Skip to main content

Vascular Geometry Reconstruction and Grid Generation

  • Chapter
  • First Online:
  • 1642 Accesses

Abstract

The geometry of vascular system is an important determinant of blood flow in health and disease. There is a strong geometric component to atherosclerosis in coronary heart disease since lesions are preferentially located at bifurcation points and regions of high curvature. The influence of these local structures on recirculation and deleterious shear stresses and their role in plaque development is widely accepted. Over time, researchers have turned to MR, CT, or biplane images of vascular trees to faithfully capture these features in the flow simulations. Historically, this has taken the form of labor-intensive manual reconstructions from morphometric measurements based on the centerline, whereby small idealized subsets of vascular trees are developed into computational grids. With improved imaging, image processing, and geometric reconstruction algorithms, researchers have begun to develop geometrically accurate computational models directly from the medical images. This chapter provides an overview of contemporary methods for image processing, centerline detection, boundary condition definition, and grid generation of both clinical and research images of cardiovascular structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Canny JF. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;PAMI-8(6):679–98.

    Article  Google Scholar 

  2. Jain R, Kasturi R, Schunck BG. Machine vision. New York: McGraw-Hill, Inc., 1995.

    Google Scholar 

  3. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph. 1987;21(4).

    Article  Google Scholar 

  4. Carson JP, Einstein DR, Minard KR, Fanucchi MV, Wallis CD, Corley RA. Lung airway cast segmentation with proper topology, suitable for computational fluid-dynamic simulations. Comput Med Imaging Graph. (submitted).

    Google Scholar 

  5. Cornea ND, Silver D, Min P. Curve-skeleton applications. Proceedings of IEEE visualization, 2005, pp. 95–102.

    Google Scholar 

  6. Bertrand G, Aktouf Z. A three-dimensional thinning algorithm using subfields. Vis Geom III. 1994;2356:113–24.

    Article  Google Scholar 

  7. Brunner D, Brunnett G. Mesh segmentation using the object skeleton graph. Proceedings of IASTED international conference on computer graphics and imaging, 2004, pp. 48–55.

    Google Scholar 

  8. Dyedov V, Einstein DR, Jiao X, Kuprat AP, Carson JP, del Pin F. Variational generation of prismatic boundary-layer meshes for biomedical computing. Int J Numer Methods Eng. 2009;79(8):907–945.

    Google Scholar 

  9. Lee T, Kashyap RL, Chu CN. Building skeleton models via 3-D medial surface/axis thinning algorithms. CVGIP: Graph Model Image Process. 1994;56(6):462–78.

    Article  Google Scholar 

  10. Lohou C, Bertrand G. A 3D 12-subiteration thinning algorithm based on P-simple points. Discrete Appl Math. 2004;139:171–95.

    Article  MathSciNet  MATH  Google Scholar 

  11. Palágyi K, Kuba A. Directional 3D thinning using 8 subiterations. Proceedings of discrete geometry for computer imagery, Lect Notes Comput Sci. 1999;1568:325–36.

    Google Scholar 

  12. Palágyi K, Kuba A. A parallel 3D 12-subiteration thinning algorithm. Graph Model Image Proc. 1999;61(4):199–221.

    Article  Google Scholar 

  13. Saha PK, Chaudhuri BB, Dutta Majumder D. A new shape preserving parallel thinning algorithm for 3D digital images. Pattern Recognit. 1997;30(12):1939–55.

    Article  Google Scholar 

  14. Tsao YF, Fu KS. A parallel thinning algorithm for 3-D pictures. Comput Graph Image Process. 1981;17:315–31.

    Article  Google Scholar 

  15. Lobregt S, Verbeek PW, Groen FCA. Three-dimensional skeletonization: principle and algorithm. IEEE Trans Pattern Anal Mach Intell. 1980;2(1):75–7.

    Article  Google Scholar 

  16. Sethian JA. Fast marching methods. SIAM Rev. 1999;41(2):199–235.

    Article  MathSciNet  MATH  Google Scholar 

  17. Telea A, Vilanova A. A robust level-set algorithm for centerline extraction. Eurographics/IEEE symposium on data visualization, 2003, pp. 185–94.

    Google Scholar 

  18. Si H.TetGen. A quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. WIAS Technical Report No. 9, 2004.

    Google Scholar 

  19. Wan M, Dachille F, Kaufman A. Distance-field based skeletons for virtual navigation. Proceedings of IEEE visualization, 2001, pp. 239–45.

    Google Scholar 

  20. Wischgoll T, Choy JS, Ritman ES, Kassab GS. Validation of image-based extraction method for morphometry of coronary arteries. Ann Biomed Eng. 2008;36(3):356–68.

    Article  Google Scholar 

  21. Zhou Y, Toga AW. Efficient skeletonization of volumetric objects. IEEE Trans Vis Comput Graph. 1999;5(3):196–209.

    Article  Google Scholar 

  22. Amenta N, Choi S, Kolluri R.The power crust. Proceedings of 6th ACM symposium on solid modeling, 2001, pp. 249–60.

    Google Scholar 

  23. Dey TK, Goswami S. Tight Cocone: a water-tight surface reconstructor. Proceedings of 8th ACM symposium. Solid modeling applications, 127–34. Journal version in J Comput Inform Sci Eng. 2003;30:302–7.

    Article  Google Scholar 

  24. Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP. Structural morphology of renal vasculature. Am J Physiol Heart Circ Physiol. 2006;291(1):H296–309.

    Article  Google Scholar 

  25. Kuprat-AP, Einstein-DR. An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data. J Comput Phys. 2009;228:619–40.

    Article  MathSciNet  Google Scholar 

  26. Jiao X, Zha H. Consistent computation of first- and second-order differential quantities for surface meshes. In ACM solid and physical modeling symposium, 2008.

    Google Scholar 

  27. Khamayseh A, Hansen G. Use of the spatial kD-tree in computational physics applications. Commun Comput Phys. 2007;2:545–76.

    MATH  Google Scholar 

  28. Sethian JA. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge: Cambridge University Press, 1999.

    MATH  Google Scholar 

  29. Jiao X. Face offsetting: a unified approach for explicit moving interfaces. J Comput Phys. 2007;220:612–625.

    Article  MathSciNet  MATH  Google Scholar 

  30. Si H. Adaptive tetrahedral mesh generation by constrained Delaunay refinement. Int J Numer Methods Eng. 2008;856–80.

    Google Scholar 

  31. Cornea ND, Silver D, Yuan X, Balasubramanian R. Computing hierarchical curve-skeletons of 3D objects. Vis Comput. 2005;21(11):945–55.

    Article  Google Scholar 

  32. Luboz V, Wu X, Krissian K, Westin CF, Kikinis R, Cotin S, Dawson S. A segmentation and reconstruction technique for 3D vascular structures. MICCAI 2005, Lect Notes Comput Sci. 2005;3749:43–50.

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by Wright State University; the Ohio Board of Regents; the National Heart and Blood Institute HL055554-11, HL-084529, and HL073598; the National Institute of Environmental Health Sciences P01ES011617; and by the National Science Foundation DMS-0809285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wischgoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wischgoll, T., Einstein, D.R., Kuprat, A.P., Jiao, X., Kassab, G.S. (2010). Vascular Geometry Reconstruction and Grid Generation. In: Guccione, J., Kassab, G., Ratcliffe, M. (eds) Computational Cardiovascular Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0730-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0730-1_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0729-5

  • Online ISBN: 978-1-4419-0730-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics