Skip to main content

Biophysics/ Engineering of Cortical Electrodes

  • Chapter
  • First Online:
Visual Prosthetics

Abstract

This chapter provides a description of how microelectrodes are used to form an artificial interface to the cortex. Microelectrodes inserted into the cortex are called “intracortical electrodes” and are anticipated for use in cortical visual prostheses. Owing to the nature of the cortical environment, the design and use of these electrodes pose challenges for the clinical deployment of cortical prostheses. The combined effects of electrode charge injection and effects of the in vivo environment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag|AgCl:

Silver–silver chloride

AIROF:

Activated iridium oxide film

C:

Capacitance

CSC:

Charge storage capacity

CSCA :

Anodic charge storage capacity

CSCC :

Cathodic charge storage capacity

CV:

Cyclic voltammetry

I:

Current

Ir:

Iridium

IR:

Infrared

PEDOT:

Polyethylenedioxythiophene

Pt:

Platinum

R:

Resistance

Redox:

Reduction-oxidation chemical reaction

SIROF:

Sputtered iridium oxide film

V:

Voltage

References

  1. Agnew WF, McCreery DB (1990), Considerations for safety with chronically implanted nerve electrodes. Epilepsia, 31(2): p. S27–32.

    Article  Google Scholar 

  2. Agnew WF, Yuen TG, McCreery DB, Bullara LA (1986), Histopathologic evaluation of prolonged intracortical electrical stimulation. Exp Neurol, 92(1): p. 162–85.

    Article  Google Scholar 

  3. Anderson DJ, Najafi K, Tanghe SJ, et al. (1989), Batch-fabricated thin-film electrodes for stimulation of the central auditory system. IEEE Trans Biomed Eng, 36(7): p. 693–704.

    Article  Google Scholar 

  4. Bak M, Girvin JP, Hambrecht FT, et al. (1990), Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput, 28(3): p. 257–9.

    Article  Google Scholar 

  5. Banerjee S, Kahn MG, Wong SS (2003), Rational chemical strategies for carbon nanotube functionalization. Chemistry, 9(9): p. 1898–908.

    Article  Google Scholar 

  6. Beebe X, Rose TL (1988), Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng, 35(6): p. 494–5.

    Article  Google Scholar 

  7. Brindley G, Lewin W (1968), The sensations produced by electrical stimulation of the visual cortex. J Physiol, 196: p. 479–93.

    Google Scholar 

  8. Brummer SB, Robblee LS, Hambrecht FT (1983), Criteria for selecting electrodes for electrical stimulation: Theoretical and practical considerations. Ann NY Acad Sci, 405: p. 159–71.

    Article  Google Scholar 

  9. Brummer SB, Turner MJ (1977), Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng, 24(1): p. 59–63.

    Article  Google Scholar 

  10. Buckely DN, Burke LD (1975), The oxygen electrode part 5 – Enhancement of charge capacity of an iridium surface in the anodic region. J Chem Soc Faraday Trans, 71: p. 1447–459.

    Article  Google Scholar 

  11. Burke LD, Scannell RA (1984), An investigation of hydrous oxide growth on iridium in base. J Electroanal Chem, 175: p. 119–41.

    Article  Google Scholar 

  12. Cogan SF (2006), In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes. Conf Proc IEEE Eng Med Biol Soc, 1: p. 882–5.

    Article  Google Scholar 

  13. Cogan SF (2008), Neural stimulation and recording electrodes. Annu Rev Biomed Eng, 10: p. 275–309.

    Article  Google Scholar 

  14. Cogan SF, Guzelian AA, Agnew WF, et al. (2004), Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J Neurosci Methods, 137(2): p. 141–50.

    Article  Google Scholar 

  15. Cogan SF, Plante TD, Ehrlich J (2004), Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes. Conf Proc IEEE Eng Med Biol Soc, 6: p. 4153–6.

    Google Scholar 

  16. Cogan SF, Troyk PR, Ehrlich J, et al. (2006), Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. IEEE Trans Biomed Eng, 53(2): p. 327–32.

    Article  Google Scholar 

  17. Conway BE (1991), Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage. J Electrochem Soc, 138: p. 1539–48.

    Article  Google Scholar 

  18. Dobelle WH (2000), Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J, 46(1): p. 3–9.

    Article  Google Scholar 

  19. Dobelle WH, Mladejovsky MG (1974), Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol, 243(2): p. 553–76.

    Google Scholar 

  20. Dobelle WH, Mladejovsky MG, Evans JR, et al. (1976), “Braille” reading by a blind volunteer by visual cortex stimulation. Nature, 259(5539): p. 111–2.

    Article  Google Scholar 

  21. Donaldson ND, Donaldson PE (1986), When are actively balanced biphasic (‘Lilly’) stimulating pulses necessary in a neurological prosthesis? I. Historical background; Pt resting potential; Q studies. Med Biol Eng Comput, 24(1): p. 41–9.

    Article  MathSciNet  Google Scholar 

  22. Donaldson ND, Donaldson PE (1986), When are actively balanced biphasic (‘Lilly’) stimulating pulses necessary in a neurological prosthesis? II. pH changes; noxious products; electrode corrosion; discussion. Med Biol Eng Comput, 24(1): p. 50–6.

    Article  MathSciNet  Google Scholar 

  23. Gottesfeld S, McIntyre JDE (1979), Electrochromism in anodic iridium oxide films II. pH effects on corrosion stability and the mechanisms of coloration and bleaching. J Electrochem Soc, 126: p. 742–50.

    Article  Google Scholar 

  24. Gualtierotti T, Bailey P (1968), A neutral buoyancy micro-electrode for prolonged recording from single nerve units. Electroencephalogr Clin Neurophysiol, 25(1): p. 77–81.

    Article  Google Scholar 

  25. Guyton DL, Hambrecht FT (1974), Theory and design of capacitor electrodes for chronic stimulation. Med Biol Eng, 12(5): p. 613–20.

    Article  Google Scholar 

  26. Hu Z, Troyk PR, Brawn TP, et al. (2006), In vitro and in vivo charge capacity of AIROF microelectrodes. Conf Proc IEEE Eng Med Biol Soc, 1: p. 886–9.

    Article  Google Scholar 

  27. Klein JD, Clauson SL, Cogan SF (1989), Morphology and charge capacity of sputtered iridium oxide films. J Vac Sci Technol, A7: p. 3043–7.

    Google Scholar 

  28. Ludwig KA, Uram JD, Yang J, et al. (2006), Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng, 3(1): p. 59–70.

    Article  Google Scholar 

  29. McCreery DB, Agnew WF, Bullara LA (2002), The effects of prolonged intracortical microstimulation on the excitability of pyramidal tract neurons in the cat. Ann Biomed Eng, 30(1): p. 107–19.

    Article  Google Scholar 

  30. McCreery D, Pikov V, Troyk PR (2010), Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J Neural Eng, 7(3): p. 036005.

    Article  Google Scholar 

  31. Nyberg T, Shimada A, Torimitsu K (2007), Ion conducting polymer microelectrodes for interfacing with neural networks. J Neurosci Methods, 160(1): p. 16–25.

    Article  Google Scholar 

  32. Pickup PG, Birss VI (1987), A model for anodic hydrous oxide growth at iridium. J Electroanal Chem, 220: p. 83–100.

    Article  Google Scholar 

  33. Richardson-Burns SM, Hendricks JL, Foster B, et al. (2007), Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials, 28(8): p. 1539–52.

    Article  Google Scholar 

  34. Richardson-Burns SM, Hendricks JL, Martin DC (2007), Electrochemical polymerization of conducting polymers in living neural tissue. J Neural Eng, 4(2): p. L6–13.

    Article  Google Scholar 

  35. Robblee LS, Lefko JL, Brummer SB (1983), Activated Ir: An electrode suitable for reversible charge injection in saline. J Electrochem Soc, 130: p. 731.

    Article  Google Scholar 

  36. Robblee LS, McHardy J, Agnew WF, Bullara LA (1983), Electrical stimulation with Pt electrodes. VII. Dissolution of Pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Methods, 9(4): p. 301–8.

    Article  Google Scholar 

  37. Robblee LS, Rose TL (1990), Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, in Neural Prostheses: Fundamental Studies, Agnew WF, McCreery DB, Editors. Prentice Hall: Englewood Cliffs, NJ. p. 25–66.

    Google Scholar 

  38. Rose TL, Kelliher EM, Robblee LS (1985), Assessment of capacitor electrodes for intracortical neural stimulation. J Neurosci Methods, 12(3): p. 181–93.

    Article  Google Scholar 

  39. Salcman M, Bak MJ (1976), A new chronic recording intracortical microelectrode. Med Biol Eng, 14(1): p. 42–50.

    Article  Google Scholar 

  40. Schmidt EM, Bak MJ, Hambrecht FT, et al. (1996), Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119: p. 507–22.

    Article  Google Scholar 

  41. Slavcheva E, Vitushinsky R, Mokwa W, Schnakenberg U (2004), Sputtered iridium oxide films as charge injection material for functional electrostimulation. J Electrochem Soc, 151(7): p. E226–37.

    Article  Google Scholar 

  42. Wang K, Fishman HA, Dai H, Harris JS (2006), Neural stimulation with a carbon nanotube microelectrode array. Nano Lett, 6(9): p. 2043–8.

    Article  Google Scholar 

  43. Wessling B, Mokwa W, Schnakenberg U (2006), RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants. J Micromech Microeng, 16(6): p. S142–8.

    Article  Google Scholar 

  44. Wise KD, Angell JB, Starr A (1970), An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng, 17(3): p. 238–47.

    Article  Google Scholar 

  45. Woods R (1974), Hydrogen adsorption on platinum, iridium and rhodium electrodes at reduced temperatures and determination of real surface area. J Electroanal Chem, 49(2): p. 217–26.

    Article  MathSciNet  Google Scholar 

  46. Xiao Y, Cui X, Hancock JM, et al. (2004), Electrochemical polymerization of poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes. Sens Actuators B, 99: p. 437–43.

    Article  Google Scholar 

  47. Ziaie B, Nardin MD, Coghlan AR, Najafi K (1997), A single-channel implantable microstimulator for functional neuromuscular stimulation. IEEE Trans Biomed Eng, 44(10): p. 909–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Troyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Troyk, P.R. (2011). Biophysics/ Engineering of Cortical Electrodes. In: Dagnelie, G. (eds) Visual Prosthetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0754-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0754-7_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0753-0

  • Online ISBN: 978-1-4419-0754-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics