Advertisement

Topological Analysis of DNA-Protein Complexes

  • Soojeong Kim
  • Isabel K. Darcy
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 150)

Abstract

A tangle consists of strings properly embedded in a 3-dimensional ball. Tangles have been used to model protein-bound DNA. The protein is represented by the 3D ball and the protein-bound DNA is represented by the strings embedded in the 3D ball. We review tangle analysis of protein-DNA complexes involving three or four segments of DNA.

Keywords

Site-specific recombination difference topology tangle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.D. Bates and A. Maxwell. DNA Topology. IRL Press, Oxford, 1993.Google Scholar
  2. [2]
    W.R. Bauer, F.H.C. Crick, and J.H. White. Supercoiled DNA. Scientific American, 243: 118–133, 1980.Google Scholar
  3. [3]
    J.H. Conway. An enumeration of knots and links and some of their related properties. Computational Problems in Abstract Algebra (John Leech, ed.) Pergamon Press, Oxford and New York, 1969.Google Scholar
  4. [4]
    I. Darcy. Biological distances on DNA knots and links: Applications to Xer recombination, Journal of Knot Theory and its Ramifications 10: 269–294, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    I.K. Darcy, A. Bhutra, J. Chang, N. Druivenga, C. McKinney, R.K. Medikonduri, S. Mills, J. Navarra Madsen, A. Ponnusamy, J. Sweet, and T. Thompson. Coloring the Mutranspososome. BMC Bioinformatics, 7(435), 2006.Google Scholar
  6. [6]
    I.K. Darcy, J. Luecke, and M. Vazquez. Tangle analysis of difference topology experiments: Applications to a Mu protein-DNA complex. Preprint.Google Scholar
  7. [7]
    F.B. Dean, A. Stasiak, T. Koller, and N.R. Cozzarelli. Duplex DNA knots produced by Escherichia Coli topoisomerase I. I. Biol. Chem., 260: 4795–4983, 1985.Google Scholar
  8. [8]
    C. Ernst and D. W. Sumners. A calculus for rational tangles: Applications to DNA recombination. Math. Proc. Camb. Phil. Soc., 108: 489–515, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Ernst and D. W. Sumners. Solving tangle equations arising in a DNA recombination model. Math. Proc. Camb. Phil. Soc., 126: 23–36, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    R. Harshey and M. Jayaram. The Mu transpososome through a topological lens. Crit. Rev. Biochem. Mol. Biol., 41(6): 387–405, 2006.CrossRefGoogle Scholar
  11. [11]
    M. Jayaram and R. Harshey. Difference topology: Analysis of high-order DNA-protein assemblies. Included in this volume, Mathematics of DNA Structure, Function, and Interactions edited by Craig John Benham, Stephen Harvey, Wilma K. Olson, De Witt L. Sumners, and David Swigon,Springer Science + Business Media, LLC, New York, 2009. Preprint.Google Scholar
  12. [12]
    S. Kim and I.K. Darcy. A 4-string tangle analysis of DNA-protein complexes based on difference topology. Preprint.Google Scholar
  13. [13]
    K. Kimura, V.V Rybenkov, N.J. Crisona, T. Hirano, and N.R. Cozzarelli. 13s condensin actively reconfigures DNA by introducing global positive writhe: Implications for chromosome condensation. Cell, 98(2): 239–248, 1999.CrossRefGoogle Scholar
  14. [14]
    S. Pathania, M. Jayaram, and R. Harshey. A unique right end-enhancer complex precedes synapsis of Mu ends: The enhancer is sequestered within the transpososome throughout transposition. EMBO J., 22(14): 3725–36, 2003.CrossRefGoogle Scholar
  15. [15]
    S. Pathania, M. Jayaram, and R.M. Harshey. Path of DNA within the Mu transpososome. transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils. Cell, 109(4): 425–436, 2002.CrossRefGoogle Scholar
  16. [16]
    S.J. Spengler, A. Stasiak, and N.R. Cozzarelli. The stereostructure of knots and catenanes produced by phage λ integrative recombination: Implications for mechanism and DNA structure. Cell, 42: 325–334, 1985.CrossRefGoogle Scholar
  17. [17]
    D.W. Sumners, C. Ernst, N.R. Cozzarelli, and S.J. Spengler Mathematical analysis of the mechanisms of DNA recombination using tangles, Quarterly Reviews of Biophysics 28, 1995.Google Scholar
  18. [18]
    A.A. Vetcher, A.Y. Lushnikov, J. Navarra-madsen, R.G. Scharein, Y.L. Lyubchenko, I.K. Darcy, and S.D. Levene. DNA topology and geometry in Flp and Cre recombination. J. Mol. Biol., 357: 1089–1104, 2006.CrossRefGoogle Scholar
  19. [19]
    S.A. Wasserman and N.R. Cozzarelli. Determination of the stereostructure of the product of Tn3 resolvase by a general method. Proc. Nat. Acad. Sci. U.S.A., 82: 1079–1083, 1985.CrossRefGoogle Scholar
  20. [20]
    S.A. Wasserman and N.R. Cozzarelli. Biochemical topology: Applications to DNA recombination and replication. Science, 232: 951–960, 1986.CrossRefGoogle Scholar
  21. [21]
    S.A. Wasserman, J.M. Dungan, and N.R. Cozzarelli. Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science, 229: 171–174, 1985.CrossRefGoogle Scholar
  22. [22]
    Z. Yin, M. Jayaram, S. Pathania, and R. Harshey. The Mu transposase interwraps distant DNA sites within a functional transpososome in the absence of DNA supercoiling. J. Biol. Chem., 280(7): 6149–56, 2005.CrossRefGoogle Scholar
  23. [23]
    Z. Yin, A. Suzuki, Z. Lou, M. Jayaram, and R.M. Harshey. Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome. J. Mol. Biol., 372: 382–396, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Soojeong Kim
    • 1
  • Isabel K. Darcy
    • 1
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations