PI3K/AKT Pathway and the Epithelial-Mesenchymal Transition

  • A. Bellacosa
  • L. Larue
Part of the Cancer Genetics book series (CANGENETICS)


The catalytic subunit of the phosphatidylinositol 3-kinase (PIK3; EC is one of the most frequently mutated gene in human cancers, as is its inhibitor PTEN. By some estimates, PIK3CA carries gain-of-function mutations in 32% of colorectal cancers, 36% of hepatocellular carcinomas, 36% of endometrial carcinomas, 25% of breast carcinomas, 15% of anaplastic oligodendrogliomas, and 5% of medulloblastomas and anaplastic astrocytomas (recently reviewed in Velculescu, 2008). Similarly, spontaneous mutations in PTEN are found in 50% of endometrial cancers, 30% of glioblastomas, 10% of prostate, and 5% of breast carcinomas. Moreover, inherited mutations in PTEN lead to a variety of conditions, such as Cowden syndrome, which are associated with an increased risk of cancer (recently reviewed in Keniry and Parsons, 2008). In addition, frequent alterations and hyperactivation of AKT kinases have been described in almost every tumor type studied (reviewed in Bellacosa et al., 2005; Brugge et al., 2007). While many of the downstream effectors of the AKT pathway are involved in cell autonomous processes (i.e., cell cycle and apoptosis), the following chapter will focus on the implications of aberrant AKT signaling for epithelial–mesenchymal transition, in particular on the PI3K–AKT–NF-κB–Snail pathways in EMT with emphasis on E-cadherin regulation.



We would like to thank the staff at the Bellacosa and Larue laboratories for constructive discussions and rigorous dedication to this field of research. We apologize to colleagues whose work is not cited – despite its value – due to space constraints. This work was supported by NIH grants CA78412, CA105008, and CA06927. Additional support was provided by an appropriation from the Commonwealth of Pennsylvania to the Fox Chase Cancer Center. The Ligue Contre le Cancer – comité de l’Oise, INCa, cancéropole IdF and Institut Curie also provided support.


  1. Aberle, H., Bauer, A., Stappert, J., Kispert, A. and Kemler, R. (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 16: 3797–804.PubMedGoogle Scholar
  2. Amae, S., Fuse, N., Yasumoto, K., Sato, S., Yajima, I., Yamamoto, H., Udono, T., Durlu, Y. K., Tamai, M., Takahashi, K. and Shibahara, S. (1998) Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochem Biophys Res Commun 247: 710–15.PubMedGoogle Scholar
  3. Amiel, J. and Lyonnet, S. (2001) Hirschsprung disease, associated syndromes, and genetics: A review. J Med Genet 38: 729–39.PubMedGoogle Scholar
  4. Aoki, K., Tamai, Y., Horiike, S., Oshima, M. and Taketo, M. M. (2003) Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Delta716 Cdx2+/– compound mutant mice. Nat Genet 35: 323–30.PubMedGoogle Scholar
  5. Arnold, S. J., Stappert, J., Bauer, A., Kispert, A., Herrmann, B. G. and Kemler, R. (2000) Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. Mech Dev 91: 249–58.PubMedGoogle Scholar
  6. Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. and Perrimon, N. (1998) Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 12: 2610–22.PubMedGoogle Scholar
  7. Bachelder, R. E., Yoon, S. O., Franci, C., de Herreros, A. G. and Mercurio, A. M. (2005) Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: Implications for the epithelial–mesenchymal transition. J Cell Biol 168: 29–33.PubMedGoogle Scholar
  8. Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., Lengauer, C., Velculescu, V. E., Kinzler, K. W. and Vogelstein, B. (2003) PRL-3 expression in metastatic cancers. Clin Cancer Res 9: 5607–15.PubMedGoogle Scholar
  9. Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J. and Garcia De Herreros, A. (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–9.PubMedGoogle Scholar
  10. Batlle, E., Henderson, J. T., Beghtel, H., van den Born, M. M., Sancho, E., Huls, G., Meeldijk, J., Robertson, J., van de Wetering, M., Pawson, T. and Clevers, H. (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111: 251–63.PubMedGoogle Scholar
  11. Bauer, A., Lickert, H., Kemler, R. and Stappert, J. (1998) Modification of the E-cadherin-catenin complex in mitotic Madin-Darby canine kidney epithelial cells. J Biol Chem 273: 28314–21.PubMedGoogle Scholar
  12. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005) Activation of AKT Kinases in Cancer: Implications for Therapeutic Targeting. Adv Cancer Res 94:29–86.PubMedGoogle Scholar
  13. Birchmeier, W. and Behrens, J. (1994) Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198: 11–26.PubMedGoogle Scholar
  14. Boyer, B., Valles, A. M. and Edme, N. (2000) Induction and regulation of epithelial–mesenchymal transitions. Biochem Pharmacol 60: 1091–9.PubMedGoogle Scholar
  15. Brabletz, T., Jung, A., Dag, S., Hlubek, F. and Kirchner, T. (1999) Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155: 1033–8.PubMedGoogle Scholar
  16. Brugge J, Hung MC, Mills GB (2007) A new mutational aktivation in the PI3K pathway. Cancer Cell 12:104–7.PubMedGoogle Scholar
  17. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J. and Greenberg, M. E. (1999) AKT promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–68.PubMedGoogle Scholar
  18. Butz, S. and Larue, L. (1995) Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhes Commun 3: 337–52.PubMedGoogle Scholar
  19. Cacheux, V., Dastot-Le Moal, F., Kaariainen, H., Bondurand, N., Rintala, R., Boissier, B., Wilson, M., Mowat, D. and Goossens, M. (2001) Loss-of-function mutations in SIP1 Smad interacting protein 1 result in a syndromic Hirschsprung disease. Hum Mol Genet 10: 1503–10.PubMedGoogle Scholar
  20. Chan, T. O. and Tsichlis, P. N. (2001) PDK2: A complex tail in one Akt. Sci STKE 2001: E1.Google Scholar
  21. Chu, E. C. and Tarnawski, A. S. (2004) PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10: RA235–41.PubMedGoogle Scholar
  22. Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S. and Nakshatri, H. (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26: 711–24.PubMedGoogle Scholar
  23. Crawford, H. C., Fingleton, B. M., Rudolph-Owen, L. A., Goss, K. J., Rubinfeld, B., Polakis, P. and Matrisian, L. M. (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18: 2883–91.PubMedGoogle Scholar
  24. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. and Hemmings, B. A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–9.PubMedGoogle Scholar
  25. De Craene, B., Gilbert, B., Stove, C., Bruyneel, E., van Roy, F. and Berx, G. (2005) The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65: 6237–44.PubMedGoogle Scholar
  26. Deprez, J., Vertommen, D., Alessi, D. R., Hue, L. and Rider, M. H. (1997) Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 272: 17269–75.PubMedGoogle Scholar
  27. Diehl, J. A., Cheng, M., Roussel, M. F. and Sherr, C. J. (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–511.PubMedGoogle Scholar
  28. Du, K. and Montminy, M. (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273: 32377–9PubMedGoogle Scholar
  29. Favelyukis, S., Till, J. H., Hubbard, S. R. and Miller, W. T. (2001) Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nat Struct Biol 8: 1058–63.PubMedGoogle Scholar
  30. Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A. and Sugimoto, C. (2003) PI3K/AKT and apoptosis: Size matters. Oncogene 22: 8983–98.PubMedGoogle Scholar
  31. Fuse, N., Yasumoto, K., Takeda, K., Amae, S., Yoshizawa, M., Udono, T., Takahashi, K., Tamai, M., Tomita, Y., Tachibana, M. and Shibahara, S. (1999) Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus. J Biochem (Tokyo) 126: 1043–51.Google Scholar
  32. Gilles, C., Polette, M., Birembaut, P., Brunner, N. and Thompson, E. W. (1997) Expression of c-ets-1 mRNA is associated with an invasive, EMT-derived phenotype in breast carcinoma cell lines. Clin Exp Metastasis 15: 519–26.PubMedGoogle Scholar
  33. Gottlob, K., Majewski, N., Kennedy, S., Kandel, E., Robey, R. B. and Hay, N. (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15: 1406–18.PubMedGoogle Scholar
  34. Gradl, D., Kuhl, M. and Wedlich, D. (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19: 5576–87.PubMedGoogle Scholar
  35. Grille, S. J., Bellacosa, A., Upson, J., Klein-Szanto, A. J., van Roy, F., Lee-Kwon, W., Donowitz, M., Tsichlis, P. N. and Larue, L. (2003) The protein kinase AKT induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63: 2172–8.PubMedGoogle Scholar
  36. Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., Taite, H., Scoular, R., Miller, A. and Reeve, A. E. (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392: 402–5.PubMedGoogle Scholar
  37. Guvakova, M. A. and Surmacz, E. (1997) Overexpressed IGF-I receptors reduce estrogen growth requirements, enhance survival, and promote E-cadherin-mediated cell–cell adhesion in human breast cancer cells. Exp Cell Res 231: 149–62.PubMedGoogle Scholar
  38. Guvakova, M. A., Adams, J. C. and Boettiger, D. (2002) Functional role of alpha-actinin, PI 3-kinase and MEK1/2 in insulin-like growth factor I receptor kinase regulated motility of human breast carcinoma cells. J Cell Sci 115: 4149–65.PubMedGoogle Scholar
  39. Hamada, K., Sasaki, T., Koni, P. A., Natsui, M., Kishimoto, H., Sasaki, J., Yajima, N., Horie, Y., Hasegawa, G., Naito, M., Miyazaki, J., Suda, T., Itoh, H., Nakao, K., Mak, T. W., Nakano, T. and Suzuki, A. (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19: 2054–65.PubMedGoogle Scholar
  40. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B. and Kinzler, K. W. (1998) Identification of c-MYC as a target of the APC pathway. Science 281: 1509–12.PubMedGoogle Scholar
  41. Hoeflich, K. P., Luo, J., Rubie, E. A., Tsao, M. S., Jin, O. and Woodgett, J. R. (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86–90.PubMedGoogle Scholar
  42. Howe, L. R., Subbaramaiah, K., Chung, W. J., Dannenberg, A. J. and Brown, A. M. (1999) Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells. Cancer Res 59: 1572–7.PubMedGoogle Scholar
  43. Hsu, Y. S., Wang, J. S. and Wu, T. T. (2004) E-cadherin expression in prostate adenocarcinomas in Chinese and its pathological correlates. Urol Int 73: 36–40.PubMedGoogle Scholar
  44. Huber, M. A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., Kraut, N., Beug, H. and Wirth, T. (2004) NF-kappaB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114: 569–81.PubMedGoogle Scholar
  45. Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by AKT and suppresses mTOR signalling. Nat Cell Biol 4: 648–57.PubMedGoogle Scholar
  46. Irie, H. Y., Pearline, R. V., Grueneberg, D., Hsia, M., Ravichandran, P., Kothari, N., Natesan, S. and Brugge, J. S. (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J Cell Biol 171: 1023–34.PubMedGoogle Scholar
  47. Julien, S., Puig, I., Caretti, E., Bonaventure, J., Nelles, L., van Roy, F., Dargemont, C., de Herreros, A. G., Bellacosa, A. and Larue, L. (2007) Activation of NF-kappaB by AKT upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 26: 7445–56.PubMedGoogle Scholar
  48. Kang, Y. and Massague, J. (2004) Epithelial–mesenchymal transitions: Twist in development and metastasis. Cell 118: 277–9.PubMedGoogle Scholar
  49. Karasawa, T., Yokokura, H., Kitajewski, J. and Lombroso, P. J. (2002) Frizzled-9 is activated by Wnt-2 and functions in Wnt/beta-catenin signaling. J Biol Chem 277: 37479–86.PubMedGoogle Scholar
  50. Keniry M, Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27:5477–85.PubMedGoogle Scholar
  51. Kim, D., Kim, S., Koh, H., Yoon, S. O., Chung, A. S., Cho, K. S. and Chung, J. (2001) Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. Faseb J 15: 1953–62.PubMedGoogle Scholar
  52. Kim, H. J., Litzenburger, B. C., Cui, X., Delgado, D. A., Grabiner, B. C., Lin, X., Lewis, M. T., Gottardis, M. M., Wong, T. W., Attar, R. M., Carboni, J. M. and Lee, A. V. (2007) Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 27: 3165–75.PubMedGoogle Scholar
  53. Kodaki, T., Woscholski, R., Hallberg, B., Rodriguez-Viciana, P., Downward, J. and Parker, P. J. (1994) The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 4: 796–8.Google Scholar
  54. Kohn, A. D., Summers, S. A., Birnbaum, M. J. and Roth, R. A. (1996) Expression of a constitutively active AKT Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271: 31372–8.PubMedGoogle Scholar
  55. Larue, L., Antos, C., Butz, S., Huber, O., Delmas, V., Dominis, M. and Kemler, R. (1996) A role for cadherins in tissue formation. Development 122: 3185–94.PubMedGoogle Scholar
  56. Le, T. L., Yap, A. S. and Stow, J. L. (1999) Recycling of E-cadherin: A potential mechanism for regulating cadherin dynamics. J Cell Biol 146: 219–32.PubMedGoogle Scholar
  57. Leslie, N. R., Yang, X., Downes, C. P. and Weijer, C. J. (2007) PtdIns(3,4,5)P(3)-dependent and -independent roles for PTEN in the control of cell migration. Curr Biol 17: 115–25.PubMedGoogle Scholar
  58. Li, Y., Bhargava, M. M., Joseph, A., Jin, L., Rosen, E. M. and Goldberg, I. D. (1994) Effect of hepatocyte growth factor/scatter factor and other growth factors on motility and morphology of non-tumorigenic and tumor cells. In Vitro Cell Dev Biol Anim 30A: 105–10.PubMedGoogle Scholar
  59. Liliental, J., Moon, S. Y., Lesche, R., Mamillapalli, R., Li, D., Zheng, Y., Sun, H. and Wu, H. (2000) Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol 10: 401–4.PubMedGoogle Scholar
  60. Mann, B., Gelos, M., Siedow, A., Hanski, M. L., Gratchev, A., Ilyas, M., Bodmer, W. F., Moyer, M. P., Riecken, E. O., Buhr, H. J. and Hanski, C. (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 96: 1603–8.PubMedGoogle Scholar
  61. Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., Johnson, B., Bloem, L., Pickard, T., Donaghue, M., Acton, S., Jeyaseelan, R., Kadambi, V. and Vlahos, C. J. (2001) Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochem Biophys Res Commun 283: 1061–8.PubMedGoogle Scholar
  62. Morali, O. G., Delmas, V., Moore, R., Jeanney, C., Thiery, J. P. and Larue, L. (2001) IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene 20: 4942–50.PubMedGoogle Scholar
  63. Muise-Helmericks, R. C., Grimes, H. L., Bellacosa, A., Malstrom, S. E., Tsichlis, P. N. and Rosen, N. (1998) Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 273: 29864–72.PubMedGoogle Scholar
  64. Novak, A. and Dedhar, S. (1999) Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci 56: 523–37.PubMedGoogle Scholar
  65. Pacifico, F. and Leonardi, A. (2006) NF-kappaB in solid tumors. Biochem Pharmacol 72: 1142–52.PubMedGoogle Scholar
  66. Palmer, H. G., Larriba, M. J., Garcia, J. M., Ordonez-Moran, P., Pena, C., Peiro, S., Puig, I., Rodriguez, R., de la Fuente, R., Bernad, A., Pollan, M., Bonilla, F., Gamallo, C., de Herreros, A. G. and Munoz, A. (2004) The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med 10: 917–19.PubMedGoogle Scholar
  67. Park, B. K., Zeng, X. and Glazer, R. I. (2001) Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 61: 7647–53.PubMedGoogle Scholar
  68. Peng, L., Jin, G., Wang, L., Guo, J., Meng, L. and Shou, C. (2006) Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3. Biochem Biophys Res Commun 342: 179–83.PubMedGoogle Scholar
  69. Plas, D. R., Rathmell, J. C. and Thompson, C. B. (2002) Homeostatic control of lymphocyte survival: Potential origins and implications. Nat Immunol 3: 515–21.PubMedGoogle Scholar
  70. Polato, F., Codegoni, A., Fruscio, R., Perego, P., Mangioni, C., Saha, S., Bardelli, A. and Broggini, M. (2005) PRL-3 phosphatase is implicated in ovarian cancer growth. Clin Cancer Res 11: 6835–9.PubMedGoogle Scholar
  71. Potter, C. J., Pedraza, L. G. and Xu, T. (2002) AKT regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4: 658–65.PubMedGoogle Scholar
  72. Rodrigo, I., Cato, A. C. and Cano, A. (1999) Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 248: 358–71.PubMedGoogle Scholar
  73. Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D. and Downward, J. (1996) Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. Embo J 15: 2442–51.PubMedGoogle Scholar
  74. Rosenfeld, R. G. and Roberts, C. T. (1999). The IGF system: Molecular Biology, Physiology, and Clincial Applications (Contemporary Endocrinology). Humana Press, Towanda, NJ.Google Scholar
  75. Ruggero, D. and Pandolfi, P. P. (2003) Does the ribosome translate cancer? Nat Rev Cancer 3: 179–92.PubMedGoogle Scholar
  76. Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., Romans, K. E., Choti, M. A., Lengauer, C., Kinzler, K. W. and Vogelstein, B. (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294: 1343–6.PubMedGoogle Scholar
  77. Schlessinger, J. (2000) Cell signaling by receptor tyrosine kinases. Cell 103: 211–25.PubMedGoogle Scholar
  78. Shepherd, T. and Hassell, J. A. (2001) Role of Ets transcription factors in mammary gland development and oncogenesis. J Mammary Gland Biol Neoplasia 6: 129–40.PubMedGoogle Scholar
  79. Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R. and Ben-Ze’ev, A. (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96: 5522–7.PubMedGoogle Scholar
  80. Smith, J. L., Schaffner, A. E., Hofmeister, J. K., Hartman, M., Wei, G., Forsthoefel, D., Hume, D. A. and Ostrowski, M. C. (2000) ets-2 is a target for an akt (Protein kinase B)/jun N-terminal kinase signaling pathway in macrophages of motheaten-viable mutant mice. Mol Cell Biol 20: 8026–34.PubMedGoogle Scholar
  81. Stambolic, V., Suzuki, A., de la Pompa, J. L., Brothers, G. M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J. M., Siderovski, D. P. and Mak, T. W. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39.PubMedGoogle Scholar
  82. Sun, H., Lesche, R., Li, D. M., Liliental, J., Zhang, H., Gao, J., Gavrilova, N., Mueller, B., Liu, X. and Wu, H. (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 96: 6199–204.PubMedGoogle Scholar
  83. Suriano, G., Oliveira, C., Ferreira, P., Machado, J. C., Bordin, M. C., De Wever, O., Bruyneel, E. A., Moguilevsky, N., Grehan, N., Porter, T. R., Richards, F. M., Hruban, R. H., Roviello, F., Huntsman, D., Mareel, M., Carneiro, F., Caldas, C. and Seruca, R. (2003) Identification of CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands. Hum Mol Genet 12: 575–82.PubMedGoogle Scholar
  84. Takeda, K., Takemoto, C., Kobayashi, I., Watanabe, A., Nobukuni, Y., Fisher, D. E. and Tachibana, M. (2000) Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum Mol Genet 9: 125–32.PubMedGoogle Scholar
  85. Tamura, M., Gu, J., Matsumoto, K., Aota, S., Parsons, R. and Yamada, K. M. (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280: 1614–17.PubMedGoogle Scholar
  86. Tang, E. D., Nunez, G., Barr, F. G. and Guan, K. L. (1999) Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274: 16741–6.PubMedGoogle Scholar
  87. Tang, Q. Q., Otto, T. C. and Lane, M. D. (2003) Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A 100: 44–9.PubMedGoogle Scholar
  88. Testa, J. R. and Bellacosa, A. (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98: 10983–5.PubMedGoogle Scholar
  89. Thiery, J. P. and Morgan, M. (2004) Breast cancer progression with a Twist. Nat Med 10: 777–8.PubMedGoogle Scholar
  90. Trencia, A., Perfetti, A., Cassese, A., Vigliotta, G., Miele, C., Oriente, F., Santopietro, S., Giacco, F., Condorelli, G., Formisano, P. and Beguinot, F. (2003) Protein kinase B/AKT binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol Cell Biol 23: 4511–21.PubMedGoogle Scholar
  91. Ullrich, A. and Schlessinger, J. (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–12.PubMedGoogle Scholar
  92. Van de Putte, T., Maruhashi, M., Francis, A., Nelles, L., Kondoh, H., Huylebroeck, D. and Higashi, Y. (2003) Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 72: 465–70.PubMedGoogle Scholar
  93. Velculescu VE (2008) Defining the blueprint of the cancer genome. Carcinogenesis 29:1087–91.PubMedGoogle Scholar
  94. Vleminckx, K., Vakaet, L., Jr., Mareel, M., Fiers, W. and van Roy, F. (1991) Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–19.PubMedGoogle Scholar
  95. Wakamatsu, N., Yamada, Y., Yamada, K., Ono, T., Nomura, N., Taniguchi, H., Kitoh, H., Mutoh, N., Yamanaka, T., Mushiake, K., Kato, K., Sonta, S. and Nagaya, M. (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27: 369–70.PubMedGoogle Scholar
  96. Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P. and Zeng, Q. (2007a) PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial–mesenchymal transition. Cancer Res 67: 2922–6.PubMedGoogle Scholar
  97. Wang, X., Zheng, M., Liu, G., Xia, W., McKeown-Longo, P. J., Hung, M. C. and Zhao, J. (2007b) Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res 67: 7184–93.PubMedGoogle Scholar
  98. Wu, X., Obata, T., Khan, Q., Highshaw, R. A., De Vere White, R. and Sweeney, C. (2004) The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. BJU Int 93: 143–50.PubMedGoogle Scholar
  99. Yamada, K., Yamada, Y., Nomura, N., Miura, K., Wakako, R., Hayakawa, C., Matsumoto, A., Kumagai, T., Yoshimura, I., Miyazaki, S., Kato, K., Sonta, S., Ono, H., Yamanaka, T., Nagaya, M. and Wakamatsu, N. (2001) Nonsense and frameshift mutations in ZFHX1B, encoding Smad-interacting protein 1, cause a complex developmental disorder with a great variety of clinical features. Am J Hum Genet 69: 1178–85.PubMedGoogle Scholar
  100. Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J. and Nusse, R. (1995) The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev 9: 1087–97.PubMedGoogle Scholar
  101. Yang, Z., Rayala, S., Nguyen, D., Vadlamudi, R. K., Chen, S. and Kumar, R. (2005) Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Res 65: 3179–84.PubMedGoogle Scholar
  102. Yost, C., Torres, M., Miller, J. R., Huang, E., Kimelman, D. and Moon, R. T. (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10: 1443–54.PubMedGoogle Scholar
  103. Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., Pallen, C. J., Manser, E. and Hong, W. (2003) PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res 63: 2716–22.PubMedGoogle Scholar
  104. Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M. and Hung, M. C. (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6: 931–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Human Genetics ProgramEpigenetics and Progenitor Cells Program, Fox Chase Cancer CenterPhiladelphiaUSA
  2. 2.Laboratory of Developmental TherapeuticsRegina Elena Cancer CenterRomeItaly
  3. 3.Lionel LarueUMR 146 CNRS - Institut CurieOrsayFrance

Personalised recommendations