Skip to main content

Review of Development of the Smooth Particle Hydrodynamics (SPH) Method

  • Chapter
  • First Online:
Book cover Predictive Modeling of Dynamic Processes

Abstract

The paper gives an overview of developments of the SPH method. Especial attention is given to the main shortcomings of the original form of the method namely consistency, tensile instability and zero energy modes. A derivation of an example of a correction necessary to assure first order consistency is given. The origin of the tensile instability and a few proposed solutions to this problem are described. Similar consideration is given with respect to the zero energy modes typical for the collocational SPH method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atluri S., Zhu T. (2000) A new meshless local Petrov Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, Vol 22, pp 117–127

    Article  MathSciNet  Google Scholar 

  2. Atluri S., H. G. Kim, J. Y. Cho, (2000), A critical assessment of the truly meshless local Petrov Galerkin (MLPG) and local boundary integral equation (LBIE), Computational Mechanics, Vol 24, pp 348–372

    Article  Google Scholar 

  3. Attaway S. W., Heinstein M.W., and Swegle J.W. (1994) Coupling of smooth particle hydrodynamics with the finite element method. Nuclear Engineering and Design, 150:199–205.

    Article  Google Scholar 

  4. Balsara D.S., Von Neumann stability analysis of smoothed particle hydrodynamics – Suggestions for optimal algorithms, J. Comput. Phys., 121 (1995), 357–372.

    Article  MATH  Google Scholar 

  5. Beissel, S. and Belytschko T. (1996). Nodal integration of the element-free Galerkin method. Computational Methods Applied Mechanical Engineering, Vol. 139 , pp. 49–71.

    Article  MATH  MathSciNet  Google Scholar 

  6. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P. (1996) Meshless Methods: An overview and recent developments Computer methods in applied mechanics and engineering, 139:3–47.

    MATH  Google Scholar 

  7. Belytschko T., Y.Y. Lu, and L. Gu. (1994) Element-free Galerkin methods. International Journal for Numerical methods in Engineering, 37:229–256, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  8. Belytschko T., Xiao S. (2002), ‘Stability Analysis of ParticleMethods with Corrected Derivatives’, http://www.tam.northwestern.edu/xiaop/stable.html

  9. Belytschko T, Xiao SP. (2004), A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering; 193: pp. 1645–1669.

    Article  MATH  MathSciNet  Google Scholar 

  10. Benz, W. (1990). Smooth particle hydrodynamics: a review. In J.R. Buchler, editor, The NumericalModelling of Nonlinear Stellar Pulsatations, pp. 269–288. Kluwer Academic Publishers. Cited in: Camplbell J. (1998). Lagrangian hydrocode modelling of hypervelocity impact on spacecraft. PhD thesis, Cranfield University 20 Review of Development of the Smooth Particle Hydrodynamics (SPH) Method 393

    Google Scholar 

  11. Bonet J. and Kulasegaram S. (1999). Correction and stabilization of smooth particle hydrodynamics methods with application in metal forming simulation. International Journal of Numerical Methods Engineering, Vol. 47, pp. 1189–1214.

    Article  Google Scholar 

  12. Campbell J., Vignjevic R., Libersky L., (2000), A Contact Algorithm for Smoothed Particle Hydrodynamics, Computer Methods in Applied Mechanics and Engineering, Vol. 184/1, pp 49–65, March 2000.

    Article  MathSciNet  Google Scholar 

  13. Campbell P. M., (1989), Some new algorithms for boundary value problems in smooth particle hydrodynamics. Technical Report DNA-TR–88–286, Mission Research Corporation.

    Google Scholar 

  14. Cha S. H. and Whitworth A.P., (2003), Implementations and tests of Godunov-type particle hydrodynamics, Mon. Not. R. Astron. Soc., 340 pp. 73–90

    Article  Google Scholar 

  15. De Vuyst T., Vignjevic R. and Campbell J. (2005), Modelling of Fluid-Structure Impact Problems using a Coupled SPH-FE solver, Journal of Impact Engineering, Volume 31, Issue 8, pp. 1054–1064

    Google Scholar 

  16. Dilts G. A., (1997), Moving –least squares-particle hydrodynamics I, consistency and stability. International Journal for Numerical Methods in Engineering, 44, pp. 1115–55

    Article  MathSciNet  Google Scholar 

  17. Dyka C. T., Ingel R.P., (1995), An approach for tension instability in smoothed particle hydrodynamics (SPH). Computers and Structures, 57(4), pp. 573–580

    Article  MATH  MathSciNet  Google Scholar 

  18. Gingold, R.A. and Monaghan, J.J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices Royal Astronomical Society, Vol. 181, pp. 375–389.

    MATH  Google Scholar 

  19. Guenther C., Hicks D.L., Swegle J.W. (1994). Conservative smoothing versus artificial viscosity. Technical Report SAND94–1853.

    Google Scholar 

  20. Harten A., P. D. Lax P. D.. and van Leer B., (1983). On upstream differencing and Godunovtype schemes for hyperbolic conservation laws, SIAM Review, V 25, no 1, pp 35–61.

    Article  MATH  Google Scholar 

  21. Hiermaier S., Peter J., Sauer M., Thoma K. (2001): Coupled FE-Particle Codes Applied to Material Characterization and Crash Simulation. European Conference on Computational Mechanics (ECCM), Krakau, Polen, 26.–29.06..

    Google Scholar 

  22. Hiermaier S. and Sauer M., (2003), Adaptive FE-Meshfree Modelling for impacts of liquid filled vessels on thin walled structures, Proceedings of IMECE’03, ASME International Mechanical Engineering Congress and Exposition, Washington DC, paper IMECE2003–44189

    Google Scholar 

  23. Huerta A, Fernandez-Mendez S., (2000), Enrichment and coupling of the finite element and meshless method, International Journal for Numerical Methods in Engineering; 48: pp. 1615–1636.

    Article  MATH  Google Scholar 

  24. Huerta A, Fernandez-Mendez S, Liu WK., (2004), A comparison of two formulations to blend finite elements and meshfree methods. Computer Methods in Applied Mechanics and Engineering; 193 (12–14): pp. 1105–1117

    Article  MATH  Google Scholar 

  25. Hughes T. J. R. (1987). The finite element method, Prentice Hall.

    Google Scholar 

  26. Inutsuka S.–I., Reformulation of smoothed particle hydrodynamics with Riemann solver, J. Comput. Phys., 179 (2002), pp. 238–267

    Article  MATH  Google Scholar 

  27. Johnson, G.R., Petersen, E.H. and Stryk, R.A. (1993). Incorporation of an SPH option in the EPIC code for a wide range of high velocity impact computations. International Journal of Impact Engineering, Vol. 14, pp. 385–394.

    Article  Google Scholar 

  28. Johnson, G.R. (1994). Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations Nuclear Engineering and Design, Vol. 150, pp. 265–274.

    Article  Google Scholar 

  29. Johnson G. R. and S.R. Beissel. (1996a). Normalised smoothing functions for SPH impact computations. International Journal for Numerical Methods in Engineering, 39:2725–2741.

    Google Scholar 

  30. Johnson, G.R., Stryk, R.A. and Beissel, S.R. (1996b). SPH for high velocity impact computations. Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 347–373.

    Google Scholar 

  31. Kadowaki H, Liu WK., (2005), A multiscale approach for the micropolar continuum model. Computer Modeling in Engineering and Sciences; 7(3): pp. 269–282.

    MATH  MathSciNet  Google Scholar 

  32. Krongauz Y., Belytschko T. (1997). Enforcement of essential boundary conditions in measles approximations using finite elements. Submited to International Journal for Numerical Methods in Engineering. 394 Rade Vignjevic and James Campbell

    Google Scholar 

  33. Krongauz Y., Belytschko T. (1997). Consitent pseudo derivatives in meshless methods Computer methods in applied mechanics and engineering, 146:371–386.

    Article  MATH  MathSciNet  Google Scholar 

  34. Landau L. D. Lifshitz E.M. (1960).Mechanics, Course of Theoretical Physics, V 1, Pergamon Press

    Google Scholar 

  35. Lattanzo J. C., J.J. Monaghan, H. Pongracic, P. Schwarz. (1996). Controlling penetration. SIAM, Journal for Scientific and Statistic Computation, V 7, No 2, pp 591–598.

    Article  Google Scholar 

  36. Libersky, L.D. and Petschek, A.G., (1990), Smooth particle hydrodynamics with strength of materials. Advances in the Free Lagrange Method, Lecture Notes in Physics, Vol. 395, pp. 248–257.

    Google Scholar 

  37. Libersky L.D., Petschek A.G., Carney T.C., Hipp J.R. and Allahdadi F.A., (1993), High Strain Lagrangian Hydrodynamics: A Three-Dimensional SPH Code for Dynamic Material Response, Journal of Computational Physics, Vol. 109, Issue 1, November, pp. 67–75.

    Article  MATH  Google Scholar 

  38. Li S, Liu WK., (2004), Meshfree Particle Methods. Springer: Berlin

    MATH  Google Scholar 

  39. Liu M. B., Liu G. R. and Lam K. Y., (2003), Constructing smoothing functions in smoothed particle hydrodynamics with applications, J. Comp. Appl. Math, 155, 263–284

    Article  MATH  MathSciNet  Google Scholar 

  40. Liu W. K., Jun S. and Zhang Y. F., (1995), Reproducing kernel particle methods, Int. J. Num. Meth. Engrng., 20, pp. 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  41. Liu W. L., Jun Li S, Adee J. and Belytschko T., (1995), Reproducing kernel particle methods for structural dynamics, International Journal for Numerical Methods in Engineering, 38: pp. 1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  42. Lucy, L.B., (1977), A numerical approach to the testing of fusion process. Astronomical journal, Vol. 88, pp. 1013–1024

    Article  Google Scholar 

  43. Meglicki Z., Analysis and Application of Smoothed Particle Magneto-Hydrodynamics, PhD thesis, Australian National University

    Google Scholar 

  44. Mitchell A. R. and Griffiths D. F., (1980), The finite difference method in partial differential equations, John Wiley

    Google Scholar 

  45. Monaghan J.J., (1982), Why particle methods work, SIAM Journal on Scientific and Statistical Computing, 3(4): pp. 422–433

    Article  MATH  MathSciNet  Google Scholar 

  46. Monaghan J.J. and Gingold R.A., (1983), Shock simulation by the particle method SPH, Journal of Computational Physics, Vol. 52, pp. 374–389

    Article  MATH  Google Scholar 

  47. Monaghan J.J. and Lattanzio J.C., (1985), A refined particle method for astrophysical problems. Astronomy and Astrophysics, Vol. 149, Issue 1, pp. 135–143

    MATH  Google Scholar 

  48. Monaghan J.J., Pongracic H., (1985), Artificial viscosity for particle methods. Applied Numerical Mathematics, 1: pp. 187–194

    Article  MATH  Google Scholar 

  49. Monaghan J.J., (1989), On the problem of penetration in particle methods. Journal of Computational Physics, 82:, pp. 1–15

    Article  MATH  Google Scholar 

  50. Monaghan J.J., (1992), Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 30: pp. 543–574

    Article  Google Scholar 

  51. Monaghan, J.J., (2000), SPH without a Tensile Instability. Journal of Computational Physics, Vol. 159, pp. 290–311

    Article  MATH  Google Scholar 

  52. Monaghan J., (2002), SPH compressible turbulence Mon. Not. R. Astron. Soc. 335, pp. 843– 52

    Article  Google Scholar 

  53. Moussa B., (2000), Meshless Particle methods: Recent developments for non-linear conservation laws in bounded domain, in Godunov Methods: Theory and Applications, E. F. Toro (Editor), Kluwer Academic/Plenum Publishers

    Google Scholar 

  54. Moussa B., J. P. Vila, (2000), Convergence of the SPH method for scalar nonlinear conservation laws, SIAM Journal of Numerical Analysis, Vol 37 number 3, pp 863–887.

    Article  MATH  Google Scholar 

  55. Parshikov A. N., Medin S. A., Loukashenko I. I. and Milekhin V. A., (2000), Improvements in SPH method by means of inter-particle contact algorithm and analysis of perforation tests at moderate projectile velocities, Int. J. Impact Engng., 24 pp 779–796

    Article  Google Scholar 

  56. Petschek A. G. and Libersky, L. D., (1993), Cylindrical smoothed particle hydrodynamics. Journal of Computational Physics, Vol. 109, pp. 76–83.

    Article  MATH  Google Scholar 

  57. Price J. and Monaghan J., (2004), Smoothed particle magneto-hydrodynamics: II. Variational principles and variable smoothing length terms, Mon. Not. R. Astron. Soc. 348, pp. 139–52

    Article  Google Scholar 

  58. Rabczuk T, Belytschko T, Xiao SP., (2004), Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering; 193: pp. 1035–1063

    Article  MATH  MathSciNet  Google Scholar 

  59. Randles P. W. and Libersky L. D., (1996), Smoothed particle hydrodynamics: Some recent improvements and applications, Computer methods in applied mechanics and engineering, 139, pp. 375–408.

    Article  MATH  MathSciNet  Google Scholar 

  60. Randles, P.W., Libersky, L.D. and Petschek, A.G., (1999), On neighbors, derivatives, and viscosity in particle codes, in: Proceedings of ECCM Conference, Munich, Germany

    Google Scholar 

  61. Randles, P.W., Libersky, L.D., (2000), Normalised SPH with stress points, Int. Journal Numerical Methods in Engineering, Vol. 48, pp. 1445–1462

    Article  MATH  Google Scholar 

  62. Resnyansky, A. D., (2002), DYNA-modelling of the high-velocity impact problems with a split-element algorithm, International Journal of Impact Engineering, Vol. 27, Issue 7, pp. 709–727.

    Article  Google Scholar 

  63. Reveles J., (2006), Development of a Total Lagrangian SPH Code for the Simulation of Solids Under Dynamic Loading, PhD Thesis, Cranfield University

    Google Scholar 

  64. Sauer M., (2000), Adaptive Koppling des netzfreien SPH-Verfahrens mit finiten Elementen zur Berechnung von Impaktvorgaengen. Dissertation, Universitaet der Bundeswehr Muenchen, Institut fuer Mechanik und Statik

    Google Scholar 

  65. Sauer M., Hiermaier S., Scheffer U. (2001): Modeling Penetration Events using FE/MLSPH Adaptive Coupling. Intern. Symp. on the Interaction of the Effects of Munitions with Structures (10th ISIEMS), San Diego, California, USA, 07.–11.06.

    Google Scholar 

  66. Sauer, M., Hiermaier, S., Thoma, K., (2002): Modelling the Continuum/Discrete Transition Using Adaptive Meshfree Methods, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), July 7–12, 2002, Vienna, Austria.

    Google Scholar 

  67. Stryk R. A., Johnson G.R. and Beissel S.R., (1996), SPH for high velocity impact computations. Computer methods in applied mechanics and engineering, 139, pp. 347–373

    Article  MATH  Google Scholar 

  68. Swegle, J.W., Attaway, S.W., Heinstein, M.W., Mello, F.J. and Hicks, D.L., (1994), An analysis of smooth particle hydrodynamics, Sandia Report SAND93–2513.

    Google Scholar 

  69. Swegle J, (2000) Conservation of momentum and tensile instability in particle methods, Sandia Report 2000–1223

    Google Scholar 

  70. Takeda H. T., S. M. Miyama, M. Sekiya. (1994). Numerical simulation of viscous flow by smooth particle hydrodynamics, Progress of Theoretical Physics, 92 pp 939–960.

    Article  Google Scholar 

  71. Van der Vegt LJ. J. W., Van der Ven H. and Boelens O. J., (1995), Discontinuous Galerkin methods for partial differential equations, in Godunov Methods: Theory and Applications.

    Google Scholar 

  72. Van Leer B., (1979), Towards the ultimate conservative difference scheme, J. Comput. Phys., 32 pp. 101–136

    Article  Google Scholar 

  73. Van Leer B., (2006), Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes, Commun. Comput. Phys., 1, pp. 192–206

    Google Scholar 

  74. Vila J. P., On particle weighted methods and smooth particle hydrodynamics, Math. Models Methods Appl. Sci., 9 (1999) 2, pp. 161–209

    Article  MATH  MathSciNet  Google Scholar 

  75. Vignjevic R., De Vuyst T., Campbell J., (2000), Modelling of Spall in an Anisotropic Aluminium Alloy, Journal of Space Debris, Volume 2, Number 4, pp. 225–232

    Article  Google Scholar 

  76. Vignjevic R., Campbell J., Libersky L., (2000), A Treatment of Zero Energy Modes in the Smoothed Particle Hydrodynamics Method, Computer Methods in Applied Mechanics and Engineering, Vol. 184/1, pp. 67–85

    Article  MathSciNet  Google Scholar 

  77. Vignjevic R., De Vuyst T., Campbell J., (2002a), The use of a homogeneous repulsive force for contact treatment in SPH, Fifth World Congress on Computational Mechanics, Vienna, Austria, July 7–12

    Google Scholar 

  78. Vignjevic R., Hughes K. and Taylor E.A., (2002b), Finite element modelling of failure of a multi-material target due to high velocity space debris impacts. Space Debris, Vol. 2, pp. 41–50.

    Google Scholar 

  79. Vignjevic R., De Vuyst T., Gourma M., (2001), Interpolation Techniques in Meshless Methods, Computer Modelling in Engineering and Science Journal, V 2, No. 3, pp 319–337

    MATH  Google Scholar 

  80. Vignjevic R.; Reveles J., Campbell J., (2006a), SPH in a Total Lagrangian Formalism, Computer Methods in Applied Mechanics and Engineering, Vol. 14, No. 3, pp. 181–198, 396 Rade Vignjevic and James Campbell

    Google Scholar 

  81. Vignjevic R.; De Vuyst T.; and Campbell J., (2006b), A Frictionless Contact Algorithm for Meshless Methods , A Frictionless Contact Algorithm for Meshless Methods, Computer Methods in Applied Mechanics and Engineering, Vol. 13, No. 1, pp. 35–48,

    Google Scholar 

  82. Wagner GJ, Liu WK. (2001), Hierarchical enrichment for bridging scales and meshfree boundary conditions. International Journal for Numerical Methods in Engineering; 50: pp. 507–524.

    Article  MATH  MathSciNet  Google Scholar 

  83. Wen Y., Hicks D.L. and Swegle, J.W. (1994), Stabilising SPH with conservative smoothing. Technical Report SAND94–1932

    Google Scholar 

  84. Xiao SP, Belytschko T. (2005) Material stability analysis of particle methods. Advances in Computational Mathematics; 23: pp. 171–190

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rade Vignjevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vignjevic, R., Campbell, J. (2009). Review of Development of the Smooth Particle Hydrodynamics (SPH) Method. In: Hiermaier, S. (eds) Predictive Modeling of Dynamic Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0727-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0727-1_20

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0726-4

  • Online ISBN: 978-1-4419-0727-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics