Skip to main content

Imaging-Based Assessment and Modeling of the Structures of the Myocardium

  • Chapter
  • First Online:
Computational Cardiovascular Mechanics

Abstract

A precise knowledge of the microstructures of the myocardium such as myocyte organization and myofiber orientation is necessary to better understand material and functional properties of the tissue. By characterizing the diffusion of water exerted by its molecular environment, magnetic resonance diffusion tensor imaging has emerged as a viable alternative to conventional histology for mapping tissue fibers and offers advantages of being nondestructive, relatively convenient, and inherently 3D. This chapter presents assessments and modeling of myocardial structures via diffusion tensor imaging, including their principles, validation, applications, and potential directions for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guccione JM, McCulloch, AD, Waldman LK. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng. 1991;113(1):42–55.

    Article  Google Scholar 

  2. Taccardi B, Macchi E, Lux RL, Ershler PR, Spaggiari S, Baruffi S, Vyhmeister Y. Effect of myocardial fiber direction on epicardial potentials. Circulation. 1994;90(6):3076–3090.

    Article  Google Scholar 

  3. Streeter DD, Jr., Spotnitz HM, Patel DP, Ross J Jr., Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969;24(3):339–347.

    Article  Google Scholar 

  4. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8(7–8):333–344.

    Article  Google Scholar 

  5. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288.

    Article  Google Scholar 

  6. Mattiello J., Basser, PJ, Le Bihan D.. Analytical expressions for the b matrix in NMR diffusion imaging and spectroscopy. J Magn Reson A. 1994;108(2):121–141.

    Article  Google Scholar 

  7. Basser PJ, Mattiello, J., LeBihan D.. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–254.

    Article  Google Scholar 

  8. Pierpaoli C., Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36:893–906.

    Article  Google Scholar 

  9. Jones DK, Horsfield, MA, Simmons A.. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med. 1999;42(3):515–525.

    Article  Google Scholar 

  10. Papadakis NG, Xing D., Huang CL, Hall, LD, Carpenter TA. A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson. 1999;137(1):67–82.

    Article  Google Scholar 

  11. Mistry NN, Hsu EW. Retrospective distortion correction for 3D MR diffusion tensor microscopy using mutual information and Fourier deformations. Magn Reson Med. 2006;56(2):310–316.

    Article  Google Scholar 

  12. Rohde GK, Barnett AS, Basser PJ, Marenco, S., Pierpaoli C.. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med. 2004;51(1):103–114.

    Article  Google Scholar 

  13. Stejskal EO. Use of spin echoes in a pulsed magnetic-field gradient to study aniosotropic, restricted diffusion and flow. J Chem Phys. 1965;43(10):2597–3603.

    Article  Google Scholar 

  14. Cleveland GG, Chang DC, Hazlewood, CF, Rorschach HE. Nuclear magnetic resonance measurement of skeletal muscle: anisotropy of the diffusion coefficient of the intracellular water. Biophys J. 1976;16(9):1043–1053.

    Article  Google Scholar 

  15. Warach S., Mosley M, Sorensen, AG, Koroshetz W.. Time course of diffusion imaging abnormalities in human stroke. Stroke. 1996;27(7):1254–1256.

    Google Scholar 

  16. Garrido L., Wedeen VJ, Kwong KK, Spencer, UM, Kantor HL. Anisotropy of water diffusion in the myocardium of the rat. Circ Res. 1994;74(5):789–793.

    Article  Google Scholar 

  17. Hsu EW, Muzikant AL, Matulevicius SA, Penland, RC, Henriquez CS. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol. 1998;274(5 Pt 2):H1627–34.

    Google Scholar 

  18. Scollan DF, Holmes A, Winslow, R, Forder J.. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol. 1998;275(6 Pt 2):H2308–18.

    Google Scholar 

  19. Holmes AA, Scollan, DF, Winslow RL. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med. 2000;44(1):157–161.

    Article  Google Scholar 

  20. Jiang Y, Pandya K, Smithies O, Hsu EW. Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med. 2004;52(3):453–460.

    Article  Google Scholar 

  21. Hsu EW, Buckley DL, Bui JD, Blackband, SJ, Forder JR. Two-component diffusion tensor MRI of isolated perfused hearts. Magn Reson Med. 2001;45(6):1039–1045.

    Article  Google Scholar 

  22. Schmid P, Jaermann T, Boesiger P, Niederer PF, Lunkenheimer PP, Cryer, CW, Anderson RH. Ventricular myocardial architecture as visualised in postmortem swine hearts using magnetic resonance diffusion tensor imaging. Eur J Cardiothorac Surg. 2005;27(3):468–472.

    Article  Google Scholar 

  23. Helm PA, Tseng HJ, Younes L, McVeigh, ER, Winslow RL. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Reson Med. 2005;54(4): 850–859.

    Article  Google Scholar 

  24. Walker JC, Guccione JM, Jiang Y, Zhang P, Wallace AW, Hsu EW, Ratcliffe MB. Helical myofiber orientation after myocardial infarction and left ventricular surgical restoration in sheep. J Thorac Cardiovasc Surg. 2005;129(2):382–390.

    Article  Google Scholar 

  25. Jiang Y, Guccione JM, Ratcliffe MB, Hsu EW. Transmural heterogeneity of diffusion anisotropy in the sheep myocardium characterized by MR diffusion tensor imaging. Am J Physiol Heart Circ Physiol. 2007;293(4):H2377–H2384.

    Article  Google Scholar 

  26. Scollan DF, Holmes A, Zhang, J, Winslow RL. Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging. Ann Biomed Eng. 2000;28(8):934–944.

    Article  Google Scholar 

  27. Haber I., Friehs I., Jiang Y., Del Nido, PJ, Hsu E. Diffusion tensor imaging of left ventricular hypertrophy. in International Society of Magnetic Resonance Thirteenth Scientific Meeting. 2005, Miami Beach, FL.

    Google Scholar 

  28. Chen J, Liu W, Zhang H, Lacy L, Yang X, Song SK, Wickline, SA, Yu X.. Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol. 2005;289(5):H1898–H18907.

    Article  Google Scholar 

  29. Reese TG, Weisskoff RM, Smith RN, Rosen BR, Dinsmore, RE, Wedeen VJ. Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med. 1995;34(6):786–791.

    Article  Google Scholar 

  30. Guccione JM, Costa, KD, McCulloch AD. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J Biomech. 1995;28(10):1167–1177.

    Article  Google Scholar 

  31. Tranquillo JV, Hlavacek, J, Henriquez CS. An integrative model of mouse cardiac electrophysiology from cell to torso. Europace. 2005;7 Suppl 2:56–70.

    Article  Google Scholar 

  32. Hsu EW, Henriquez CS. Myocardial fiber orientation mapping using reduced encoding diffusion tensor imaging. J Cardiovasc Magn Reson. 2001;3(4):339–347.

    Article  Google Scholar 

  33. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin, JB, Hunter PJ. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol. 1995;269(2 Pt 2):H571–H582.

    Google Scholar 

  34. Helm P, Beg MF, Miller, MI, Winslow RL. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann N Y Acad Sci. 2005;1047:296–307.

    Article  Google Scholar 

  35. Chen J, Song SK, Liu W, McLean M, Allen JS, Tan J, Wickline, SA, Yu X.. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am J Physiol Heart Circ Physiol. 2003;285(3):H946–H954.

    Google Scholar 

  36. Tseng WY, Dou J, Reese, TG, Wedeen VJ. Imaging myocardial fiber disarray and intramural strain hypokinesis in hypertrophic cardiomyopathy with MRI. J Magn Reson Imaging. 2006;23(1):1–8.

    Article  Google Scholar 

  37. Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, McVeigh E, Kass D, Miller MI, Winslow RL. Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res. 2006;98(1):125–132.

    Article  Google Scholar 

  38. Dou J, Tseng WY, Reese, TG, Wedeen VJ. Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo. Magn Reson Med. 2003;50(1):107–113.

    Article  Google Scholar 

  39. Dou J, Reese TG, Tseng, WY, Wedeen VJ. Cardiac diffusion MRI without motion effects. Magn Reson Med. 2002;48(1):105–114.

    Article  Google Scholar 

  40. Wu M, Tseng W, Su M, Liu C, Chiou K, Wedeen V, Reese T, Yang C.. Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation. 2006;114:1036–1045.

    Article  Google Scholar 

  41. Khamayseh AK, Kuprat AP. Deterministic point inclusion methods for computational applications with complex geometry. Comput Sci Discov. Volume, 22 pp

    Google Scholar 

  42. Anderson KP, Walker R, Urie P, Ershler PR, Lux RL, Karwandee SV. Myocardial electrical propagation in patients with idiopathic dilated cardiomyopathy. J Clin Invest. 1993;92(1):122–140.

    Article  Google Scholar 

  43. Prinzen FW, Cheriex EC, Delhaas T, van Oosterhout MF, Arts T, Wellens, HJ, Reneman RS. Asymmetric thickness of the left ventricular wall resulting from asynchronous electric activation: a study in dogs with ventricular pacing and in patients with left bundle branch block. Am Heart J. 1995;130(5):1045–1053.

    Article  Google Scholar 

  44. Helm P.. A novel technique for quantifying variability of cardiac anatomy: application to the dyssynchronous failing heart. John Hopkins University, Baltimore, MD, 2005.

    Google Scholar 

  45. Ashikaga H, Criscione JC, Omens JH, Covell, JW, Ingels NB Jr.. Transmural left ventricular mechanics underlying torsional recoil during relaxation. Am J Physiol Heart Circ Physiol. 2004;286(2):H640–H647.

    Article  Google Scholar 

  46. Omens JH, Covell JW. Transmural distribution of myocardial tissue growth induced by volume-overload hypertrophy in the dog. Circulation. 1991;84(3):1235–1245.

    Article  Google Scholar 

  47. Mansfield P.. Multi-planar image formation using NMR spin echoes. J Phys C: Solid State Phys. 1977;10:L55–L58.

    Article  Google Scholar 

  48. Pruessmann KP, Weiger M, Scheidegger, MB, Boesiger P.. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–962.

    Article  Google Scholar 

  49. Alexander DC, Pierpaoli C, Basser, PJ, Gee JC. Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging. 2001;20(11):1131–1139.

    Article  Google Scholar 

  50. Kuprat AP, Mosso SJ. Efficient algorithms for mapping cell quantities between overlapped 3D unstructured meshes. Los Alamos National Laboratory Report LA-UR-05-5084, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward W. Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hsu, E.W., Healy, L.J., Einstein, D.R., Kuprat, A.P. (2010). Imaging-Based Assessment and Modeling of the Structures of the Myocardium. In: Guccione, J., Kassab, G., Ratcliffe, M. (eds) Computational Cardiovascular Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0730-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0730-1_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0729-5

  • Online ISBN: 978-1-4419-0730-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics