Advertisement

Commercial and Experimental Glass Fibers

  • Frederick T. Wallenberger
Chapter

Abstract

Continuous glass fibers can be formed from melts with a wide range of compositions and viscosities. This chapter reviews pure silica fibers which are formed from highly viscous melts, silicate glass fibers with 50–70% SiO2 which are formed from moderately viscous melts, aluminate glass fibers with 50–80% Al2O3, as well as yttria-alumina-garnet (YAG) glass fibers which are formed from inviscid (literally non-viscous) melts. Commercial glass fibers are made for a variety of applications from pure silica rods and from silicate melts containing 50–70% SiO2 and 10–25% Al2O3. Boron-free, essentially boron-free, and borosilicate E-glass are general-purpose fibers. ERC-glass offers high corrosion resistance, HS-glass offers high-strength composites, D-glass offers a low dielectric constant, and A-glass offers the possibility of using waste container glass for less demanding applications.

Keywords

Continuous glass fibers Viscous and inviscid fiberglass melts Glass melting and fiber formation Experimental and commercial glass fibers Commercial E-glass ECR-glass D-glass HS-glass and A-glass fibers Structures and properties 

References

  1. 1.
    F. T. Wallenberger, Continuous melt spinning processes, in Advanced inorganic fibers: processes, structures, properties, applications,  Chapter 4, Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 81–122 (1999).Google Scholar
  2. 2.
    F. T. Wallenberger, R. J. Hicks, P. N. Simcic and A. T. Bierhals, New environmentally and energy friendly fiberglass compositions (E-glass, ECR-glass, C-glass and A-glass), Glass Technol. Eur. J. Glass Sci. Technol. A, 48 (6), 305–315 (2007).Google Scholar
  3. 3.
    C. A. Angell, Glass formers and viscous liquid slowdown since David Turnbull: enduring puzzles and new twists, MRS Bull., 33 (5), 544–555 (2008).Google Scholar
  4. 4.
    F. T. Wallenberger, The structure of glasses, Science, 267, 1549 (1995).CrossRefGoogle Scholar
  5. 5.
    F. T. Wallenberger, N. E. Weston and S. D. Brown, Calcia-alumina glass fibers: drawing from super-cooled melts versus inviscid melt spinning, Mater. Lett., 11 (89), 229–235 (1991).CrossRefGoogle Scholar
  6. 6.
    V. E. Khazanov, Yu. I. Kolesov and N. N. Trofimov, Glass fibers, in Fibre science and technology, V. I. Kostikov, ed., Chapman and Hall, London, pp. 15–230 (1995).Google Scholar
  7. 7.
    F. T. Wallenberger, Continuous solvent spinning processes, in Advanced inorganic fibers: processes, structures, properties, applications,  Chapter 5, Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 123–128 (1999).Google Scholar
  8. 8.
    G. Y. Onoda, Jr. and S. D. Brown, Low silica glasses based on calcia-aluminas, J. Am. Ceram. Soc., 53 (6), 311–316 (1970).CrossRefGoogle Scholar
  9. 9.
    F. T. Wallenberger, N. E. Weston and S. A. Dunn, Inviscid melt spinning: as-spun amorphous alumina fibers, Mater. Lett., 2 (4), 121–127 (1990).CrossRefGoogle Scholar
  10. 10.
    F. T. Wallenberger, N. E. Weston, K. Motzfeldt, and D. G. Swartzfager, Inviscid melt spinning of alumina fibers: Chemical jet stabilization, J. Am. Ceram. Soc., 75 (3), 629–639 (1992).CrossRefGoogle Scholar
  11. 11.
    R. E. Cunningham, L. F. Rakestraw and S. A. Dunn, Inviscid melt spinning of filaments, in Spinning wire from molten metal, J. Mottern and W. J. Privott, ed., AIChE Symposium Series, AIChE, New York, 74 (180), 20–32 (1978).Google Scholar
  12. 12.
    J. K. R. Weber, J. J. Felton, B. Cho and P. C. Nordine, Glass fibres of pure and erbium- or neodymium-doped yttria-alumina compositions, Nature, 393, 769–771 (1998).CrossRefGoogle Scholar
  13. 13.
    J. K. R. Weber, R. W. Waynant, I. Ilev, T. S. Key and P. C. Nordine, “Rare earth oxide-aluminum oxide glasses for mid-range IR devices,” Proc. SPIE, Optical Fibers and Sensors for Medical Applications III, I. Gannot, ed., 4957, 16–22 (2003).Google Scholar
  14. 14.
    J. K. R. Weber, B. Cho, A. D. Hixon, J. G. Abadie, P. C. Nordine, W. M. Kriven, B. R. Johnson and D. Zhu, Growth and crystallization of YAG- and mullite-composition glass fibers, J. Eur. Ceram. Soc., 19, 2543–2550 (1999).CrossRefGoogle Scholar
  15. 15.
    H. H. Liebermann, Rapidly solidified alloys, Marcel Decker, New York. (1993).Google Scholar
  16. 16.
    H. H. Liebermann, Metglas®, Allied Signal, Parsippany, NJ (1993).Google Scholar
  17. 17.
    D. M. C. Narashima, Planar flow casting of alloys, US Patent 4,142,571 (1979).Google Scholar
  18. 18.
    R. S. Feigelson, Growth of fiber crystals, in Crystal growth of electronic materials, E. Kaddis, ed., Elsevier Publishers, London, pp. 127–145 (1985).Google Scholar
  19. 19.
    J. Monbleau, Single crystal technology, product bulletin, Saphikon Inc., Milford (1994).Google Scholar
  20. 20.
    F. T. Wallenberger and R. J. Hicks, The effect of boron on the properties of fiberglass melts, Glass Technol. Eur. J. Glass Sci. Technol. A, 47 (5), 148–152 (2006).Google Scholar
  21. 21.
    F. T. Wallenberger, R. J. Hicks and A. T. Bierhals, Design of energy and environmentally friendly fiberglass compositions derived from the quaternary SiO2–Al2O3–CaO–MgO phase diagram – Part I: structures, properties and crystallization potential of selected multi-oxide E-glass compositions, Ceramic Transactions, Volume 170, H. Li et al., eds., 181–199 (2004).Google Scholar
  22. 22.
    F. T. Wallenberger, R. J. Hicks and A. T. Bierhals, Effect of key oxides, including Li2O, on the melt viscosity and energy demand of E-glass compositions, 66th Conference on Glass Problems, University of Illinois at Urbana-Champaign, Collection of Papers, W. M. Kriven, American Ceramic Society, John Wiley & Sons, 155–165 (2006).Google Scholar
  23. 23.
    F. T. Wallenberger, R. J. Hicks and A. T. Bierhals, Design of environmentally friendly fiberglass compositions: ternary eutectic SiO2–Al2O3–CaO and related compositions, structures and properties, J. Non-Cryst. Solids, 349, 377–387 (2004).CrossRefGoogle Scholar
  24. 24.
    F T. Wallenberger, R. J. Hicks and A. T. Bierhals, Design of energy and environmentally friendly fiberglass compositions derived from the quaternary SiO2–Al2O3–CaO–MgO phase diagram – Part II: Fluorine-free E-Glass compositions containing low levels of B2O3 and Li2O, in Proceedings of the Norbert Kreidl Memorial Conference, Glastechnische Berichte – Glass Science and Technology, Vol. 77C, 170–183 (2004).Google Scholar
  25. 25.
    F. T. Wallenberger, R. J. Hicks and A. T. Bierhals, Effect of oxides on decreasing melt viscosity and energy demand of E-glass, The Glass Researcher, Vol. 15, No. 1, Am. Ceram. Soc. Bull., 85 (2), 38–41 (2006).Google Scholar
  26. 26.
    F. T. Wallenberger, Glass fiber forming compositions, US Patent 7,153,799 B2, December 26, 2006.Google Scholar
  27. 27.
    F. T. Wallenberger, Glass fiber forming compositions, US Patent 6,962,886 B2, November 8, 2005.Google Scholar
  28. 28.
    T. P. Seward and T. Vascott, eds., High temperature glass melt property database for process modeling, The American Ceramic Society, Publisher, Westerville, p. 258 (2005).Google Scholar
  29. 29.
    K. H. Karlson and R. Backman, Thermodynamic properties, in Properties of glass-forming melts, L. D. Pye, A. Montenero and I. Joseph, eds., Taylor and Francis, CRC Press, Boca Raton, pp. 11–23 (2005).Google Scholar
  30. 30.
    P. Hrma, D. E. Smith, J. Matyas, J. D. Yeager, J. V. Jones and E. N. Boulos, Effect of float glass composition on liquidus temperature and devitrification behavior, Glass Technol. Eur. J. Glass Sci. Technol. A, 47 (3), 78–90 (2006).Google Scholar
  31. 31.
    P. A. Bingham and M. Marshall, Reformulation of container glasses for environmental benefit through lower melt temperatures, Glass Technol., 46 (1), 11–29 (2005).Google Scholar
  32. 32.
    R. Naslain, Ceramic oxide fibers from sol-gels and slurries, in Advanced inorganic fibers: processes, structures, properties, applications, F. T. Wallenberger, ed.,  Chapter 8, Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 216–225 (1999).Google Scholar
  33. 33.
    J. T. A. Pollock, Filamentary sapphire – the growth of void-free sapphire filament at rates up to 3.0 cm/min, J. Mater. Sci., 7, 786–792 (1972).Google Scholar
  34. 34.
    J. E. Ritter and J. D. Helfinstine, A tougher fiber for the FOG-M, Photonics Spectra, 8, 90–93 (1967).Google Scholar
  35. 35.
    F. T. Wallenberger and S. D. Brown, High modulus glass fibers for new transportation and infrastructure composites and for new infrared uses, Compos. Sci. Technol., 51, 243–263 (1994).CrossRefGoogle Scholar
  36. 36.
    F. T. Wallenberger, Continuous melt spinning processes, in Advanced inorganic fibers: processes, structures, properties, applications,  Chapter 6, Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 129–168 (1999).Google Scholar
  37. 37.
    E. M. Rabinovitch, Sol-gel processing: general principles, in Sol-gel optics, processing and applications, L. C. Klein, ed., Kluwer Academic Publishers, Boston, pp. 1–37 (1994).Google Scholar
  38. 38.
    R. Brückner, Silicon Dioxide, in Encyclopedia of Applied Physics, VCH Publishers, Inc., 18, 102–131 (1997).Google Scholar
  39. 39.
    Asahi, Product Bulletin (1986).Google Scholar
  40. 40.
    K. Matsuzaki, D. Arai, N. Taneda, T. Mukaiyama and M. Ikemura, Continuous silica glass fiber produced by sol-gel process, J. Non-Cryst. Solids, 112, 437–441 (1989).CrossRefGoogle Scholar
  41. 41.
    K. Kamiya and T. Yoko, Synthesis of SiO2 glass fibres from Si (OC2H5)4 – H2O–C2H5OH–HCl solutions through sol-gel method, J. Mater. Sci., 21, 842–848 (1986).CrossRefGoogle Scholar
  42. 42.
    K. Kamiya, R. Uemura, J. Matsuoka and H. Nasu, Effect of preheat treatment on the tensile strength of sol-gel derived SiO2 glass fibers, J. Ceram. Soc. Jpn, 103 (3), 245 (1995).Google Scholar
  43. 43.
    W. Zhou, Y. Xu, L. Zhang, X. Sun, J. Ma and S. She, Crystallization of silica fibers made from metal alkoxide, Mater. Lett., 11 (10–12), 352–354 (1991).CrossRefGoogle Scholar
  44. 44.
    A. Wegerhoff and H. D. Achtsnit, High temperature resistant fibrous silicon dioxide material, US Patent, 4,786,017, November 22, 1988.Google Scholar
  45. 45.
    G. H. Vitzhum, H. U. Herwig, A. Wegerhoff and H. D. Achtsnit, Silica fiber for high temperature applications, Chemiefasern/Textilindustrie, 36/88, E-126-127 (1986).Google Scholar
  46. 46.
    H. D. Achtsnit, Textile silica sliver, its manufacture and use, US Patent 5,567,516, October 23, 1996.Google Scholar
  47. 47.
    Product Bulletin, Silfa silica yarns, Ametek/Haveg, Wilmington, DE (1996).Google Scholar
  48. 48.
    G. Wiedermann and N. Frenzel, Untersuchungen zur chemischen Beständigkeit der Glasseide, Faserforschung und Textiltechnik, 24 (9), 335–340 (1973).Google Scholar
  49. 49.
    P. F. Aubourg and W. W. Wolf, Glass fibers, in Advances in ceramics, Vol. 18, commercial glasses, D. C. Boyd and J. F. MacDowell, eds., American Ceramic Society, Westerville, pp. 51–63 (1986).Google Scholar
  50. 50.
    P. K. Gupta, Glass fibers for composite materials, in Fibre reinforcements for composites materials,  Chapter 2, A. R. Bunsell, ed., Composite materials series 2, Elsevier, Amsterdam, pp. 19–71 (1988).Google Scholar
  51. 51.
    B. A. Proctor, Continuous filament glass fibers, in Concise encyclopedia of composite materials, A. Kelly, ed., Pergamon Press, Oxford/New York/Beijing/Frankfurt, pp. 62–69 (1989).Google Scholar
  52. 52.
    K. L. Loewenstein, The manufacturing technology of continuous glass fibres, Edition 3, Elsevier, Amsterdam (1993).Google Scholar
  53. 53.
    F. T. Wallenberger, H. Li and J. Watson, Glass fibers, in ASM Handbook, Vol. 21, composites, ASM International, Metals Park, pp. 27–35 (2001).Google Scholar
  54. 54.
    J. R.Gonterman and M. A. Weinstein, High Intensity Plasma Glass Melter Project, Final DOE Report, October 27, 2006. The report is available at www1.eere.energy.gov/industry/glass/pdfs/894643_plasmelt.pdfGoogle Scholar
  55. 55.
    S. Rehkson, J. Leonard and P. Sanger, Continuous glass fiber drawing, Am. Ceram. Soc. Bull., 6, 9401–9407 (2004).Google Scholar
  56. 56.
    F. Rossi and G. Williams, A new era in glass fiber composites, 28th AVK Conference, Baden-Baden, Germany, 1–10, October 1–2, 1997.Google Scholar
  57. 57.
    T. D. Erickson and W. W. Wolf, Glass composition, fibers, and methods for making same, US Patent 4,026,715, May 31, 1977.Google Scholar
  58. 58.
    F. T. Wallenberger, Design factors affecting the fabrication of fiber reinforced infrastructure composites, Annual Wilson Forum, Santa Ana, CA, March 20–21, 1995; in Applications of Composite Materials in the Infrastructure, 1–10 (1995).Google Scholar
  59. 59.
    W. L. Eastes, D. A. Hofmann and J. W. Wingert, Boron-free glass fibers, US Patent 5,789,325, August 4, 1998.Google Scholar
  60. 60.
    M. J. Cusick, M. A. Weinstein and L. Olds, Method for the melting, combustion or incineration of materials and apparatus thereof, US Patent No. 5,548,611, August 29, 1996.Google Scholar
  61. 61.
    J. K Williams, C. P. Heanley and L. E. Olds, Method of melting materials and apparatus thereof, US Patent 5,028,248, July 2, 1991.Google Scholar
  62. 62.
    D. A. Dalton, Plasma and electrical systems in glass manufacturing, IEE Colloquium [Digest], 229, p3/1-2 (1994).Google Scholar
  63. 63.
    C. Ross, P. Tincher and G. Tincher, Glass melting technology: A technical and economic assessment, GMIC Publication, October, 2004.Google Scholar
  64. 64.
    ASTM Specification D 578-00, Standard for E-glass fiber strands and stating the composition limits for E-glass, Annual Book of Standards, American Society for Testing and Materials, Conshohocken, PA, March 10, 2000.Google Scholar
  65. 65.
    Naamlooze Vennootschap Maatschapij tot Beheer en Exploitatie van Octoorien, New and improved glass compositions for the production of glass fibers, Brit. Patent, GB 520,247, April 18, 1939.Google Scholar
  66. 66.
    R. A. Schoenlaub, Glass compositions, US Patent 2,334,961, November 23, 1943.Google Scholar
  67. 67.
    R. L. Tiede and F. V. Tooley, Glass composition, US Patent 2,334,961, November 2, 1951.Google Scholar
  68. 68.
    J. F. Sproull, Fiber glass composition, US Patent 4,542,106, September 17, 1985.Google Scholar
  69. 69.
    R. L. Jones, The role of boron in the corrosion of E-glass fibres, Glass Technol. Eur. J. Glass Sci. Technol. A, 47 (6), 167–171 (2006).Google Scholar
  70. 70.
    T. F. Starr, Glass-fibre databook, Edition 1, Chapman & Hall, London/Glasgow/New York/Tokyo/Melbourne/Madras (1993).Google Scholar
  71. 71.
    T. F. Starr, Carbon and high performance fibers, directory and databook, Edition 6, Chapman & Hall, London/Glasgow/New York/Tokyo/Melbourne/Madras (1995).Google Scholar
  72. 72.
    Product Bulletin, Comperative technical characteristics of filament made from E-glass, basalt and silica, Sudaglass Fiber Technology, Inc., 14714 Perthshire, Suite A, Houston, TX, 77079 USA (2003).Google Scholar
  73. 73.
    S. Tamura, M. Mori and S. Saito, Compositions for the production of high-strength glass fiber, Japanese Patent, 8[1996]-231-240, September 10, 1996.Google Scholar
  74. 74.
    French Patent 1,435,739 to St. Gobain Company, Chambrey, France (1963).Google Scholar
  75. 75.
    P. B. McGinnes, High temperature glass fibers, International Patent Application WO 02/42233 A2, May 30, 2002.Google Scholar
  76. 76.
    P. B. McGinnis, High temperature glass fibers, International Publication WO 02/42233 A2 under the Patent Cooperation Treaty (PCT) on May 30, 2003.Google Scholar
  77. 77.
    Product Bulletin, High strength glass fibers, Advanced Glass Fiber Yarns, LLC, 2558 Wagener Road, Aiken, SC 29801 (2003).Google Scholar
  78. 78.
    J. F. Bacon, High modulus, high temperature glass fibers, Appl. Polym. Symp., 21, 179–200 (1973).Google Scholar
  79. 79.
    P. K. Gupta, Strength of glass fibers, in Fiber fracture, M. Elices and J. Llorca, eds., Elsevier, Amsterdam, pp. 127–153 (2002).CrossRefGoogle Scholar
  80. 80.
    F. T. Wallenberger, Melt viscosity and modulus of bulk glasses and fibers – challenges for the next decade, in Present State and Future Prospects of Glass Science and Technology, Kreidl Symposium, Triesenberg, Liechtenstein, July 3–8, 1994, Glasstech. Ber. Glass Sci. Technol. 70 C, 63–78 (1997).Google Scholar
  81. 81.
    F. T. Wallenberger, Introduction to reinforcing fibers, in ASM handbook, Vol. 21, Composites, ASM International, Metals Park, pp. 23–26 (2001).Google Scholar
  82. 82.
    H. Kaplan-Diedrich and G. H. Frischat, Properties of some oxynitride fibers, J. Non-Cryst. Solids, 184, 133–136 (1995).CrossRefGoogle Scholar
  83. 83.
    M. Oota, T. Kanamori, S. Kitamura, H. Fujii, T. Kawasaki, K. Sekine and C. Manabe, Decrease of silicon defects in oxynitride glass, J. Non-Cryst. Solids, 209, 69–75 (1997).CrossRefGoogle Scholar
  84. 84.
    A. Carre, F. Roger and C. Variot, Study of acid/base properties of oxide, oxide glass, and glass-ceramic surfaces, J. Colloid Interface Sci., 154 (1), 31–40 (1992).CrossRefGoogle Scholar
  85. 85.
    P. C. Almenera and P. Thornburrow, A new glass fiber reinforcement for anti-corrosion composites, Advanced Polymer Composites for Structural Applications in Construction, Proceedings 69IFS8 (2004).Google Scholar
  86. 86.
    P. Simurka, M. Liska, A. Plsko and K. Forkel, Development of a composition suitable for the production of alkali-resistant glass fibres with a low fiberising temperature, Glass Technol., 33 (4), 130–135 (1992).Google Scholar
  87. 87.
    V. I. Kostikov, M. F. Makhova, V. P. Sergeev and V. I. Trefilov, Ceramic fibres, in Fibre science and technology, V. I. Kostikov, ed., Chapman and Hall, London,pp. 581–606 (1995).Google Scholar
  88. 88.
    K. Suganuma, H. Minakuchi, K. Kada, H. Osafune and H. Fujii, Properties and microstructure of continuous oxynitride glass fiber and its application to aluminum matrix composite, J. Mater. Res., 8 (1), 178–186 (1993).CrossRefGoogle Scholar
  89. 89.
    S. Loud, Composites News, Solana Beach, CA, Infrastructure Newsletter Number 11, page 3, September 1994, and Number 28, page 5, June 30, 1995.Google Scholar
  90. 90.
    A. J. Majumdar, Alkali-resistant glass fibres, in Strong fibers, W. Watt and B. V. Perov, eds., Elsevier Publishers, North-Holland, pp. 61–85 (1985).Google Scholar
  91. 91.
    Chinese C-glass, Government Specification (1997).Google Scholar
  92. 92.
    D. A. Steenhammer and J. L. Sullivan, Recycled content of polymer matrix composites through the use of A-glass fibers, Polym. Comp., 18 (3), 300–312 (1997).CrossRefGoogle Scholar
  93. 93.
    Nitto Boseki, Glass fibers having low dielectric loss tangent – composed of silica, alumina, boria, calcia, opt. magnesia etc., Japanese Patent 9002839, January 7, 1997.Google Scholar
  94. 94.
    H. Li, Low dielectric glass and fiber glass for electronic applications, US Patent Application 2008/0146430 A1, June 19, 2008.Google Scholar
  95. 95.
    D. S. Boessneck et al., Low Dielectric Glass Fiber, US Patent Application 2008/0103036 A1, May 1 2008.Google Scholar
  96. 96.
    G. Demidov, Hollow fibres make light and strong reinforcements, Reinf. Plas., 9, 19 (1995).Google Scholar
  97. 97.
    J. F. Bacon, Composition of glasses with high modulus of elasticity, US Patent 3,573,078, March 30, 1971.Google Scholar
  98. 98.
    K. Komori, S. Yamakawa, S. Yamamoto, J. Naka and T. Kokubo, Substrate for circuit board including the glass fibers as reinforcing material, US Patent 5,334,645, August 2, 1994.Google Scholar
  99. 99.
    K. Komori, S. Yamakawa, S. Yamamoto, J. Naka and T. Kokubo, Glass fiber forming composition, glass fibers obtained from the composition and substrate for circuit board including the glass fibers as reinforcing material, US Patent 5,407,872, April 18, 1995.Google Scholar
  100. 100.
    L. L. Hench, Bioactive glasses and glass ceramics, in Handbook of bioactive ceramics, Vol. I, T. Yamamuro, L. L. Hench and J. Wilson, eds., CRC Press, Boca Raton, pp. 7–23 (1990).Google Scholar
  101. 101.
    H. Tagai et al., Preparation of apatite glass fiber for applications as biomaterials, in Ceramics in surgery, P. Vincenzini, ed., Elsevier Sci. Pub. Co., Amsterdam, p. 387 (1983).Google Scholar
  102. 102.
    U. Pazzaglia et al., Study of the osteoconductive properties of bioactive glass fibers, J. Biomed. Mater. Res., 23, 1289–1297 (1989).CrossRefGoogle Scholar
  103. 103.
    M. S. Marcolongo, P. Ducheyne, F. Ko and W. La Course, Composite materials using bone bioactive glass and ceramic fibers, US Patent 5,721,049, February 24, 1998.Google Scholar
  104. 104.
    L. J. Huey, Method and apparatus for making tapered mineral and organic fibers, US Patent 4,666,485, May 19, 1987.Google Scholar
  105. 105.
    K. Shioura, S. Yamazaki and H. Shono, Method for producing glass fibers having non-circular cross sections, US Patent 4,698,083, October 6, 1987.Google Scholar
  106. 106.
    H. Taguchi, K. Shioura and M. Sugeno, Nozzle tip for spinning glass fiber having deformed cross section and a plurality of projections, US Patent 5,462,571, October 31, 1995.Google Scholar
  107. 107.
    T. H. Jensen, Hollow glass fiber bushing, method of making hollow fibers and the hollow glass fibers made by that method, US Patent 4,758,259, July 19, 1988.Google Scholar
  108. 108.
    L. J. Huey, Method and apparatus for producing hollow glass filaments, US Patent 4,846,864, July 11, 1989.Google Scholar
  109. 109.
    J. Huang, Hollow high temperature ceramic superconducting fibers, International Patent Application WO 97/22128, June 19, 1997.Google Scholar
  110. 110.
    T. Yazawa, H. Tanaka and K. Eguchi, Preparation of porous hollow fibre from glass based on SiO2–B2O3–RO–ZrO2 (R = Ca, Zn) system, J. Mater. Sci. Lett., 13, 494–495 (1994).CrossRefGoogle Scholar
  111. 111.
    R. P. Beaver, Method for producing porous hollow silica rich fibers, US Patent 4,778,499, October 18, 1988.Google Scholar
  112. 112.
    J. E. Loftus, C. R. Strauss and R. L. Houston, Method for making dual-glass fibers by causing one glass to flow around another as they are spun from a rotating spinner, US Patent 5,529,596, June 25, 1996.Google Scholar
  113. 113.
    N. T. Huff, Innovative technology can create products, Glass Res., 5 (1), 1–9 (1995).Google Scholar
  114. 114.
    M. C. Kenny, S. K. Barlow and S. L. Eikleberry, New glass-fiber geometry – a study of non-woven processability, TAPPI J., 30, 169–177 (1997).Google Scholar
  115. 115.
    F. T. Wallenberger, N. E. Weston and S. D. Brown, Infrared optical tellurite glass fibers, J. Non-Cryst. Solids, 144 (1), 107–110 (1992).CrossRefGoogle Scholar
  116. 116.
    M. L. Nice, Apparatus and process for fiberizing fluoride glasses using a double crucible and the compositions produced thereby, US Patent 4,897,100, January 20, 1990.Google Scholar
  117. 117.
    H. Tokiwa, Y. Mimura, T. Nakai and O. Shinbori, Fabrication of long single-mode and multi-mode fluoride glass fibers by the double crucible technique, Electron. Lett., 21 (24), 1130–1131 (1985).CrossRefGoogle Scholar
  118. 118.
    F. T. Wallenberger, S. D. Brown and G. Y. Onoda, ZnO-modified high modulus glass fibers, J. Non-Cryst. Solids, 152, 279–283 (1993).CrossRefGoogle Scholar
  119. 119.
    H. Lin, W. L. Dechent, D. E. Day and J. O. Stoffer, Preparation and properties of mid-infrared glass fibers and poly(chlorotrifluoroethylene) composites, J. Mater. Sci., 32, 6573–6578 (1997).CrossRefGoogle Scholar
  120. 120.
    S. D. Brown and G. Y. Onoda, Jr., High modulus glasses based on ceramic oxides, Report R-6692, Contract NOw-65-0426-d, US Department of the Navy, October 1966.Google Scholar
  121. 121.
    G. Y. Onoda, Jr. and S. D. Brown, High modulus glasses based on ceramic oxides, Report R-7363, Contract N00019-67-C-301, US Department of the Navy, February 1968.Google Scholar
  122. 122.
    T. F. Schroeder, H. W. Carpenter and S. C. Carniglia, High modulus glasses based on ceramic oxides, Technical Report R-8079, Contract N00019-69-C-0150, US Navy Dept., Naval Air Systems Command, Washington, DC, December 1969.Google Scholar
  123. 123.
    J. R. Davy, Development of calcia-alumina glasses for use in the infrared spectrum, US Patent No. 3,338,694 (1967), Glass Technol., 19 (2), 32–36 (1978).Google Scholar
  124. 124.
    R. Maddison, Calcia-aluminas, Product Bulletins WB37A and WB39B, Sassoon Advanced Materials LTD, Dumbarton, UK (1994).Google Scholar
  125. 125.
    P. R. Foy, T. Stockert, J. Bonja, G. H. Sigel, Jr., R. McCauley, E. Snitzer and G. Merberg, Meeting Abstracts, American Ceramic Society, 94th Annual Meeting, Presentation 7-JXV-92, Minneapolis, MN, April 12–16, 1992.Google Scholar
  126. 126.
    F. T. Wallenberger, N. E. Weston and S. A. Dunn, Melt spun calcia-alumina fibers: infrared transmission, J. Non-Cryst. Solids, 12 (1), 116–119 (1990).CrossRefGoogle Scholar
  127. 127.
    F. T. Wallenberger, N. E. Weston and S. D. Brown, Melt processed calcia-alumina fibers: optical and structural properties, in Growth of materials for infrared detectors, R. E. Longshore and J. Baars, eds., Proceedings of the SPIE, Society of Photo-Optical Instrumentation Engineers, Bellington, Vol. 1484, 116–124 (1991).Google Scholar
  128. 128.
    J. Nishii, I. Inagawa, T. Yamagishi, S. Morimoto and R. Iizuka, Process for producing chalcogenide glass fiber, US Patent, 4,908,053, March 13, 1990.Google Scholar
  129. 129.
    F. T. Wallenberger, New melt spun glass and glass-ceramic fibers for polymer and metal matrix composites, in High performance composites: Commonalty of phenomena, K. K. Chawla, P. K. Law and S. G. Fishman, eds., The Minerals, Metals and Materials Soc., Warrendale, PA, pp. 85–92 (1994).Google Scholar
  130. 130.
    J. M. Massoubre and B. F. Pflieger, Small diameter wire making through solidification of silicon steel jet, in Spinning wire from molten metal, J. Mottern and W. J. Privott, eds.; AIChE Symp. Ser., (180), Vol. 74, pp. 48–57 (1978).Google Scholar
  131. 131.
    F. Fodeur and B. S. Mitchell, Infrared studies of calcia-alumina fibers, J. Am. Ceram. Soc., 79 (9), 2469–2473 (1996).CrossRefGoogle Scholar
  132. 132.
    M. Mooney, The viscosity of a concentrated suspension of spherical particles, J. Colloid Sci., 6 (2), 162–170 (1951).CrossRefGoogle Scholar
  133. 133.
    R. J. Diefendorf and E. R. Stover, Pyrolytic graphites: how structure affects properties, Metal Prog., 81 (5), 103–108 (1962).Google Scholar
  134. 134.
    A. L. Greer, Metallic glasses, Science, 267, 1947 (1995).CrossRefGoogle Scholar
  135. 135.
    D. E. Polk and B. C. Giessen, Amorphous or glassy materials, in Rapid solidification technology source book, R. L. Ashbrook, ed., American Society for Metals, Metals Park, pp. 213–247 (1983).Google Scholar
  136. 136.
    A. Revcoleschi and J. Jegoudez, Growth of large high-Tc single crystals by the floating-zone method: a review, Prog. Mater. Sci., 42, 321–339 (1997).CrossRefGoogle Scholar
  137. 137.
    P. H. Keck and M. J. E. Golay, Traveling solvent zone melting, Phys. Rev., 39, 1297 (1953).CrossRefGoogle Scholar
  138. 138.
    T. Mah, T. A. Parthasarathy, M. D. Petry and L. E. Matson, Processing, micro-structure, and properties of Al2O3–Y3Al5O12 (YAG) eutectic fibers, Ceramic Engineering and Science Proceedings, 622638, 17th Ann. Conference on Composites and Advanced Ceramic Materials, Am. Ceram. Soc., Westerville OH (1993).Google Scholar
  139. 139.
    W. M. Yen, Preparation of single-crystal fibers, in Insulating materials for opto-electronics, F. Agulló-Lopez, ed., World Sci., Singapore (1995).Google Scholar
  140. 140.
    M. Matsukura, Z. Chen, M. Adachi and A. Kawabata, Growth of potassium lithium niobate single-crystal fibers by the laser-heated pedestal growth method, Jpn. J. Appl. Phys. 1, 36 (9B), 5947–5949 (1997).CrossRefGoogle Scholar
  141. 141.
    J. I. Peña, H. Miao, R. I. Merino, G. F. de la Fuente and V. M. Orera, Polymer matrix synthesis of zirconia eutectics for directional solidification into single-crystal fibers, Solid State Ionics, 101–103, 143–147 (1997).Google Scholar
  142. 142.
    W. Jia, H. Yuan, L. Lu, H. Liu and W. M. Yen, Phosphorescent dynamics in SrAl2O4:Eu2+,Dy3+ single-crystal fibers, J. Lumin., 76–77, 424 (1998).CrossRefGoogle Scholar
  143. 143.
    R. S. Feigelson, D. Gazit, D. K. Fork and T. H. Geballe, Superconducting Si–Ca–Sr–Cu–O fibers grown by the laser-heated pedestal growth method, Science, 240, 1642–1645 (1988).CrossRefGoogle Scholar
  144. 144.
    F. M. Costa, R. F. Silva and J. M. Vieira, Influence on epitaxial growth of superconducting properties of LFZ Bi–Sr–Ca–Cu–O fibres, Part I. Physica C, 289, 161–170 (1997) and Part II., Physica C, 289, 171–176 (1997).Google Scholar
  145. 145.
    H. Miao, J. C. Dietz, L. A. Angurel, J. I. Peña and G. F. de la Fuente, Phase formation and micro-structure of laser floating-zone grown BSCCO fibers: reactivity aspects, Solid State Ionics, 101–103, 1025–1032 (1997).CrossRefGoogle Scholar
  146. 146.
    U. Balchandran, A. N. Iyer, P. Haldar and L. R. Motowidlo, The powder-in-tube processing and properties of Bi-223, J. Metals, 45 (9), 54–67 (1993).Google Scholar
  147. 147.
    G. Geiger, New record for super-conducting wire, Am. Ceram. Soc. Bull., 74 (12), 19 (1995).Google Scholar
  148. 148.
    K. J. McClellan, H. Sayir, A. H. Heuer, A. Sayir, J, S. Haggerty and J. Sigalovsky, High strength, creep resistant Y2O3– stabilized cubic ZrO2 single-crystal fibers, Ceramic Engineering and Science Proceedings, 651–659, 17th Ann. Conf. on Composites and Advanced Ceramic Materials, Am. Ceram. Soc., Westerville, OH (1993).Google Scholar
  149. 149.
    E. L. Lawton, F. T. Wallenberger and H. Li, Recent advances in oxide glass fiber science – low dielectric constant fibers, in Advanced fibers, plastics and composites, F. T. Wallenberger and N. E. Weston et al., eds., Materials Research Society, Symposium Proceedings, Vol. 702, MRS, Warrendale, 165–172 (2002).Google Scholar
  150. 150.
    M. H. Gallo, J. van Genechten, J. P. Bazin, S. Creux and P. Fournier, Glass fibers for reinforcing organic and/or inorganic materials, French Patent Application, 2,768,144 A1, September 10, 1997.Google Scholar
  151. 151.
    F. T. Wallenberger, N. E. Weston and S. A. Dunn, Melt spun calcium IR aluminate fibers: Product value, conference proceedings, Second International Conference on Electronic Materials, R. P. H. Chang, T. Sugano and V. T. Nguyen, eds., Material Research Society, pages 295–300, 1990.Google Scholar
  152. 152.
    H. D. Achtsnit, Textile silica sliver, its manufacture and use, US Patent 5,567,516, October 23, 1996.Google Scholar
  153. 153.
    J. Kobayashi, M. Oota, K. Kada and H. Minakuchi, US Patent 4,957,883, September 18, 1990.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.PittsburghUSA

Personalised recommendations