Skip to main content

PI3K/AKT Pathway and the Epithelial-Mesenchymal Transition

  • Chapter
  • First Online:
Cancer Genome and Tumor Microenvironment

Part of the book series: Cancer Genetics ((CANGENETICS))

Abstract

The catalytic subunit of the phosphatidylinositol 3-kinase (PIK3; EC 2.7.1.137) is one of the most frequently mutated gene in human cancers, as is its inhibitor PTEN. By some estimates, PIK3CA carries gain-of-function mutations in 32% of colorectal cancers, 36% of hepatocellular carcinomas, 36% of endometrial carcinomas, 25% of breast carcinomas, 15% of anaplastic oligodendrogliomas, and 5% of medulloblastomas and anaplastic astrocytomas (recently reviewed in Velculescu, 2008). Similarly, spontaneous mutations in PTEN are found in 50% of endometrial cancers, 30% of glioblastomas, 10% of prostate, and 5% of breast carcinomas. Moreover, inherited mutations in PTEN lead to a variety of conditions, such as Cowden syndrome, which are associated with an increased risk of cancer (recently reviewed in Keniry and Parsons, 2008). In addition, frequent alterations and hyperactivation of AKT kinases have been described in almost every tumor type studied (reviewed in Bellacosa et al., 2005; Brugge et al., 2007). While many of the downstream effectors of the AKT pathway are involved in cell autonomous processes (i.e., cell cycle and apoptosis), the following chapter will focus on the implications of aberrant AKT signaling for epithelial–mesenchymal transition, in particular on the PI3K–AKT–NF-κB–Snail pathways in EMT with emphasis on E-cadherin regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberle, H., Bauer, A., Stappert, J., Kispert, A. and Kemler, R. (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 16: 3797–804.

    PubMed  CAS  Google Scholar 

  • Amae, S., Fuse, N., Yasumoto, K., Sato, S., Yajima, I., Yamamoto, H., Udono, T., Durlu, Y. K., Tamai, M., Takahashi, K. and Shibahara, S. (1998) Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochem Biophys Res Commun 247: 710–15.

    PubMed  CAS  Google Scholar 

  • Amiel, J. and Lyonnet, S. (2001) Hirschsprung disease, associated syndromes, and genetics: A review. J Med Genet 38: 729–39.

    PubMed  CAS  Google Scholar 

  • Aoki, K., Tamai, Y., Horiike, S., Oshima, M. and Taketo, M. M. (2003) Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Delta716 Cdx2+/– compound mutant mice. Nat Genet 35: 323–30.

    PubMed  CAS  Google Scholar 

  • Arnold, S. J., Stappert, J., Bauer, A., Kispert, A., Herrmann, B. G. and Kemler, R. (2000) Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. Mech Dev 91: 249–58.

    PubMed  CAS  Google Scholar 

  • Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. and Perrimon, N. (1998) Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 12: 2610–22.

    PubMed  CAS  Google Scholar 

  • Bachelder, R. E., Yoon, S. O., Franci, C., de Herreros, A. G. and Mercurio, A. M. (2005) Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: Implications for the epithelial–mesenchymal transition. J Cell Biol 168: 29–33.

    PubMed  CAS  Google Scholar 

  • Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., Lengauer, C., Velculescu, V. E., Kinzler, K. W. and Vogelstein, B. (2003) PRL-3 expression in metastatic cancers. Clin Cancer Res 9: 5607–15.

    PubMed  CAS  Google Scholar 

  • Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J. and Garcia De Herreros, A. (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–9.

    PubMed  CAS  Google Scholar 

  • Batlle, E., Henderson, J. T., Beghtel, H., van den Born, M. M., Sancho, E., Huls, G., Meeldijk, J., Robertson, J., van de Wetering, M., Pawson, T. and Clevers, H. (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111: 251–63.

    PubMed  CAS  Google Scholar 

  • Bauer, A., Lickert, H., Kemler, R. and Stappert, J. (1998) Modification of the E-cadherin-catenin complex in mitotic Madin-Darby canine kidney epithelial cells. J Biol Chem 273: 28314–21.

    PubMed  CAS  Google Scholar 

  • Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005) Activation of AKT Kinases in Cancer: Implications for Therapeutic Targeting. Adv Cancer Res 94:29–86.

    PubMed  CAS  Google Scholar 

  • Birchmeier, W. and Behrens, J. (1994) Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198: 11–26.

    PubMed  CAS  Google Scholar 

  • Boyer, B., Valles, A. M. and Edme, N. (2000) Induction and regulation of epithelial–mesenchymal transitions. Biochem Pharmacol 60: 1091–9.

    PubMed  CAS  Google Scholar 

  • Brabletz, T., Jung, A., Dag, S., Hlubek, F. and Kirchner, T. (1999) Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155: 1033–8.

    PubMed  CAS  Google Scholar 

  • Brugge J, Hung MC, Mills GB (2007) A new mutational aktivation in the PI3K pathway. Cancer Cell 12:104–7.

    PubMed  CAS  Google Scholar 

  • Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J. and Greenberg, M. E. (1999) AKT promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–68.

    PubMed  CAS  Google Scholar 

  • Butz, S. and Larue, L. (1995) Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhes Commun 3: 337–52.

    PubMed  CAS  Google Scholar 

  • Cacheux, V., Dastot-Le Moal, F., Kaariainen, H., Bondurand, N., Rintala, R., Boissier, B., Wilson, M., Mowat, D. and Goossens, M. (2001) Loss-of-function mutations in SIP1 Smad interacting protein 1 result in a syndromic Hirschsprung disease. Hum Mol Genet 10: 1503–10.

    PubMed  CAS  Google Scholar 

  • Chan, T. O. and Tsichlis, P. N. (2001) PDK2: A complex tail in one Akt. Sci STKE 2001: E1.

    Google Scholar 

  • Chu, E. C. and Tarnawski, A. S. (2004) PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10: RA235–41.

    PubMed  CAS  Google Scholar 

  • Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S. and Nakshatri, H. (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26: 711–24.

    PubMed  CAS  Google Scholar 

  • Crawford, H. C., Fingleton, B. M., Rudolph-Owen, L. A., Goss, K. J., Rubinfeld, B., Polakis, P. and Matrisian, L. M. (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18: 2883–91.

    PubMed  CAS  Google Scholar 

  • Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. and Hemmings, B. A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–9.

    PubMed  CAS  Google Scholar 

  • De Craene, B., Gilbert, B., Stove, C., Bruyneel, E., van Roy, F. and Berx, G. (2005) The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65: 6237–44.

    PubMed  Google Scholar 

  • Deprez, J., Vertommen, D., Alessi, D. R., Hue, L. and Rider, M. H. (1997) Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 272: 17269–75.

    PubMed  CAS  Google Scholar 

  • Diehl, J. A., Cheng, M., Roussel, M. F. and Sherr, C. J. (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–511.

    PubMed  CAS  Google Scholar 

  • Du, K. and Montminy, M. (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273: 32377–9

    PubMed  CAS  Google Scholar 

  • Favelyukis, S., Till, J. H., Hubbard, S. R. and Miller, W. T. (2001) Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nat Struct Biol 8: 1058–63.

    PubMed  CAS  Google Scholar 

  • Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A. and Sugimoto, C. (2003) PI3K/AKT and apoptosis: Size matters. Oncogene 22: 8983–98.

    PubMed  CAS  Google Scholar 

  • Fuse, N., Yasumoto, K., Takeda, K., Amae, S., Yoshizawa, M., Udono, T., Takahashi, K., Tamai, M., Tomita, Y., Tachibana, M. and Shibahara, S. (1999) Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus. J Biochem (Tokyo) 126: 1043–51.

    CAS  Google Scholar 

  • Gilles, C., Polette, M., Birembaut, P., Brunner, N. and Thompson, E. W. (1997) Expression of c-ets-1 mRNA is associated with an invasive, EMT-derived phenotype in breast carcinoma cell lines. Clin Exp Metastasis 15: 519–26.

    PubMed  CAS  Google Scholar 

  • Gottlob, K., Majewski, N., Kennedy, S., Kandel, E., Robey, R. B. and Hay, N. (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15: 1406–18.

    PubMed  CAS  Google Scholar 

  • Gradl, D., Kuhl, M. and Wedlich, D. (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19: 5576–87.

    PubMed  CAS  Google Scholar 

  • Grille, S. J., Bellacosa, A., Upson, J., Klein-Szanto, A. J., van Roy, F., Lee-Kwon, W., Donowitz, M., Tsichlis, P. N. and Larue, L. (2003) The protein kinase AKT induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63: 2172–8.

    PubMed  CAS  Google Scholar 

  • Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., Taite, H., Scoular, R., Miller, A. and Reeve, A. E. (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392: 402–5.

    PubMed  CAS  Google Scholar 

  • Guvakova, M. A. and Surmacz, E. (1997) Overexpressed IGF-I receptors reduce estrogen growth requirements, enhance survival, and promote E-cadherin-mediated cell–cell adhesion in human breast cancer cells. Exp Cell Res 231: 149–62.

    PubMed  CAS  Google Scholar 

  • Guvakova, M. A., Adams, J. C. and Boettiger, D. (2002) Functional role of alpha-actinin, PI 3-kinase and MEK1/2 in insulin-like growth factor I receptor kinase regulated motility of human breast carcinoma cells. J Cell Sci 115: 4149–65.

    PubMed  CAS  Google Scholar 

  • Hamada, K., Sasaki, T., Koni, P. A., Natsui, M., Kishimoto, H., Sasaki, J., Yajima, N., Horie, Y., Hasegawa, G., Naito, M., Miyazaki, J., Suda, T., Itoh, H., Nakao, K., Mak, T. W., Nakano, T. and Suzuki, A. (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19: 2054–65.

    PubMed  CAS  Google Scholar 

  • He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B. and Kinzler, K. W. (1998) Identification of c-MYC as a target of the APC pathway. Science 281: 1509–12.

    PubMed  CAS  Google Scholar 

  • Hoeflich, K. P., Luo, J., Rubie, E. A., Tsao, M. S., Jin, O. and Woodgett, J. R. (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86–90.

    PubMed  CAS  Google Scholar 

  • Howe, L. R., Subbaramaiah, K., Chung, W. J., Dannenberg, A. J. and Brown, A. M. (1999) Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells. Cancer Res 59: 1572–7.

    PubMed  CAS  Google Scholar 

  • Hsu, Y. S., Wang, J. S. and Wu, T. T. (2004) E-cadherin expression in prostate adenocarcinomas in Chinese and its pathological correlates. Urol Int 73: 36–40.

    PubMed  CAS  Google Scholar 

  • Huber, M. A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., Kraut, N., Beug, H. and Wirth, T. (2004) NF-kappaB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114: 569–81.

    PubMed  CAS  Google Scholar 

  • Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by AKT and suppresses mTOR signalling. Nat Cell Biol 4: 648–57.

    PubMed  CAS  Google Scholar 

  • Irie, H. Y., Pearline, R. V., Grueneberg, D., Hsia, M., Ravichandran, P., Kothari, N., Natesan, S. and Brugge, J. S. (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J Cell Biol 171: 1023–34.

    PubMed  CAS  Google Scholar 

  • Julien, S., Puig, I., Caretti, E., Bonaventure, J., Nelles, L., van Roy, F., Dargemont, C., de Herreros, A. G., Bellacosa, A. and Larue, L. (2007) Activation of NF-kappaB by AKT upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 26: 7445–56.

    PubMed  CAS  Google Scholar 

  • Kang, Y. and Massague, J. (2004) Epithelial–mesenchymal transitions: Twist in development and metastasis. Cell 118: 277–9.

    PubMed  CAS  Google Scholar 

  • Karasawa, T., Yokokura, H., Kitajewski, J. and Lombroso, P. J. (2002) Frizzled-9 is activated by Wnt-2 and functions in Wnt/beta-catenin signaling. J Biol Chem 277: 37479–86.

    PubMed  CAS  Google Scholar 

  • Keniry M, Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27:5477–85.

    PubMed  CAS  Google Scholar 

  • Kim, D., Kim, S., Koh, H., Yoon, S. O., Chung, A. S., Cho, K. S. and Chung, J. (2001) Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. Faseb J 15: 1953–62.

    PubMed  CAS  Google Scholar 

  • Kim, H. J., Litzenburger, B. C., Cui, X., Delgado, D. A., Grabiner, B. C., Lin, X., Lewis, M. T., Gottardis, M. M., Wong, T. W., Attar, R. M., Carboni, J. M. and Lee, A. V. (2007) Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 27: 3165–75.

    PubMed  CAS  Google Scholar 

  • Kodaki, T., Woscholski, R., Hallberg, B., Rodriguez-Viciana, P., Downward, J. and Parker, P. J. (1994) The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 4: 796–8.

    Google Scholar 

  • Kohn, A. D., Summers, S. A., Birnbaum, M. J. and Roth, R. A. (1996) Expression of a constitutively active AKT Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271: 31372–8.

    PubMed  CAS  Google Scholar 

  • Larue, L., Antos, C., Butz, S., Huber, O., Delmas, V., Dominis, M. and Kemler, R. (1996) A role for cadherins in tissue formation. Development 122: 3185–94.

    PubMed  CAS  Google Scholar 

  • Le, T. L., Yap, A. S. and Stow, J. L. (1999) Recycling of E-cadherin: A potential mechanism for regulating cadherin dynamics. J Cell Biol 146: 219–32.

    PubMed  CAS  Google Scholar 

  • Leslie, N. R., Yang, X., Downes, C. P. and Weijer, C. J. (2007) PtdIns(3,4,5)P(3)-dependent and -independent roles for PTEN in the control of cell migration. Curr Biol 17: 115–25.

    PubMed  CAS  Google Scholar 

  • Li, Y., Bhargava, M. M., Joseph, A., Jin, L., Rosen, E. M. and Goldberg, I. D. (1994) Effect of hepatocyte growth factor/scatter factor and other growth factors on motility and morphology of non-tumorigenic and tumor cells. In Vitro Cell Dev Biol Anim 30A: 105–10.

    PubMed  CAS  Google Scholar 

  • Liliental, J., Moon, S. Y., Lesche, R., Mamillapalli, R., Li, D., Zheng, Y., Sun, H. and Wu, H. (2000) Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol 10: 401–4.

    PubMed  CAS  Google Scholar 

  • Mann, B., Gelos, M., Siedow, A., Hanski, M. L., Gratchev, A., Ilyas, M., Bodmer, W. F., Moyer, M. P., Riecken, E. O., Buhr, H. J. and Hanski, C. (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 96: 1603–8.

    PubMed  CAS  Google Scholar 

  • Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., Johnson, B., Bloem, L., Pickard, T., Donaghue, M., Acton, S., Jeyaseelan, R., Kadambi, V. and Vlahos, C. J. (2001) Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochem Biophys Res Commun 283: 1061–8.

    PubMed  CAS  Google Scholar 

  • Morali, O. G., Delmas, V., Moore, R., Jeanney, C., Thiery, J. P. and Larue, L. (2001) IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene 20: 4942–50.

    PubMed  CAS  Google Scholar 

  • Muise-Helmericks, R. C., Grimes, H. L., Bellacosa, A., Malstrom, S. E., Tsichlis, P. N. and Rosen, N. (1998) Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 273: 29864–72.

    PubMed  CAS  Google Scholar 

  • Novak, A. and Dedhar, S. (1999) Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci 56: 523–37.

    PubMed  CAS  Google Scholar 

  • Pacifico, F. and Leonardi, A. (2006) NF-kappaB in solid tumors. Biochem Pharmacol 72: 1142–52.

    PubMed  CAS  Google Scholar 

  • Palmer, H. G., Larriba, M. J., Garcia, J. M., Ordonez-Moran, P., Pena, C., Peiro, S., Puig, I., Rodriguez, R., de la Fuente, R., Bernad, A., Pollan, M., Bonilla, F., Gamallo, C., de Herreros, A. G. and Munoz, A. (2004) The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med 10: 917–19.

    PubMed  CAS  Google Scholar 

  • Park, B. K., Zeng, X. and Glazer, R. I. (2001) Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 61: 7647–53.

    PubMed  CAS  Google Scholar 

  • Peng, L., Jin, G., Wang, L., Guo, J., Meng, L. and Shou, C. (2006) Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3. Biochem Biophys Res Commun 342: 179–83.

    PubMed  CAS  Google Scholar 

  • Plas, D. R., Rathmell, J. C. and Thompson, C. B. (2002) Homeostatic control of lymphocyte survival: Potential origins and implications. Nat Immunol 3: 515–21.

    PubMed  CAS  Google Scholar 

  • Polato, F., Codegoni, A., Fruscio, R., Perego, P., Mangioni, C., Saha, S., Bardelli, A. and Broggini, M. (2005) PRL-3 phosphatase is implicated in ovarian cancer growth. Clin Cancer Res 11: 6835–9.

    PubMed  CAS  Google Scholar 

  • Potter, C. J., Pedraza, L. G. and Xu, T. (2002) AKT regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4: 658–65.

    PubMed  CAS  Google Scholar 

  • Rodrigo, I., Cato, A. C. and Cano, A. (1999) Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 248: 358–71.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D. and Downward, J. (1996) Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. Embo J 15: 2442–51.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, R. G. and Roberts, C. T. (1999). The IGF system: Molecular Biology, Physiology, and Clincial Applications (Contemporary Endocrinology). Humana Press, Towanda, NJ.

    Google Scholar 

  • Ruggero, D. and Pandolfi, P. P. (2003) Does the ribosome translate cancer? Nat Rev Cancer 3: 179–92.

    PubMed  CAS  Google Scholar 

  • Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., Romans, K. E., Choti, M. A., Lengauer, C., Kinzler, K. W. and Vogelstein, B. (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294: 1343–6.

    PubMed  CAS  Google Scholar 

  • Schlessinger, J. (2000) Cell signaling by receptor tyrosine kinases. Cell 103: 211–25.

    PubMed  CAS  Google Scholar 

  • Shepherd, T. and Hassell, J. A. (2001) Role of Ets transcription factors in mammary gland development and oncogenesis. J Mammary Gland Biol Neoplasia 6: 129–40.

    PubMed  CAS  Google Scholar 

  • Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R. and Ben-Ze’ev, A. (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96: 5522–7.

    PubMed  CAS  Google Scholar 

  • Smith, J. L., Schaffner, A. E., Hofmeister, J. K., Hartman, M., Wei, G., Forsthoefel, D., Hume, D. A. and Ostrowski, M. C. (2000) ets-2 is a target for an akt (Protein kinase B)/jun N-terminal kinase signaling pathway in macrophages of motheaten-viable mutant mice. Mol Cell Biol 20: 8026–34.

    PubMed  CAS  Google Scholar 

  • Stambolic, V., Suzuki, A., de la Pompa, J. L., Brothers, G. M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J. M., Siderovski, D. P. and Mak, T. W. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39.

    PubMed  CAS  Google Scholar 

  • Sun, H., Lesche, R., Li, D. M., Liliental, J., Zhang, H., Gao, J., Gavrilova, N., Mueller, B., Liu, X. and Wu, H. (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 96: 6199–204.

    PubMed  CAS  Google Scholar 

  • Suriano, G., Oliveira, C., Ferreira, P., Machado, J. C., Bordin, M. C., De Wever, O., Bruyneel, E. A., Moguilevsky, N., Grehan, N., Porter, T. R., Richards, F. M., Hruban, R. H., Roviello, F., Huntsman, D., Mareel, M., Carneiro, F., Caldas, C. and Seruca, R. (2003) Identification of CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands. Hum Mol Genet 12: 575–82.

    PubMed  CAS  Google Scholar 

  • Takeda, K., Takemoto, C., Kobayashi, I., Watanabe, A., Nobukuni, Y., Fisher, D. E. and Tachibana, M. (2000) Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum Mol Genet 9: 125–32.

    PubMed  CAS  Google Scholar 

  • Tamura, M., Gu, J., Matsumoto, K., Aota, S., Parsons, R. and Yamada, K. M. (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280: 1614–17.

    PubMed  CAS  Google Scholar 

  • Tang, E. D., Nunez, G., Barr, F. G. and Guan, K. L. (1999) Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274: 16741–6.

    PubMed  CAS  Google Scholar 

  • Tang, Q. Q., Otto, T. C. and Lane, M. D. (2003) Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A 100: 44–9.

    PubMed  CAS  Google Scholar 

  • Testa, J. R. and Bellacosa, A. (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98: 10983–5.

    PubMed  CAS  Google Scholar 

  • Thiery, J. P. and Morgan, M. (2004) Breast cancer progression with a Twist. Nat Med 10: 777–8.

    PubMed  CAS  Google Scholar 

  • Trencia, A., Perfetti, A., Cassese, A., Vigliotta, G., Miele, C., Oriente, F., Santopietro, S., Giacco, F., Condorelli, G., Formisano, P. and Beguinot, F. (2003) Protein kinase B/AKT binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol Cell Biol 23: 4511–21.

    PubMed  CAS  Google Scholar 

  • Ullrich, A. and Schlessinger, J. (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–12.

    PubMed  CAS  Google Scholar 

  • Van de Putte, T., Maruhashi, M., Francis, A., Nelles, L., Kondoh, H., Huylebroeck, D. and Higashi, Y. (2003) Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 72: 465–70.

    PubMed  Google Scholar 

  • Velculescu VE (2008) Defining the blueprint of the cancer genome. Carcinogenesis 29:1087–91.

    PubMed  CAS  Google Scholar 

  • Vleminckx, K., Vakaet, L., Jr., Mareel, M., Fiers, W. and van Roy, F. (1991) Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–19.

    PubMed  CAS  Google Scholar 

  • Wakamatsu, N., Yamada, Y., Yamada, K., Ono, T., Nomura, N., Taniguchi, H., Kitoh, H., Mutoh, N., Yamanaka, T., Mushiake, K., Kato, K., Sonta, S. and Nagaya, M. (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27: 369–70.

    PubMed  CAS  Google Scholar 

  • Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P. and Zeng, Q. (2007a) PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial–mesenchymal transition. Cancer Res 67: 2922–6.

    PubMed  CAS  Google Scholar 

  • Wang, X., Zheng, M., Liu, G., Xia, W., McKeown-Longo, P. J., Hung, M. C. and Zhao, J. (2007b) Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res 67: 7184–93.

    PubMed  CAS  Google Scholar 

  • Wu, X., Obata, T., Khan, Q., Highshaw, R. A., De Vere White, R. and Sweeney, C. (2004) The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. BJU Int 93: 143–50.

    PubMed  CAS  Google Scholar 

  • Yamada, K., Yamada, Y., Nomura, N., Miura, K., Wakako, R., Hayakawa, C., Matsumoto, A., Kumagai, T., Yoshimura, I., Miyazaki, S., Kato, K., Sonta, S., Ono, H., Yamanaka, T., Nagaya, M. and Wakamatsu, N. (2001) Nonsense and frameshift mutations in ZFHX1B, encoding Smad-interacting protein 1, cause a complex developmental disorder with a great variety of clinical features. Am J Hum Genet 69: 1178–85.

    PubMed  CAS  Google Scholar 

  • Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J. and Nusse, R. (1995) The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev 9: 1087–97.

    PubMed  CAS  Google Scholar 

  • Yang, Z., Rayala, S., Nguyen, D., Vadlamudi, R. K., Chen, S. and Kumar, R. (2005) Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Res 65: 3179–84.

    PubMed  CAS  Google Scholar 

  • Yost, C., Torres, M., Miller, J. R., Huang, E., Kimelman, D. and Moon, R. T. (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10: 1443–54.

    PubMed  CAS  Google Scholar 

  • Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., Pallen, C. J., Manser, E. and Hong, W. (2003) PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res 63: 2716–22.

    PubMed  CAS  Google Scholar 

  • Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M. and Hung, M. C. (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6: 931–40.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff at the Bellacosa and Larue laboratories for constructive discussions and rigorous dedication to this field of research. We apologize to colleagues whose work is not cited – despite its value – due to space constraints. This work was supported by NIH grants CA78412, CA105008, and CA06927. Additional support was provided by an appropriation from the Commonwealth of Pennsylvania to the Fox Chase Cancer Center. The Ligue Contre le Cancer – comité de l’Oise, INCa, cancéropole IdF and Institut Curie also provided support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bellacosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bellacosa, A., Larue, L. (2010). PI3K/AKT Pathway and the Epithelial-Mesenchymal Transition. In: Thomas-Tikhonenko, A. (eds) Cancer Genome and Tumor Microenvironment. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0711-0_2

Download citation

Publish with us

Policies and ethics