Skip to main content

Simulations of Cortical Prosthetic Vision

  • Chapter
  • First Online:
Visual Prosthetics

Abstract

Cortical stimulation for restoring vision presents researchers with many challenges and questions. The extent of the human visual cortex varies up to 50% from one individual to another, cortical folding and sulci limit the area of implantation, and surgical difficulties make it difficult to implant electrodes to produce phosphenes in the whole visual space. Researchers are faced with question such as: which electrodes to use – surface electrodes that are easy to implant or intracortical fine-metal electrodes that have lower current requirements and have five times better resolution? How many phosphenes will be enough to give limited, but useful vision? How will cortical physiology affect phosphene maps? Will percepts be distinct dots or complex in nature? What will be the long term response to stimulation? Will the brain adapt to seeing through dotted images? Some of these questions can be answered by conducting human psychophysical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

f  MRI:

functional Magnetic resonance imaging

LGN:

Lateral geniculate nucleus

V1:

Striate cortex or primary visual cortex

V2:

Prestriate cortex or secondary visual cortex

V3:

Third visual complex

References

  1. Brindley GS (1970), Sensations produced by electrical stimulation of the occipital poles of the cerebral hemispheres, and their use in constructing visual prostheses. Ann R Coll Surg Engl, 47(2): p. 106–8.

    Google Scholar 

  2. Brindley GS (1982), Effects of electrical stimulation of the visual cortex. Hum Neurobiol, 1(4): p. 281–3.

    MathSciNet  Google Scholar 

  3. Brindley GS, Lewin WS (1968), The sensations produced by electrical stimulation of the visual cortex. J Physiol, 196(2): p. 479–93.

    Google Scholar 

  4. Cha K, Horch K, Normann RA (1992), Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann Biomed Eng, 20(4): p. 439–49.

    Article  Google Scholar 

  5. Cha K, Horch KW, Normann RA (1992), Mobility performance with a pixelized vision system. Vision Res, 32(7): p. 1367–72.

    Article  Google Scholar 

  6. Cha K, Horch KW, Normann RA, Boman DK (1992), Reading speed with a pixelized vision system. J Opt Soc Am A, 9(5): p. 673–7.

    Article  Google Scholar 

  7. DeYoe EA, Carman GJ, Bandettini P, et al. (1996), Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA, 93(6): p. 2382–6.

    Article  Google Scholar 

  8. Dobelle WH, Mladejovsky MG (1974), Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol, 243(2): p. 553–76.

    Google Scholar 

  9. Dobelle WH, Mladejovsky MG, Girvin JP (1974), Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science, 183(123): p. 440–4.

    Article  Google Scholar 

  10. Dobelle WH, Turkel J, Henderson DC, Evans JR (1979), Mapping the representation of the visual field by electrical stimulation of human visual cortex. Am J Ophthalmol, 88(4): p. 727–35.

    Google Scholar 

  11. Dougherty RF, Koch VM, Brewer AA, et al. (2003), Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J Vis, 3(10): p. 586–98.

    Article  Google Scholar 

  12. Holmes G (1918), Disturbances of vision by cerebral lesions. Br J Ophthalmol, 2(7): p. 353–84.

    Article  Google Scholar 

  13. Horton JC, Hoyt WF (1991), The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol, 109(6): p. 816–24.

    Google Scholar 

  14. Kaido T, Hoshida T, Taoka T, Sakaki T (2004), Retinotopy with coordinates of lateral occipital cortex in humans. J Neurosurg, 101(1): p. 114–8.

    Article  Google Scholar 

  15. Lee HW, Hong SB, Seo DW, et al. (2000), Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology, 54(4): p. 849–54.

    Google Scholar 

  16. Levy I, Hasson U, Avidan G, et al. (2001), Center-periphery organization of human object areas. Nat Neurosci, 4(5): p. 533–9.

    Google Scholar 

  17. McFadzean R, Brosnahan D, Hadley D, Mutlukan E (1994), Representation of the visual field in the occipital striate cortex. Br J Ophthalmol, 78(3): p. 185–90.

    Article  Google Scholar 

  18. McFadzean RM, Hadley DM, Condon BC (2002), The representation of the visual field in the occipital striate cortex. Neuroophthalmology, 27(1–3): p. 55–78.

    Article  Google Scholar 

  19. Schmidt EM, Bak MJ, Hambrecht FT, et al. (1996), Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119 (Pt 2): p. 507–22.

    Article  Google Scholar 

  20. Srivastava NR, Troyk PR, Dagnelie G (2009), Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device. J Neural Eng, 6(3): p. 035008.

    Article  Google Scholar 

  21. Stensaas SS, Eddington DK, Dobelle WH (1974), The topography and variability of the primary visual cortex in man. J Neurosurg, 40(6): p. 747–55.

    Article  Google Scholar 

  22. Wandell BA, Brewer AA, Dougherty RF (2005), Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci, 360(1456): p. 693–707.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant R. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Srivastava, N.R. (2011). Simulations of Cortical Prosthetic Vision. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics