Retinal Remodeling and Visual Prosthetics



Retinal degenerative disease induces a cascade of events that ultimately result in phased revision of neuronal populations and circuitry of the retina. These changes reveal plasticity in the retina that mimics that seen during development and in instances of neural deafferentation in other central nervous system (CNS) systems, involving neuronal as well as glial cell populations. These retinal remodeling changes occur across the spectrum of retinal degenerative disease and are observed in defects of the retinal pigment epithelium (RPE), rhodopsin packaging and transport defects as well as other non-retinitis pigmentosa (RP) related diseases with the final result being fundamental revision of neuronal populations and circuitry. These revisions impact potential biological and bionic rescues of visual function and must be overcome before vision restoration strategies can be viable.


Retinitis Pigmentosa Amacrine Cell Horizontal Cell Retinal Degeneration Neural Retina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Amacrine cell


Age-related macular degeneration


Bipolar cell


Computational molecular phenotyping


Central nervous system


Inner plexiform layer


Retinitis pigmentosa


Retinal pigment epithelium


Transmission electron microscopy



Supported in part by an Unrestricted Grant from Research to Prevent Blindness, Inc., New York, NY, to the Department of Ophthalmology & Visual Sciences, University of Utah. Dr. Bryan William Jones is a recipient of a Research to Prevent Blindness Career Development Award (BWJ). Edward N. & Della L. Thome Memorial Foundation, Bank of America, N.A. Trustee, (BWJ) NEI R01 EY02576, R01 EY015128, P01 EY014800 (REM); support from the Cal and JeNeal Hatch Presidential Endowed Chair (REM).

Competing Interests

Robert E. Marc is a principal of Signature Immunologics. All other authors declare no other competing interests.


  1. 1.
    Aguirre GD, Baldwin V, Pearce-Kelling S, et al. (1998), Congenital stationary night blindness in the dog: common mutation in the RPE65 gene indicates founder effect. Mol Vis, 4: p. 23.Google Scholar
  2. 2.
    Aleman TS, Cideciyan AV, Sumaroka A, et al. (2007), Inner retinal abnormalities in X-linked retinitis pigmentosa with RPGR mutations. Invest Ophthalmol Vis Sci, 48(10): p. 4759–65.CrossRefGoogle Scholar
  3. 3.
    Allikmets R (1997), A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet, 17(1): p. 122.Google Scholar
  4. 4.
    Allikmets R (2000), Simple and complex ABCR: genetic predisposition to retinal disease. Am J Hum Genet, 67(4): p. 793–9.CrossRefGoogle Scholar
  5. 5.
    Allikmets R, Shroyer NF, Singh N, et al. (1997), Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science, 277(5333): p. 1805–7.CrossRefGoogle Scholar
  6. 6.
    Allikmets R, Singh N, Sun H, et al. (1997), A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet, 15(3): p. 236–46.CrossRefGoogle Scholar
  7. 7.
    Asher A, Segal WA, Baccus SA, et al. (2007), Image processing for a high-resolution optoelectronic retinal prosthesis. IEEE Trans Biomed Eng, 54(6 Pt 1): p. 993–1004.CrossRefGoogle Scholar
  8. 8.
    Bainbridge JW, Smith AJ, Barker SS, et al. (2008), Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med, 358(21): p. 2231–9.CrossRefGoogle Scholar
  9. 9.
    Boon CJ, Klevering BJ, Hoyng CB, et al. (2008), Basal laminar drusen caused by compound heterozygous variants in the CFH gene. Am J Hum Genet, 82(2): p. 516–23.CrossRefGoogle Scholar
  10. 10.
    Bull ND, Limb GA, Martin KR (2008), Human Müller stem cell (MIO-M1) transplantation in a rat model of glaucoma: survival, differentiation, and integration. Invest Ophthalmol Vis Sci, 49(8): p. 3449–56.CrossRefGoogle Scholar
  11. 11.
    Bunker CH, Berson EL, Bromley WC, et al. (1984), Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol, 97(3): p. 357–65.Google Scholar
  12. 12.
    Cameron DJ, Yang Z, Gibbs D, et al. (2007), HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle, 6(9): p. 1122–5.CrossRefGoogle Scholar
  13. 13.
    Canola K, Angenieux B, Tekaya M, et al. (2007), Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci, 48(1): p. 446–54.CrossRefGoogle Scholar
  14. 14.
    Chen CK, Burns ME, He W, et al. (2000), Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature, 403(6769): p. 557–60.CrossRefGoogle Scholar
  15. 15.
    Chen H, Yang Z, Gibbs D, et al. (2008), Association of HTRA1 polymorphism and bilaterality in advanced age-related macular degeneration. Vision Res, 48(5): p. 690–4.CrossRefGoogle Scholar
  16. 16.
    Clarke G, Goldberg AF, Vidgen D, et al. (2000), Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat Genet, 25(1): p. 67–73.CrossRefGoogle Scholar
  17. 17.
    Cremers FP, van de Pol DJ, van Driel M, et al. (1998), Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet, 7(3): p. 355–62.CrossRefGoogle Scholar
  18. 18.
    Cuenca N, Pinilla I, Sauve Y, et al. (2004), Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience, 127(2): p. 301–17.CrossRefGoogle Scholar
  19. 19.
    Cuenca N, Pinilla I, Sauve Y, Lund R (2005), Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats. Eur J Neurosci, 22(5):p. 1057–72.CrossRefGoogle Scholar
  20. 20.
    D’Cruz PM, Yasumura D, Weir J, et al. (2000), Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet, 9(4): p. 645–51.CrossRefGoogle Scholar
  21. 21.
    de Raad S, Szczesny PJ, Munz K, Reme CE (1996), Light damage in the rat retina: glial fibrillary acidic protein accumulates in Müller cells in correlation with photoreceptor damage. Ophthalmic Res, 28(2): p. 99–107.CrossRefGoogle Scholar
  22. 22.
    Delbeke J, Pins D, Michaux G, et al. (2001), Electrical stimulation of anterior visual pathways in retinitis pigmentosa. Invest Ophthalmol Vis Sci, 42(1): p. 291–7.Google Scholar
  23. 23.
    Dewan A, Liu M, Hartman S, et al. (2006), HTRA1 promoter polymorphism in wet age-related macular degeneration. Science, 314(5801): p. 989–92.CrossRefGoogle Scholar
  24. 24.
    Dryja TP, Berson EL, Rao VR, Oprian DD (1993), Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet, 4(3): p. 280–3.CrossRefGoogle Scholar
  25. 25.
    Dryja TP, McGee TL, Berson EL, et al. (2005), Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA, 102(13): p. 4884–9.CrossRefGoogle Scholar
  26. 26.
    Duncan JL, Yang H, Vollrath D, et al. (2003), Inherited retinal dystrophy in Mer knockout mice. Adv Exp Med Biol, 533: p. 165–72.Google Scholar
  27. 27.
    Eckhorn R, Wilms M, Schanze T, et al. (2006), Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vision Res, 46(17): p. 2675–90.CrossRefGoogle Scholar
  28. 28.
    Edwards AO, Ritter R, III, Abel KJ, et al. (2005), Complement factor H polymorphism and age-related macular degeneration. Science, 308(5720): p. 421–4.CrossRefGoogle Scholar
  29. 29.
    Faktorovich EG, Steinberg RH, Yasumura D, et al. (1990), Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature, 347(6288): p. 83–6.CrossRefGoogle Scholar
  30. 30.
    Faktorovich EG, Steinberg RH, Yasumura D, et al. (1992), Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J Neurosci, 12(9): p. 3554–67.Google Scholar
  31. 31.
    Fariss RN, Li ZY, Milam AH (2000), Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am J Ophthalmol, 129(2): p. 215–23.CrossRefGoogle Scholar
  32. 32.
    Fei Y (2002), Cone neurite sprouting: an early onset abnormality of the cone photoreceptors in the retinal degeneration mouse. Mol Vis, 8: p. 306–14.Google Scholar
  33. 33.
    Fletcher EL, Kalloniatis M (1996), Neurochemical architecture of the normal and degenerating rat retina. J Comp Neurol, 376(3): p. 343–60.CrossRefGoogle Scholar
  34. 34.
    Frederick JM, Krasnoperova NV, Hoffmann K, et al. (2001), Mutant rhodopsin transgene expression on a null background. Invest Ophthalmol Vis Sci, 42(3): p. 826–33.Google Scholar
  35. 35.
    Friedman DS, O’Colmain BJ, Munoz B, et al. (2004), Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol, 122(4): p. 564–72.CrossRefGoogle Scholar
  36. 36.
    Gias C, Jones M, Keegan D, et al. (2007), Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques. Eur J Neurosci, 25(7): p. 1940–8.CrossRefGoogle Scholar
  37. 37.
    Gold B, Merriam JE, Zernant J, et al. (2006), Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet, 38(4): p. 458–62.CrossRefGoogle Scholar
  38. 38.
    Gregory-Evans K, Fariss RN, Possin DE, et al. (1998), Abnormal cone synapses in human cone-rod dystrophy. Ophthalmology, 105(12): p. 2306–12.CrossRefGoogle Scholar
  39. 39.
    Gu SM, Thompson DA, Srikumari CR, et al. (1997), Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet, 17(2): p. 194–7.CrossRefGoogle Scholar
  40. 40.
    Gutnisky DA, Dragoi V (2008), Adaptive coding of visual information in neural populations. Nature, 452(7184): p. 220–4.CrossRefGoogle Scholar
  41. 41.
    Hageman GS, Anderson DH, Johnson LV, et al. (2005), A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA, 102(20): p. 7227–32.CrossRefGoogle Scholar
  42. 42.
    Hennig MH, Funke K, Worgotter F (2002), The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior. J Neurosci, 22(19): p. 8726–38.Google Scholar
  43. 43.
    Hu G, Wensel TG (2002), R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1. Proc Natl Acad Sci USA, 99(15): p. 9755–60.CrossRefGoogle Scholar
  44. 44.
    Hu G, Zhang Z, Wensel TG (2003), Activation of RGS9-1GTPase acceleration by its membrane anchor, R9AP. J Biol Chem, 278(16): p. 14550–4.CrossRefGoogle Scholar
  45. 45.
    Huang SH, Pittler SJ, Huang X, et al. (1995), Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nat Genet, 11(4): p. 468–71.CrossRefGoogle Scholar
  46. 46.
    Humayun MS, de Juan E, Jr., Dagnelie G, et al. (1996), Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol, 114(1): p. 40–6.Google Scholar
  47. 47.
    Humphries MM, Rancourt D, Farrar GJ, et al. (1997), Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet, 15(2): p. 216–9.CrossRefGoogle Scholar
  48. 48.
    Jakobsdottir J, Conley YP, Weeks DE, et al. (2005), Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet, 77(3): p. 389–407.CrossRefGoogle Scholar
  49. 49.
    Jones BW, Marc RE (2005), Retinal remodeling during retinal degeneration. Exp Eye Res, 81(2): p. 123–37.CrossRefGoogle Scholar
  50. 50.
    Jones BW, Marc RE, Watt CB, et al. (2006), Neural plasticity revealed by light-induced photoreceptor lesions. Adv Exp Med Biol, 572: p. 405–10.CrossRefGoogle Scholar
  51. 51.
    Jones BW, Watt CB, Frederick JM, et al. (2003), Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol, 464(1): p. 1–16.CrossRefGoogle Scholar
  52. 52.
    Jones BW, Watt CB, Marc RE (2005), Retinal remodelling. Clin Exp Optom, 88(5): p. 282–91.CrossRefGoogle Scholar
  53. 53.
    Kaplan J, Gerber S, Larget-Piet D, et al. (1993), A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1. Nat Genet, 5(3): p. 308–11.CrossRefGoogle Scholar
  54. 54.
    Kolb H, Gouras P (1974), Electron microscopic observations of human retinitis pigmentosa, dominantly inherited. Invest Ophthalmol, 13(7): p. 487–98.Google Scholar
  55. 55.
    Koyama R, Yamada MK, Fujisawa S, et al. (2004), Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus. J Neurosci, 24(33): p. 7215–24.CrossRefGoogle Scholar
  56. 56.
    Lakhanpal RR, Yanai D, Weiland JD, et al. (2003), Advances in the development of visual prostheses. Curr Opin Ophthalmol, 14(3): p. 122–7.CrossRefGoogle Scholar
  57. 57.
    Li JB, Gerdes JM, Haycraft CJ, et al. (2004), Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell, 117(4): p. 541–52.CrossRefGoogle Scholar
  58. 58.
    Li ZY, Kljavin IJ, Milam AH (1995), Rod photoreceptor neurite sprouting in retinitis pigmentosa. J Neurosci, 15(8): p. 5429–38.Google Scholar
  59. 59.
    Loudin JD, Simanovskii DM, Vijayraghavan K, et al. (2007), Optoelectronic retinal prosthesis: system design and performance. J Neural Eng, 4(1): p. S72–84.CrossRefGoogle Scholar
  60. 60.
    Machida S, Kondo M, Jamison JA, et al. (2000), P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci, 41(10): p. 3200–9.Google Scholar
  61. 61.
    Maguire AM, Simonelli F, Pierce EA, et al. (2008), Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med, 358(21): p. 2240–8.CrossRefGoogle Scholar
  62. 62.
    Maller JB, Fagerness JA, Reynolds RC, et al. (2007), Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet, 39(10): p. 1200–1.CrossRefGoogle Scholar
  63. 63.
    Marc RE (1999), Kainate activation of horizontal, bipolar, amacrine, and ganglion cells in the rabbit retina. J Comp Neurol, 407(1): p. 65–76.CrossRefGoogle Scholar
  64. 64.
    Marc RE (1999), Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation. J Comp Neurol, 407(1): p. 47–64.CrossRefGoogle Scholar
  65. 65.
    Marc RE (2004), Retinal Neurotransmitters, in The Visual Neurosciences, Chalupa LM, Werner J, Editors. MIT Press: Cambridge, MA. p. 315–30.Google Scholar
  66. 66.
    Marc RE (2008), Functional Neuroanatomy of the Retina, in Albert and Jakobiec’s Principles and Practice of Ophthalmology, 3rd edition, Editors. Albert and Miller, Elsevier, p. 1565–92.Google Scholar
  67. 67.
    Marc RE, Jones BW (2002), Molecular phenotyping of retinal ganglion cells. J Neurosci, 22(2): p. 413–27.Google Scholar
  68. 68.
    Marc RE, Jones BW (2003), Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol, 28(2): p. 139–47.CrossRefGoogle Scholar
  69. 69.
    Marc RE, Jones BW, Anderson JR, et al. (2007), Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci, 48(7): p. 3364–71.CrossRefGoogle Scholar
  70. 70.
    Marc RE, Jones BW, Watt CB, Strettoi E (2003), Neural remodeling in retinal degeneration. Prog Retin Eye Res, 22(5): p. 607–55.CrossRefGoogle Scholar
  71. 71.
    Marc RE, Jones BW, Watt CB, et al. (2008), Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis, 14: p. 782–806.Google Scholar
  72. 72.
    Masland RH (2001), Neuronal diversity in the retina. Curr Opin Neurobiol, 11(4): p. 431–6.CrossRefGoogle Scholar
  73. 73.
    Masland RH (2001), The fundamental plan of the retina. Nat Neurosci, 4(9): p. 877–86.CrossRefGoogle Scholar
  74. 74.
    McLaughlin ME, Ehrhart TL, Berson EL, Dryja TP (1995), Mutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci USA, 92(8): p. 3249–53.CrossRefGoogle Scholar
  75. 75.
    McLaughlin ME, Sandberg MA, Berson EL, Dryja TP (1993), Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet, 4(2): p. 130–4.CrossRefGoogle Scholar
  76. 76.
    Molday LL, Rabin AR, Molday RS (2000), ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet, 25(3): p. 257–8.CrossRefGoogle Scholar
  77. 77.
    Morimura H, Fishman GA, Grover SA, et al. (1998), Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc Natl Acad Sci USA, 95(6): p. 3088–93.CrossRefGoogle Scholar
  78. 78.
    Peng YW, Senda T, Hao Y, et al. (2003), Ectopic synaptogenesis during retinal degeneration in the royal college of surgeons rat. Neuroscience, 119(3): p. 813–20.CrossRefGoogle Scholar
  79. 79.
    Pollard H, Khrestchatisky M, Moreau J, et al. (1994), Correlation between reactive sprouting and microtubule protein expression in epileptic hippocampus. Neuroscience, 61(4): p. 773–87.CrossRefGoogle Scholar
  80. 80.
    Pu M, Xu L, Zhang H (2006), Visual response properties of retinal ganglion cells in the royal college of surgeons dystrophic rat. Invest Ophthalmol Vis Sci, 47(8): p. 3579–85.CrossRefGoogle Scholar
  81. 81.
    Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006), Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol, 6: p. 36.CrossRefGoogle Scholar
  82. 82.
    Rockhill RL, Daly FJ, MacNeil MA, et al. (2002), The diversity of ganglion cells in a mammalian retina. J Neurosci, 22(9): p. 3831–43.Google Scholar
  83. 83.
    Sommer ME, Farrens DL (2006), Arrestin can act as a regulator of rhodopsin photochemistry. Vision Res, 46(27): p. 4532–46.CrossRefGoogle Scholar
  84. 84.
    Sommer ME, Smith WC, Farrens DL (2006), Dynamics of arrestin–rhodopsin interactions: acidic phospholipids enable binding of arrestin to purified rhodopsin in detergent. J Biol Chem, 281(14): p. 9407–17.CrossRefGoogle Scholar
  85. 85.
    Specht D, Tom Dieck S, Ammermuller J, et al. (2007), Structural and functional remodeling in the retina of a mouse with a photoreceptor synaptopathy: plasticity in the rod and degeneration in the cone system. Eur J Neurosci, 26(9): p. 2506–15.CrossRefGoogle Scholar
  86. 86.
    Stasheff SF (2008), Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol, 99(3): p. 1408–21.CrossRefGoogle Scholar
  87. 87.
    Stone EM, Braun TA, Russell SR, et al. (2004), Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med, 351(4): p. 346–53.CrossRefGoogle Scholar
  88. 88.
    Strettoi E, Pignatelli V (2000), Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA, 97(20): p. 11020–5.CrossRefGoogle Scholar
  89. 89.
    Strettoi E, Pignatelli V, Rossi C, et al. (2003), Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res, 43(8): p. 867–77.CrossRefGoogle Scholar
  90. 90.
    Strettoi E, Porciatti V, Falsini B, et al. (2002), Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci, 22(13): p. 5492–504.Google Scholar
  91. 91.
    Sullivan R, Penfold P, Pow DV (2003), Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest Ophthalmol Vis Sci, 44(2): p. 856–65.CrossRefGoogle Scholar
  92. 92.
    Sullivan RK, Woldemussie E, Pow DV (2007), Dendritic and synaptic plasticity of neurons in the human age-related macular degeneration retina. Invest Ophthalmol Vis Sci, 48(6): p. 2782–91.CrossRefGoogle Scholar
  93. 93.
    Sutula T (2002), Seizure-induced axonal sprouting: assessing connections between injury, local circuits, and epileptogenesis. Epilepsy Curr, 2(3): p. 86–91.CrossRefGoogle Scholar
  94. 94.
    Terada N, Hamazaki T, Oka M, et al. (2002), Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 416(6880): p. 542–5.CrossRefGoogle Scholar
  95. 95.
    Varela C, Igartua I, De la Rosa EJ, De la Villa P (2003), Functional modifications in rod bipolar cells in a mouse model of retinitis pigmentosa. Vision Res, 43(8): p. 879–85.CrossRefGoogle Scholar
  96. 96.
    Vasireddy V, Uchida Y, Salem N, Jr., et al. (2007), Loss of functional ELOVL4 depletes very long-chain fatty acids (> or =C28) and the unique omega-O-acylceramides in skin leading to neonatal death. Hum Mol Genet, 16(5): p. 471–82.CrossRefGoogle Scholar
  97. 97.
    Vugler A, Lawrence J, Walsh J, et al. (2007), Embryonic stem cells and retinal repair. Mech Dev, 124(11–12): p. 807–29.CrossRefGoogle Scholar
  98. 98.
    Wang QL, Chen S, Esumi N, et al. (2004), QRX, a novel homeobox gene, modulates photoreceptor gene expression. Hum Mol Genet, 13(10): p. 1025–40.CrossRefGoogle Scholar
  99. 99.
    Wassle H (2004), Parallel processing in the mammalian retina. Nat Rev Neurosci, 5(10): p. 747–57.CrossRefGoogle Scholar
  100. 100.
    Weiss TF (1996), Cellular Biophysics: Electrical Properties. Vol. 2. MIT Press: Cambridge, MA. p. 557.Google Scholar
  101. 101.
    Wensel TG (2008), Signal transducing membrane complexes of photoreceptor outer segments. Vision Res, 48(20): p. 2052–61.CrossRefGoogle Scholar
  102. 102.
    Yanai D, Weiland JD, Mahadevappa M, et al. (2007), Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol, 143(5): p. 820–27.CrossRefGoogle Scholar
  103. 103.
    Yates JR, Sepp T, Matharu BK, et al. (2007), Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med, 357(6): p. 553–61.CrossRefGoogle Scholar
  104. 104.
    Yen HJ, Tayeh MK, Mullins RF, et al. (2006), Bardet–Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer’s vesicle cilia function. Hum Mol Genet, 15(5): p. 667–77.CrossRefGoogle Scholar
  105. 105.
    Young MJ, Ray J, Whiteley SJ, et al. (2000), Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci, 16(3): p. 197–205.CrossRefGoogle Scholar
  106. 106.
    Zarbin MA (2004), Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol, 122(4): p. 598–614.CrossRefGoogle Scholar
  107. 107.
    Zeitz C, Gross AK, Leifert D, et al. (2008), Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB. Invest Ophthalmol Vis Sci, 49(9): p. 4105–14.CrossRefGoogle Scholar
  108. 108.
    Zeitz C, van Genderen M, Neidhardt J, et al. (2005), Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci, 46(11): p. 4328–35.CrossRefGoogle Scholar
  109. 109.
    Zhang K, Kniazeva M, Han M, et al. (2001), A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet, 27(1): p. 89–93.CrossRefGoogle Scholar
  110. 110.
    Zrenner E (2002), Will retinal implants restore vision? Science, 295(5557): p. 1022–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Moran Eye CenterUniversity of UtahSalt Lake CityUSA

Personalised recommendations