p. 3423–35.

    Google Scholar 

  69. Mullen RJ, LaVail MM (1976), Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science, 192(4241): p. 799–801.

    Google Scholar 

  70. Nakajima Y, Iwakabe H, Akazawa C, et al. (1993), Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for l -2-amino-4-phosphonobutyrate. J Biol Chem, 268(16): p. 11868–73.

    Google Scholar 

  71. Namekata K, Okumura A, Harada C, et al. (2006), Effect of photoreceptor degeneration on RNA splicing and expression of AMPA receptors. Mol Vis, 12: p. 1586–93.

    Google Scholar 

  72. Nawy S, Jahr CE (1990), Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature, 346(6281): p. 269–71.

    Google Scholar 

  73. Nehilla BJ, Popat KC, Vu TQ, et al. (2004), Neurotransmitter analog tethered to a silicon platform for neuro-BioMEMS applications. Biotechnol Bioeng, 87(5): p. 669–74.

    Google Scholar 

  74. Nicholson C, Phillips JM (1981), Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol, 321: p. 225–57.

    Google Scholar 

  75. Noell WK, Pewitt EB, Cotter JR (1989), ERG of the pigmented rdy rat at advanced stages of hereditary retinal degeneration. Prog Clin Biol Res, 314: p. 357–75.

    Google Scholar 

  76. O’Hearn TM, Sadda SR, Weiland JD, et al. (2006), Electrical stimulation in normal and retinal degeneration (rd1) isolated mouse retina. Vision Res, 46(19): p. 3198–204.

    Google Scholar 

  77. Okada M, Okuma Y, Osumi Y, et al. (2000), Neurotransmitter contents in the retina of RCS rat. Graefes Arch Clin Exp Ophthalmol, 238(12): p. 998–1001.

    Google Scholar 

  78. Orr HT, Cohen AI, Carter JA (1976), The levels of free taurine, glutamate, glycine and gamma-amino butyric acid during the postnatal development of the normal and dystrophic retina of the mouse. Exp Eye Res, 23(4): p. 377–84.

    Google Scholar 

  79. Perlman I (1978), Dark-adaptation in abnormal (RCS) rats studied electroretinographically. J Physiol, 278: p. 161–75.

    Google Scholar 

  80. Finlayson PG, Iezzi R (2010), Glutamate stimulation of retinal ganglion cells in normal and S334ter rat retinas: a candidate for a neurotransmitter-based retinal prosthesis. Invest Ophthalmol Vis Sci, 51: p. 3619–28.

    Google Scholar 

  81. Peterman MC, Bloom DM, Lee C, et al. (2003), Localized neurotransmitter release for use in a prototype retinal interface. Invest Ophthalmol Vis Sci, 44(7): p. 3144–9.

    Google Scholar 

  82. Peterman MC, Mehenti NZ, Bilbao KV, et al. (2003), The artificial synapse chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif Organs, 27(11): p. 975–85.

    Google Scholar 

  83. Peterman MC, Noolandi J, Blumenkranz MS, Fishman HA (2004), Fluid flow past an aperture in a microfluidic channel. Anal Chem, 76(7): p. 1850–6.

    Google Scholar 

  84. Peterman MC, Noolandi J, Blumenkranz MS, Fishman HA (2004), Localized chemical release from an artificial synapse chip. Proc Natl Acad Sci USA, 101(27): p. 9951–4.

    Google Scholar 

  85. Pinilla I, Lund RD, Lu B, Sauve Y (2005), Measuring the cone contribution to the ERG b-wave to assess function and predict anatomical rescue in RCS rats. Vision Res, 45(5): p. 635–41.

    Google Scholar 

  86. Pu M, Xu L, Zhang H (2006), Visual response properties of retinal ganglion cells in the Royal College of Surgeons dystrophic rat. Invest Ophthalmol Vis Sci, 47(8): p. 3579–85.

    Google Scholar 

  87. Rao-Mirotznik R, Buchsbaum G, Sterling P (1998), Transmitter concentration at a three-dimensional synapse. J Neurophysiol, 80(6): p. 3163–72.

    Google Scholar 

  88. Roska B, Nemeth E, Orzo L, Werblin FS (2000), Three levels of lateral inhibition: A space-time study of the retina of the tiger salamander. J Neurosci, 20(5): p. 1941–51.

    Google Scholar 

  89. Saifuddin U, Vu TQ, Rezac M, et al. (2003), Assembly and characterization of biofunctional neurotransmitter-immobilized surfaces for interaction with postsynaptic membrane receptors. J Biomed Mater Res A, 66(1): p. 184–91.

    Google Scholar 

  90. Sauve Y, Lu B, Lund RD (2004), The relationship between full field electroretinogram and perimetry-like visual thresholds in RCS rats during photoreceptor degeneration and rescue by cell transplants. Vision Res, 44(1): p. 9–18.

    Google Scholar 

  91. Schmidt M, Humphrey MF, Wassle H (1987), Action and localization of acetylcholine in the cat retina. J Neurophysiol, 58(5): p. 997–1015.

    Google Scholar 

  92. Schmidt SY, Berson EL (1978), Taurine uptake in isolated retinas of normal rats and rats with hereditary retinal degeneration. Exp Eye Res, 27(2): p. 191–8.

    Google Scholar 

  93. Sharpe LT, Stockman A (1999), Rod pathways: the importance of seeing nothing. Trends Neurosci, 22(11): p. 497–504.

    Google Scholar 

  94. Shiells RA, Falk G (1990), Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proc Biol Sci, 242(1304): p. 91–4.

    Google Scholar 

  95. Slaughter MM, Miller RF (1981), 2-Amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science, 211(4478): p. 182–5.

    Google Scholar 

  96. Spitzer H, Almon M, Sherman I (1994), A model for the early stages of motion processing based on spatial and temporal edge detection by X-cells. Spat Vis, 8(3): p. 341–68.

    Google Scholar 

  97. Stasheff SF (2008), Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol, 99(3): p. 1408–21.

    Google Scholar 

  98. Stasi K, Naskar R, Thanos S, et al. (2003), Benzodiazepine and kainate receptor binding sites in the RCS rat retina. Graefes Arch Clin Exp Ophthalmol, 241(2): p. 154–60.

    Google Scholar 

  99. Strettoi E, Mazzoni F, Damiani D, Novelli E (2008), Structural consequences of inherited photoreceptor degeneration: a close look to the inner retina, Invest Ophthalmol Visual Sci, 49, ARVO E-abstr #5181.

    Google Scholar 

  100. Strettoi E, Pignatelli V (2000), Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA, 97(20): p. 11020–5.

    Google Scholar 

  101. Taylor WR (1999), TTX attenuates surround inhibition in rabbit retinal ganglion cells. Vis Neurosci, 16(2): p. 285–90.

    Google Scholar 

  102. Tian N, Hwang TN, Copenhagen DR (1998), Analysis of excitatory and inhibitory spontaneous synaptic activity in mouse retinal ganglion cells. J Neurophysiol, 80(3): p. 1327–40.

    Google Scholar 

  103. Ventriglia F, Di Maio V (2000), A Brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale. Biol Cybern, 83(2): p. 93–109.

    MATH  Google Scholar 

  104. Verweij J, Kamermans M, Spekreijse H (1996), Horizontal cells feed back to cones by shifting the cone calcium-current activation range. Vision Res, 36(24): p. 3943–53.

    Google Scholar 

  105. Vu TQ, Chowdhury S, Muni NJ, et al. (2005), Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment. Biomaterials, 26(14):p. 1895–903.

    Google Scholar 

  106. Wassle H, Koulen P, Brandstatter JH, et al. (1998), Glycine and GABA receptors in the mammalian retina. Vision Res, 38(10): p. 1411–30.

    Google Scholar 

  107. Witkovsky P, Schutte M (1991), The organization of dopaminergic neurons in vertebrate retinas. Vis Neurosci, 7(1–2): p. 113–24.

    Google Scholar 

  108. Yan C, Matsuda W, Pepperberg DR, et al. (2006), Synthesis and characterization of an electroactive surface that releases gamma-aminobutyric acid (GABA). J Colloid Interface Sci, 296(1): p. 165–77.

    Google Scholar 

  109. Yang XL (2004), Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol, 73(2): p. 127–50.

    Google Scholar 

  110. Yang XL, Wu SM (1989), Effects of prolonged light exposure, GABA, and glycine on horizontal cell responses in tiger salamander retina. J Neurophysiol, 61(5): p. 1025–35.

    Google Scholar 

  111. Zarbin MA, Wamsley JK, Palacios JM, Kuhar MJ (1986), Autoradiographic localization of high affinity GABA, benzodiazepine, dopaminergic, adrenergic and muscarinic cholinergic receptors in the rat, monkey and human retina. Brain Res, 374(1): p. 75–92.

    Google Scholar 

  112. Zhang C, Bettler B, Duvoisin RM (1998), Differential localization of GABA(B) receptors in the mouse retina. Neuroreport, 9(15): p. 3493–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Iezzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Iezzi, R., Finlayson, P.G. (2011). Neurotransmitter Stimulation for Retinal Prosthesis: The Artificial Synapse Chip. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics