Skip to main content

The Response of Retinal Neurons to Electrical Stimulation: A Summary of In Vitro and In Vivo Animal Studies

  • Chapter
  • First Online:

Abstract

The studies reviewed in this chapter are restricted to those that electrically stimulate the retina. The research studies reviewed in this chapter are further limited to those performed in animal models; the results of human clinical studies are covered in subsequent chapters.

The neural response to electrical stimulation is influenced (potentially) by a large number of stimulation-related variables (Chaps.  6–10). Stimulating electrodes can be constructed in different shapes and sizes and fabricated out of different materials. Arrays of multiple electrodes can be configured in many different arrangements and ultimately positioned on opposite sides of the retina, or even penetrate into the retina. In addition, the phase length, duration, amplitude and/or frequency of stimulus pulses can each vary, some by several orders of magnitude.

The neurobiology of the retina creates additional variables. There are five major classes of retinal neurons and each is a potential target of electrical stimulation. Each class can be subdivided into many different types; the anatomical and biophysical properties of each can vary considerably. Therefore, the response to electrical stimulation may also vary across types. Since each type is thought to convey different features of the visual world, stimulation methods that do not activate all types appropriately may not convey some or all of the important features of the visual scene.

Systematic study of the interactions between all engineering and neurobiological variables requires an extensive matrix of experiments. As a result, many basic ­questions remain unexplored. Here, we will focus on the experimental studies that have yielded the more important insights into either the mechanism by which retinal neurons respond to electrical stimulation or those that have led to improved stimulation­ methods. The final section of this chapter is devoted to a discussion of some important, unanswered questions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

AP4:

2-Amino-4-phosphonobutyric acid

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione

DS:

Directionally selective

EECP:

Electrically elicited cortical potentials

LED:

Local edge detector

LFP:

Local field potential

MK801:

(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate

NBQX:

2-3-Dioxo-6-nitro-1,2,3,4-tetrohydrobenzo[f]quinoxaline-7-sulfonamide

RCS:

Royal College of Surgeons

Rd1:

Retinal degeneration 1

RGC:

Retinal ganglion cell

RP:

Retinitis pigmentosa

References

  1. Ahuja AK, Behrend MR, Kuroda M, et al. (2008), An in vitro model of a retinal prosthesis. IEEE Trans Biomed Eng, 55(6): p. 1744–53.

    Article  Google Scholar 

  2. Caldwell JH, Daw NW (1978), New properties of rabbit retinal ganglion cells. J Physiol, 276: p. 257–76.

    Google Scholar 

  3. Carter-Dawson LD, LaVail MM, Sidman RL (1978), Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci, 17(6): p. 489–98.

    Google Scholar 

  4. Cottaris NP, Elfar SD (2009), Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants. J Neural Eng, 6(2): 026007.

    Article  Google Scholar 

  5. D’Cruz PM, Yasumura D, Weir J, et al. (2000), Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet, 9(4): p. 645–51.

    Article  Google Scholar 

  6. DeVries SH, Baylor DA (1997), Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J Neurophysiol, 78(4): p. 2048–60.

    Google Scholar 

  7. Eckhorn R, Wilms M, Schanze T, et al. (2006), Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vision Res, 46(17): p. 2675–90.

    Article  Google Scholar 

  8. Eger M, Wilms M, Eckhorn R, et al. (2005), Retino-cortical information transmission achievable with a retina implant. Biosystems, 79(1–3): p. 133–42.

    Article  Google Scholar 

  9. Fried SI, Hsueh HA, Werblin FS (2006), A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol, 95(2): p. 970–8.

    Article  Google Scholar 

  10. Fried SI, Lasker AC, Desai NJ, et al. (2009), Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells. J Neurophysiol, 101(4):p. 1972–87.

    Article  Google Scholar 

  11. Gekeler F, Messias A, Ottinger M, et al. (2006), Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects. Invest Ophthalmol Vis Sci, 47(11): p. 4966–74.

    Article  Google Scholar 

  12. Greenberg R (1998). Analysis of electrical stimulation of the vertebrate retina – work towards a retinal prosthesis. Thesis, Biomedical Engineering, Johns Hopkins, Baltimore.

    Google Scholar 

  13. Greenberg RJ, Velte TJ, Humayun MS, et al. (1999), A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans Biomed Eng, 46(5): p. 505–14.

    Article  Google Scholar 

  14. Grilli M, Raiteri L, Patti L, et al. (2006), Modulation of the function of presynaptic alpha7 and non-alpha7 nicotinic receptors by the tryptophan metabolites, 5-hydroxyindole and kynurenate in mouse brain. Br J Pharmacol, 149(6): p. 724–32.

    Article  Google Scholar 

  15. Grumet AE, Wyatt JL, Jr., Rizzo JF, 3rd (2000), Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods, 101(1): p. 31–42.

    Article  Google Scholar 

  16. Grusser OJ, Creutzfeldt O (1957), [Neurophysiological basis of Brucke-Bartley effect; maxima of impulse frequency of retinal and cortical neurons in flickering light of middle frequency.]. Pflugers Arch, 263(6): p. 668–81.

    Article  Google Scholar 

  17. Humayun MS, de Juan E, Jr., Dagnelie G, et al. (1996), Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol, 114(1): p. 40–6.

    Google Scholar 

  18. Humayun MS, de Juan E, Jr., Weiland JD, et al. (1999), Pattern electrical stimulation of the human retina. Vision Res, 39(15): p. 2569–76.

    Article  Google Scholar 

  19. Jensen RJ, Rizzo JF, 3rd (2006), Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp Eye Res, 83(2): p. 367–73.

    Article  Google Scholar 

  20. Jensen RJ, Rizzo JF, 3rd (2007), Responses of ganglion cells to repetitive electrical stimulation of the retina. J Neural Eng, 4(1): p. S1–6.

    Article  Google Scholar 

  21. Jensen RJ, Rizzo JF, 3rd (2008), Activation of retinal ganglion cells in wild-type and rd1 mice through electrical stimulation of the retinal neural network. Vision Res, 48(14): p. 1562–8.

    Article  Google Scholar 

  22. Jensen RJ, Rizzo JF (2009), Activation of ganglion cells in wild-type and rd1 mouse retinas with monophasic and biphasic current pulses. J Neural Eng, 6(3): 035004.

    Article  Google Scholar 

  23. Jensen RJ, Rizzo JF, 3rd, Ziv OR, et al. (2003), Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode. Invest Ophthalmol Vis Sci, 44(8): p. 3533–43.

    Article  Google Scholar 

  24. Jensen RJ, Ziv OR, Rizzo JF (2005), Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode. J Neural Eng, 2(1): p. S16–21.

    Article  Google Scholar 

  25. Jensen RJ, Ziv OR, Rizzo JF, 3rd (2005), Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes. Invest Ophthalmol Vis Sci, 46(4): p. 1486–96.

    Article  Google Scholar 

  26. Kruse W, Eckhorn R (1996), Inhibition of sustained gamma oscillations (35-80 Hz) by fast transient responses in cat visual cortex. Proc Natl Acad Sci USA, 93(12): p. 6112–7.

    Article  Google Scholar 

  27. Logothetis NK (2002), The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci, 357(1424): p. 1003–37.

    Article  Google Scholar 

  28. Margalit E, Thoreson WB (2006), Inner retinal mechanisms engaged by retinal electrical stimulation. Invest Ophthalmol Vis Sci, 47(6): p. 2606–12.

    Article  Google Scholar 

  29. Margolis DJ, Newkirk G, Euler T, Detwiler PB (2008), Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J Neurosci, 28(25): p. 6526–36.

    Article  Google Scholar 

  30. Mastronarde DN (1989), Correlated firing of retinal ganglion cells. Trends Neurosci, 12: p. 75–80.

    Article  Google Scholar 

  31. Meister M, Lagnado L, Baylor DA (1995), Concerted signaling by retinal ganglion-cells. Science, 270(5239): p. 1207–10.

    Article  Google Scholar 

  32. Mitzdorf U (1985), Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev, 65(1): p. 37–100.

    Google Scholar 

  33. Mitzdorf U (1987), Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci, 33(1–2): p. 33–59.

    Article  Google Scholar 

  34. Nandrot E, Dufour EM, Provost AC, et al. (2000), Homozygous deletion in the coding sequence of the c-mer gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis. Neurobiol Dis, 7(6 Pt B): p. 586–99.

    Article  Google Scholar 

  35. O’Brien BJ, Isayama T, Richardson R, Berson DM (2002), Intrinsic physiological properties of cat retinal ganglion cells. J Physiol, 538(Pt 3): p. 787–802.

    Article  Google Scholar 

  36. O’Hearn TM, Sadda SR, Weiland JD, et al. (2006), Electrical stimulation in normal and retinal degeneration (rd1) isolated mouse retina. Vision Res, 46(19): p. 3198–204.

    Article  Google Scholar 

  37. Pennesi ME, Nishikawa S, Matthes MT, et al. (2008), The relationship of photoreceptor degeneration to retinal vascular development and loss in mutant rhodopsin transgenic and RCS rats. Exp Eye Res, 87(6): p. 561–70.

    Article  Google Scholar 

  38. Pu M, Xu L, Zhang H (2006), Visual response properties of retinal ganglion cells in the royal college of surgeons dystrophic rat. Invest Ophthalmol Vis Sci, 47(8): p. 3579–85.

    Article  Google Scholar 

  39. Rager G, Singer W (1998), The response of cat visual cortex to flicker stimuli of variable frequency. Eur J Neurosci, 10(5): p. 1856–77.

    Article  Google Scholar 

  40. Resatz S, Rattay F (2004), A model for the electrically stimulated retina. Math Comput Model Dyn Syst, 10(2): p. 93–106.

    MATH  Google Scholar 

  41. Rizzo JF, 3rd, Wyatt J, Loewenstein J, et al. (2003), Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci, 44(12): p. 5362–9.

    Article  Google Scholar 

  42. Roska B, Werblin F (2001), Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 410(6828): p. 583–7.

    Article  Google Scholar 

  43. Sachs HG, Gekeler F, Schwahn H, et al. (2005), Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development. Eur J Ophthalmol, 15(4): p. 493–9.

    Google Scholar 

  44. Salzmann J, Linderholm OP, Guyomard JL, et al. (2006), Subretinal electrode implantation in the P23H rat for chronic stimulations. Br J Ophthalmol, 90(9): p. 1183–7.

    Article  Google Scholar 

  45. Schanze T, Greve N, Hesse L (2003), Towards the cortical representation of form and motion stimuli generated by a retina implant. Graefes Arch Clin Exp Ophthalmol, 241(8): p. 685–93.

    Article  Google Scholar 

  46. Schanze T, Wilms M, Eger M, et al. (2002), Activation zones in cat visual cortex evoked by electrical retina stimulation. Graefes Arch Clin Exp Ophthalmol, 240(11): p. 947–54.

    Article  Google Scholar 

  47. Schiefer MA, Grill WM (2006), Sites of neuronal excitation by epiretinal electrical stimulation. IEEE Trans Neural Syst Rehabil Eng, 14(1): p. 5–13.

    Article  Google Scholar 

  48. Schwahn HN, Gekeler F, Kohler K, et al. (2001), Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol, 239(12): p. 961–7.

    Article  Google Scholar 

  49. Sekirnjak C, Hottowy P, Sher A, et al. (2006), Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J Neurophysiol, 95(6): p. 3311–27.

    Article  Google Scholar 

  50. Sekirnjak C, Hottowy P, Sher A, et al. (2008), High-resolution electrical stimulation of primate retina for epiretinal implant design. J Neurosci, 28(17): p. 4446–56.

    Article  Google Scholar 

  51. Slaughter MM, Miller RF (1981), 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science, 211(4478): p. 182–5.

    Article  Google Scholar 

  52. Stasheff SF (2008), Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol, 99(3): p. 1408–21.

    Article  Google Scholar 

  53. Stett A, Barth W, Weiss S, et al. (2000), Electrical multisite stimulation of the isolated chicken retina. Vision Res, 40(13): p. 1785–95.

    Article  Google Scholar 

  54. Stett A, Mai A, Herrmann T (2007), Retinal charge sensitivity and spatial discrimination obtainable by subretinal implants: key lessons learned from isolated chicken retina. J Neural Eng, 4(1): p. S7–16.

    Article  Google Scholar 

  55. Suzuki S, Humayun MS, Weiland JD, et al. (2004), Comparison of electrical stimulation thresholds in normal and retinal degenerated mouse retina. Jpn J Ophthalmol, 48(4): p. 345–9.

    Google Scholar 

  56. Tehovnik EJ, Tolias AS, Sultan F, et al. (2006), Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol, 96(2): p. 512–21.

    Article  Google Scholar 

  57. Wang J, Simonavicius N, Wu X, et al. (2006), Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem, 281(31): p. 22021–8.

    Article  Google Scholar 

  58. Wassle H (2004), Parallel processing in the mammalian retina. Nat Rev Neurosci, 5(10): p. 747–57.

    Article  Google Scholar 

  59. Wilms M, Eger M, Schanze T, Eckhorn R (2003), Visual resolution with epi-retinal electrical stimulation estimated from activation profiles in cat visual cortex. Vis Neurosci, 20(5): p. 543–55.

    Article  Google Scholar 

  60. Zrenner E, Besch D, Bartz-Schmidt KU, et al. (2006), Subretinal chronic multielectrode arrays implanted in blind patients. Invest Ophthalmol Vis Sci, 47(1538).

    Google Scholar 

Download references

Acknowledgments

Support provided by Department of Veterans Affairs, Rehabilitation Research and Development Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley I. Fried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fried, S.I., Jensen, R.J. (2011). The Response of Retinal Neurons to Electrical Stimulation: A Summary of In Vitro and In Vivo Animal Studies. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics