Skip to main content

Passive Left Ventricular Constraint Devices

  • Chapter
  • First Online:
Computational Cardiovascular Mechanics

Abstract

Both myocardial infarction and volume overloading associated with regurgitant valve lesions lead to eccentric left ventricular (LV) hypertrophy. The mechanism is presumed to be positive feedback between diastolic LV wall stress and eccentric LV hypertrophy. Further, in each case, an increase in LV size is an important adverse prognostic finding. The experience with skeletal muscle cardiomyoplasty led to the hypothesis that passive constraint of LV enlargement would interrupt the diastolic stress and eccentric hypertrophy cycle, in addition to halting and possibly reversing the adverse LV remodeling. A number of passive constraint devices such as the Acorn CorCap™ Cardiac Support Device (CSD), Paracor Medical HeartNet™ Ventricular Support System (VSS), and Myocor™ yosplint® have been used. Most recently, an Adjustable Fluid Filled Balloon CSD was proposed by Ghanta and colleagues. In this chapter we model the effect of passive constraint devices, with the exception of the Paracor Medical HeartNet™ VSS, on the LV stroke volume/end-diastolic pressure (Starling) relationship and regional distributions of stress in the local muscle fiber direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammermeister KE, DeRouen TA, Dodge HT. Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation. 1979;59:421–30.

    Article  Google Scholar 

  2. Kostuk WJ, Kazamias TM, Gander MP, Simon AL, Ross J Jr. Left ventricular size after acute myocardial infarction. Serial changes and their prognostic significance. Circulation. 1973;47:1174–9.

    Article  Google Scholar 

  3. Shanoff HM, Little JA, Csima A, Yano R. Heart size and ten-year survival after uncomplicated myocardial infarction. Am Heart J. 1969;78:608–14.

    Article  Google Scholar 

  4. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76:44–51.

    Article  Google Scholar 

  5. Douglas PS, Morrow R, Ioli A, Reichek N. Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1989;13:311–5.

    Article  Google Scholar 

  6. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64.

    Article  Google Scholar 

  7. Hagege AA, Desnos M, Fernandez F, Besse B, Mirochnik N, Castaldo M, Chachques JC, Carpentier A, Guerot C. Clinical study of the effects of latissimus dorsi muscle flap stimulation after cardiomyoplasty. Circulation. 1995;92:II210–5.

    Article  Google Scholar 

  8. Kass DA, Baughman KL, Pak PH, Cho PW, Levin HR, Gardner TJ, Halperin HR, Tsitlik JE, Acker MA. Reverse remodeling from cardiomyoplasty in human heart failure. External constraint versus active assist. Circulation. 1995;91:2314–8.

    Article  Google Scholar 

  9. Nakajima H, Niinami H, Hooper TL, Hammond RL, Nakajima HO, Lu H, Ruggiero R, Thomas GA, Mocek FW, Fietsam R Jr, et al. Cardiomyoplasty: probable mechanism of effectiveness using the pressure–volume relationship. Ann Thorac Surg. 1994;57:407–15.

    Article  Google Scholar 

  10. 10. Blom AS, Mukherjee R, Pilla JJ, Lowry AS, Yarbrough WM, Mingoia JT, Hendrick JW, Stroud RE, McLean JE, Affuso J, Gorman RC, Gorman JH 3rd, Acker MA, Spinale FG. Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation. 2005;112(9):1274–1283.

    Google Scholar 

  11. Cheng A, Nguyen TC, Malinowski M, Langer F, Liang D, Daughters GT, Ingels NB Jr, Miller DC. Passive ventricular constraint prevents transmural shear strain progression in left ventricle remodeling. Circulation. 2006;114:I79–86.

    Article  Google Scholar 

  12. Pilla JJ, Blom AS, Brockman DJ, Bowen F, Yuan Q, Giammarco J, Ferrari VA, Gorman JH 3rd, Gorman RC, Acker MA. Ventricular constraint using the acorn cardiac support device reduces myocardial akinetic area in an ovine model of acute infarction. Circulation. 2002;106:I207–11.

    Google Scholar 

  13. Chaudhry PA, Mishima T, Sharov VG, Hawkins J, Alferness C, Paone G, Sabbah HN. Passive epicardial containment prevents ventricular remodeling in heart failure. Ann Thorac Surg. 2000;70:1275–80.

    Article  Google Scholar 

  14. Starling RC, Jessup M, Oh JK, Sabbah HN, Acker MA, Mann DL, Kubo SH. Sustained benefits of the CorCap Cardiac Support Device on left ventricular remodeling: three year follow-up results from the Acorn clinical trial. Ann Thorac Surg. 2007;84(4):1236–1242.

    Google Scholar 

  15. Mann DL, Acker MA, Jessup M, Sabbah HN, Starling RC, Kubo SH. Clinical evaluation of the CorCap Cardiac Support Device in patients with dilated cardiomyopathy. Ann Thorac Surg. 2007;84(4):1226–1235.

    Google Scholar 

  16. Pelton A. Nitinol medical devices. Adv Mater Processes. 2005;163:S13(3).

    Google Scholar 

  17. Magovern JA. Experimental and clinical studies with the Paracor cardiac restraint device. Semin Thorac Cardiovasc Surg. 2005:17, 364–8.

    Article  Google Scholar 

  18. Magovern JA, Teekell-Taylor L, Mankad S, Dasika U, McGregor W, Biederman RW, Yamrozik J, Trumble DR. Effect of a flexible ventricular restraint device on cardiac remodeling after acute myocardial infarction. Asaio J. 2006;52(2):196–200.

    Google Scholar 

  19. Cheng Y, Yi G, Hay I, Qin S, He K, Yue K, Li X, Tao Y, Wang J. A novel left ventricular passive support device alters the natural history of chronic heart failure in awake dogs. New Orleans, LA: AHA Scientific Sessions, 2004.

    Google Scholar 

  20. McCarthy PM, Takagaki M, Ochiai Y, Young JB, Tabata T, Shiota T, Qin JX, Thomas JD, Mortier TJ, Schroeder RF, Schweich CJ Jr, Fukamachi K. Device-based change in left ventricular shape: a new concept for the treatment of dilated cardiomyopathy. J Thorac Cardiovasc Surg. 2001;122:482–90.

    Article  Google Scholar 

  21. Ghanta RK, Rangaraj A, Umakanthan R, Lee L, Laurence RG, Fox JA, Bolman RM 3rd, Cohn LH, Chen FY. Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure. Circulation. 2007;115:1201–10.

    Google Scholar 

  22. Humphrey JD. Cardiovascular solid mechanics: cells, tissues, and organs. New York: Springer, 2002, p. 757, pp. xvi.

    Google Scholar 

  23. Guccione JM, Costa KD, McCulloch AD. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J Biomech. 1995;28:1167–77.

    Article  Google Scholar 

  24. Guccione, JM, Salahieh A, Moonly SM, Kortsmit J, Wallace AW, Ratcliffe MB. Myosplint decreases wall stress without depressing function in the failing heart: a finite element model study. Ann Thorac Surg. 2003;76:1171–80.

    Article  Google Scholar 

  25. Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW, Saloner D, Guccione JM. MRI-based finite-element analysis of left ventricular aneurysm. American journal of physiology. 2005;289(2):H692–700.

    Google Scholar 

  26. Oz MC, Konertz WF, Kleber FX, Mohr FW, Gummert JF, Ostermeyer J, Lass M, Raman J, Acker MA, Smedira N. Global surgical experience with the Acorn cardiac support device. J Thorac Cardiovasc Surg. 2003;126:983–91.

    Article  Google Scholar 

  27. Walsh RG. Design and features of the Acorn CorCap Cardiac Support Device: the concept of passive mechanical diastolic support. Heart Fail Rev. 2005;10:101–7.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health grant 5R01 HL077921 (Dr. Guccione) and 5R01 HL063348 (Dr. Ratcliffe). We thank Ms. Kimberly S. Yan, a technical writing expert for proof-reading of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius M. Guccione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jhun, CS. et al. (2010). Passive Left Ventricular Constraint Devices. In: Guccione, J., Kassab, G., Ratcliffe, M. (eds) Computational Cardiovascular Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0730-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0730-1_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0729-5

  • Online ISBN: 978-1-4419-0730-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics