Dimensioning of concrete walls against small calibre impact including models for deformable penetrators and the scattering of experimental results

  • Norbert Gebbeken
  • Tobias Linse
  • Thomas Hartmann
  • Martien Teich
  • Achim Pietzsch
Chapter

Abstract

A new engineering tool for the assessment of impact of small calibre projectiles on concrete targets has been developed. As the experimental data of small calibre impact scatters noticeably, the inclusion of a model that describes the scattering of the results was needed. This is of special interest for the assessment of the safety, the remaining risk and an economical dimensioning of concrete walls. The threat level of ordinary small calibre munition is often overestimated, because the deformation of the projectiles is usually neglected. Hence, two models for deformable projectiles were developed and implemented. One model is for full jacketed projectiles and deduced from experimental data, the second model is for homogenous projectiles and is based on the analysis of data generated by numerical simulations. The key results of the research during the last years and the functionality of the tool are described in this article.

Keywords

Carbide Tungsten Hull Perforation Tate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to express their gratitude toMr. Dipl.-Ing. Landmann of the Wehrtechnische Dienststelle 52 (WTD52) and OTL Heckersbruch of the Streitkräfteamt (SKA) for the support, the technical discussions, and the financing of the project. Furthermore, the authors appreciate the help of Prof. J. Höcherl (University of the Federal Armed Forces) providing experimental data and contributing to the numerous fruitful discussions.

References

  1. 1.
    Adeli H and Amin AM, (1985), Local effects of impactors on concrete structures, Nuclear Engineering and Design, 88:301–317.CrossRefGoogle Scholar
  2. 2.
    Barwich, (1992), Neues Material: SIFCON Vergleichende Waffenwirkungsversuche an Zielstrukturen aus Stahlbeton, Stahlfaserbeton und SIFCON, WTD-Nr.:91-100/014/94, Wehrtechnische Dienststelle für Waffen und Munition WTD 91, Meppen.Google Scholar
  3. 3.
    Barwich, (1995), Hochfester Beton (HFB) Waffenwirkungsversuche an Zielstrukturen aus hochfestem Beton, WTD-Nr.: 91-100/013/96, Wehrtechnische Diensstelle für Waffen und Munition WTD 91, Meppen.Google Scholar
  4. 4.
    Barwich, (2000), Hochfester Beton (HFB) Waffenwirkungsversuche an Zielstrukturen aus hochfestem Beton, WTD Nr. 91-100/002/2000 E / K44I / T0356 / M5169, Wehrtechnische Diensstelle für Waffen und Munition WTD 91, Meppen.Google Scholar
  5. 5.
    Berriaud C, Sokolovsky A, Gueraud R, Dulac J, Labrot R, (1978), Comportement local des enceintes en beton sous l’impact d’un projectile rigide, Nuclear Engineering and Design, 45:457–469.CrossRefGoogle Scholar
  6. 6.
    Bishop R, Hill R, Mott N, (1945), The theory of indentation and hardness tests, The proceedings of the physical society, 57 - Part 3:147–159.Google Scholar
  7. 7.
    Chen XW, Q.M. L, (2004), Transition from Nondeformable Projectile Penetration to Semihydrodynamic Penetration, Journal of Engineering Mechanics ASCE, 123–127.Google Scholar
  8. 8.
    Forrestal M, Altman B, Cargile J, Hanchak S, (1994), An empirical equation for penetration depth of ogive-nose projectiles into concrete targets, International Journal of Impact Engineering 15(4):395–405.CrossRefGoogle Scholar
  9. 9.
    Fullard K, Baum MR, (1991), The assessment of impact on nuclear power plant structures in the United Kingdom, Nuclear Engineering and Design, 130:113–120.CrossRefGoogle Scholar
  10. 10.
    Gebbeken N, Greulich S, Linse T, Teich M, (2007), Simulations of Projectile Impact on Concrete Structures, 12th International Symposium on Interaction of the Effects of Munitions with Structures ISIEMS Orlando USA.Google Scholar
  11. 11.
    Gebbeken N, Linse T, (2008), Entwicklung eines Engineering Tools zur Ermittlung der Schutzwirkung von betonartigen Bauteilen gegen kleinkalibrige Penetratoren - Abschlussbericht 20.12.08, Universität der Bundeswehr München, Lehrstuhl für Statik, (classified).Google Scholar
  12. 12.
    Goodier JN, (1965), On the mechanics of indentation and ratering in solid targets strainhardening metail by mpact of hard and soft spheres, AIAA proceedings of the seventh symposium on hypervelocity impact III.Google Scholar
  13. 13.
    Hughes G, (1984), Hard missile impact on reinforced concrete, Nuclear Engineering and Design, 77(1):23–35.CrossRefGoogle Scholar
  14. 14.
    Kennedy RP, (1976), A review of procedures for the analysis and design of concrete structures to resist missile impact effects, Nuclear Engineering and Design, 37(2):183–203.CrossRefGoogle Scholar
  15. 15.
    Kunz J, (2004), Versuchsbeschüsse von Baustrukturen, Universität der Bundeswehr München, Fachbereich für Maschinenbau, Wissenschaftliche Einrichtung für Waffentechnik, Prof. Dipl.-Ing. Johann Höcherl.Google Scholar
  16. 16.
    Li Q, Reid s, Wen h, Telford A, (2005), Local impact effects of hard missiles on concrete targets, International Journal of Impact Engineering 32(1-4):224–284.CrossRefGoogle Scholar
  17. 17.
    Lixin Q, Yunbin Y, Tong L, (2000), A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-infinite concrete targets, International Journal of Impact Engineering 24(9):947–955.CrossRefGoogle Scholar
  18. 18.
    Luk VK, Piekutowski AJ, (1991), An analytical model on penetration of eroding long rods into metallic targets, International Journal of Impact Engineering 11(3):323–340.CrossRefGoogle Scholar
  19. 19.
    Moxnes JF, Friis EK, Froyland O, (2005), Experimental and Numerical Study of the Penetration of Tungsten Carbide Into Steel Targets During High Rates of Strain, 22nd International Symposium on Ballistics, Vancouver BC, Canada.Google Scholar
  20. 20.
    Sjol H, Teland JA, (2000), Prediction of concrete penetration using Forrestal’s formula, Norwegian Defence Research Establishment.Google Scholar
  21. 21.
    Sjol H, Teland JA, (2001), Perforation of concrete Targets, Norwegian Defence Resarch Estabishment FFI/Rapport-2001/05786.Google Scholar
  22. 22.
    Sjol H, Teland JA, Kladheim O, (2002), Penetration into concrete - analysis of small scale experiments with 12 mm projectiles, Norwegian Defence Research Establishment.Google Scholar
  23. 23.
    Tate A, (1986), Long rod penetration models - Part I. A flow field model for high speed long rod penetration, International Journal of mechanical sciences 28:535–548.CrossRefGoogle Scholar
  24. 24.
    Tate A, (1986), Long rod penetration models - Part II. Extensions to the hydrodynamic theory of penetration, International Journal of mechanical sciences 28:599–612.CrossRefGoogle Scholar
  25. 25.
    Teland JA, (1999), A Review of analytical penetration mechanics, Norwegian Defence Research Establishment, FFI/Rapport-99/01264.Google Scholar
  26. 26.
    Teland JA, Sjol H, (2000), Penetration into Concrete by truncated projectiles, Norwegian Defence Research Estabilshment.Google Scholar
  27. 27.
    N.N., WTD91, (1970), Erprobungsstelle 91 der Bundeswehr, Erprobungsabschlussbericht Teil II, Ermittlung der Eindringtiefen von kleinkalibrigen Geschossen und Handgranaten in Mauerwerk, Beton und Sand, E/P 45 G/00019/00538 vom 28.9.70, Erprobungsstelle 91 der Bundeswehr.Google Scholar
  28. 28.
    Yankelevsky DZ, (1997), Local response of concrete slabs to low velocity missile impact, International Journal of Impact Engineering 19(4):331–343.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Norbert Gebbeken
    • 1
  • Tobias Linse
    • 1
  • Thomas Hartmann
    • 1
  • Martien Teich
    • 1
  • Achim Pietzsch
    • 1
  1. 1.Institute of Engineering Mechanics and Structural MechanicsUniversity of the German Armed Forces Munich85577 NeubibergGermany

Personalised recommendations