Biophysics/ Engineering of Cortical Electrodes



This chapter provides a description of how microelectrodes are used to form an artificial interface to the cortex. Microelectrodes inserted into the cortex are called “intracortical electrodes” and are anticipated for use in cortical visual prostheses. Owing to the nature of the cortical environment, the design and use of these electrodes pose challenges for the clinical deployment of cortical prostheses. The combined effects of electrode charge injection and effects of the in vivo environment are discussed.


Zebra Finch Electrode Polarization Charge Capacity Charge Injection Stimulation Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Silver–silver chloride


Activated iridium oxide film




Charge storage capacity


Anodic charge storage capacity


Cathodic charge storage capacity


Cyclic voltammetry














Reduction-oxidation chemical reaction


Sputtered iridium oxide film




  1. 1.
    Agnew WF, McCreery DB (1990), Considerations for safety with chronically implanted nerve electrodes. Epilepsia, 31(2): p. S27–32.CrossRefGoogle Scholar
  2. 2.
    Agnew WF, Yuen TG, McCreery DB, Bullara LA (1986), Histopathologic evaluation of prolonged intracortical electrical stimulation. Exp Neurol, 92(1): p. 162–85.CrossRefGoogle Scholar
  3. 3.
    Anderson DJ, Najafi K, Tanghe SJ, et al. (1989), Batch-fabricated thin-film electrodes for stimulation of the central auditory system. IEEE Trans Biomed Eng, 36(7): p. 693–704.CrossRefGoogle Scholar
  4. 4.
    Bak M, Girvin JP, Hambrecht FT, et al. (1990), Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput, 28(3): p. 257–9.CrossRefGoogle Scholar
  5. 5.
    Banerjee S, Kahn MG, Wong SS (2003), Rational chemical strategies for carbon nanotube functionalization. Chemistry, 9(9): p. 1898–908.CrossRefGoogle Scholar
  6. 6.
    Beebe X, Rose TL (1988), Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng, 35(6): p. 494–5.CrossRefGoogle Scholar
  7. 7.
    Brindley G, Lewin W (1968), The sensations produced by electrical stimulation of the visual cortex. J Physiol, 196: p. 479–93.Google Scholar
  8. 8.
    Brummer SB, Robblee LS, Hambrecht FT (1983), Criteria for selecting electrodes for electrical stimulation: Theoretical and practical considerations. Ann NY Acad Sci, 405: p. 159–71.CrossRefGoogle Scholar
  9. 9.
    Brummer SB, Turner MJ (1977), Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng, 24(1): p. 59–63.CrossRefGoogle Scholar
  10. 10.
    Buckely DN, Burke LD (1975), The oxygen electrode part 5 – Enhancement of charge capacity of an iridium surface in the anodic region. J Chem Soc Faraday Trans, 71: p. 1447–459.CrossRefGoogle Scholar
  11. 11.
    Burke LD, Scannell RA (1984), An investigation of hydrous oxide growth on iridium in base. J Electroanal Chem, 175: p. 119–41.CrossRefGoogle Scholar
  12. 12.
    Cogan SF (2006), In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes. Conf Proc IEEE Eng Med Biol Soc, 1: p. 882–5.CrossRefGoogle Scholar
  13. 13.
    Cogan SF (2008), Neural stimulation and recording electrodes. Annu Rev Biomed Eng, 10: p. 275–309.CrossRefGoogle Scholar
  14. 14.
    Cogan SF, Guzelian AA, Agnew WF, et al. (2004), Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J Neurosci Methods, 137(2): p. 141–50.CrossRefGoogle Scholar
  15. 15.
    Cogan SF, Plante TD, Ehrlich J (2004), Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes. Conf Proc IEEE Eng Med Biol Soc, 6: p. 4153–6.Google Scholar
  16. 16.
    Cogan SF, Troyk PR, Ehrlich J, et al. (2006), Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. IEEE Trans Biomed Eng, 53(2): p. 327–32.CrossRefGoogle Scholar
  17. 17.
    Conway BE (1991), Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage. J Electrochem Soc, 138: p. 1539–48.CrossRefGoogle Scholar
  18. 18.
    Dobelle WH (2000), Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J, 46(1): p. 3–9.CrossRefGoogle Scholar
  19. 19.
    Dobelle WH, Mladejovsky MG (1974), Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol, 243(2): p. 553–76.Google Scholar
  20. 20.
    Dobelle WH, Mladejovsky MG, Evans JR, et al. (1976), “Braille” reading by a blind volunteer by visual cortex stimulation. Nature, 259(5539): p. 111–2.CrossRefGoogle Scholar
  21. 21.
    Donaldson ND, Donaldson PE (1986), When are actively balanced biphasic (‘Lilly’) stimulating pulses necessary in a neurological prosthesis? I. Historical background; Pt resting potential; Q studies. Med Biol Eng Comput, 24(1): p. 41–9.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Donaldson ND, Donaldson PE (1986), When are actively balanced biphasic (‘Lilly’) stimulating pulses necessary in a neurological prosthesis? II. pH changes; noxious products; electrode corrosion; discussion. Med Biol Eng Comput, 24(1): p. 50–6.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Gottesfeld S, McIntyre JDE (1979), Electrochromism in anodic iridium oxide films II. pH effects on corrosion stability and the mechanisms of coloration and bleaching. J Electrochem Soc, 126: p. 742–50.CrossRefGoogle Scholar
  24. 24.
    Gualtierotti T, Bailey P (1968), A neutral buoyancy micro-electrode for prolonged recording from single nerve units. Electroencephalogr Clin Neurophysiol, 25(1): p. 77–81.CrossRefGoogle Scholar
  25. 25.
    Guyton DL, Hambrecht FT (1974), Theory and design of capacitor electrodes for chronic stimulation. Med Biol Eng, 12(5): p. 613–20.CrossRefGoogle Scholar
  26. 26.
    Hu Z, Troyk PR, Brawn TP, et al. (2006), In vitro and in vivo charge capacity of AIROF microelectrodes. Conf Proc IEEE Eng Med Biol Soc, 1: p. 886–9.CrossRefGoogle Scholar
  27. 27.
    Klein JD, Clauson SL, Cogan SF (1989), Morphology and charge capacity of sputtered iridium oxide films. J Vac Sci Technol, A7: p. 3043–7.Google Scholar
  28. 28.
    Ludwig KA, Uram JD, Yang J, et al. (2006), Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng, 3(1): p. 59–70.CrossRefGoogle Scholar
  29. 29.
    McCreery DB, Agnew WF, Bullara LA (2002), The effects of prolonged intracortical microstimulation on the excitability of pyramidal tract neurons in the cat. Ann Biomed Eng, 30(1): p. 107–19.CrossRefGoogle Scholar
  30. 30.
    McCreery D, Pikov V, Troyk PR (2010), Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J Neural Eng, 7(3): p. 036005.CrossRefGoogle Scholar
  31. 31.
    Nyberg T, Shimada A, Torimitsu K (2007), Ion conducting polymer microelectrodes for interfacing with neural networks. J Neurosci Methods, 160(1): p. 16–25.CrossRefGoogle Scholar
  32. 32.
    Pickup PG, Birss VI (1987), A model for anodic hydrous oxide growth at iridium. J Electroanal Chem, 220: p. 83–100.CrossRefGoogle Scholar
  33. 33.
    Richardson-Burns SM, Hendricks JL, Foster B, et al. (2007), Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials, 28(8): p. 1539–52.CrossRefGoogle Scholar
  34. 34.
    Richardson-Burns SM, Hendricks JL, Martin DC (2007), Electrochemical polymerization of conducting polymers in living neural tissue. J Neural Eng, 4(2): p. L6–13.CrossRefGoogle Scholar
  35. 35.
    Robblee LS, Lefko JL, Brummer SB (1983), Activated Ir: An electrode suitable for reversible charge injection in saline. J Electrochem Soc, 130: p. 731.CrossRefGoogle Scholar
  36. 36.
    Robblee LS, McHardy J, Agnew WF, Bullara LA (1983), Electrical stimulation with Pt electrodes. VII. Dissolution of Pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Methods, 9(4): p. 301–8.CrossRefGoogle Scholar
  37. 37.
    Robblee LS, Rose TL (1990), Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, in Neural Prostheses: Fundamental Studies, Agnew WF, McCreery DB, Editors. Prentice Hall: Englewood Cliffs, NJ. p. 25–66.Google Scholar
  38. 38.
    Rose TL, Kelliher EM, Robblee LS (1985), Assessment of capacitor electrodes for intracortical neural stimulation. J Neurosci Methods, 12(3): p. 181–93.CrossRefGoogle Scholar
  39. 39.
    Salcman M, Bak MJ (1976), A new chronic recording intracortical microelectrode. Med Biol Eng, 14(1): p. 42–50.CrossRefGoogle Scholar
  40. 40.
    Schmidt EM, Bak MJ, Hambrecht FT, et al. (1996), Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119: p. 507–22.CrossRefGoogle Scholar
  41. 41.
    Slavcheva E, Vitushinsky R, Mokwa W, Schnakenberg U (2004), Sputtered iridium oxide films as charge injection material for functional electrostimulation. J Electrochem Soc, 151(7): p. E226–37.CrossRefGoogle Scholar
  42. 42.
    Wang K, Fishman HA, Dai H, Harris JS (2006), Neural stimulation with a carbon nanotube microelectrode array. Nano Lett, 6(9): p. 2043–8.CrossRefGoogle Scholar
  43. 43.
    Wessling B, Mokwa W, Schnakenberg U (2006), RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants. J Micromech Microeng, 16(6): p. S142–8.CrossRefGoogle Scholar
  44. 44.
    Wise KD, Angell JB, Starr A (1970), An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng, 17(3): p. 238–47.CrossRefGoogle Scholar
  45. 45.
    Woods R (1974), Hydrogen adsorption on platinum, iridium and rhodium electrodes at reduced temperatures and determination of real surface area. J Electroanal Chem, 49(2): p. 217–26.CrossRefMathSciNetGoogle Scholar
  46. 46.
    Xiao Y, Cui X, Hancock JM, et al. (2004), Electrochemical polymerization of poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes. Sens Actuators B, 99: p. 437–43.CrossRefGoogle Scholar
  47. 47.
    Ziaie B, Nardin MD, Coghlan AR, Najafi K (1997), A single-channel implantable microstimulator for functional neuromuscular stimulation. IEEE Trans Biomed Eng, 44(10): p. 909–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringPritzker Institute of Biomedical Science and Engineering, Illinois Institute of TechnologyChicagoUSA

Personalised recommendations