Skip to main content

Useful Intrusions of DNA Topology Into Experiments on Protein-DNA Geometry

  • Conference paper
  • First Online:
Mathematics of DNA Structure, Function and Interactions

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 150))

  • 1815 Accesses

Abstract

Small DNA minicircles are useful for characterizing protein-induced DNA bending and twisting, because obfuscating effects of DNA flexibility are less important than in larger DNA. Our work on DNA geometry and flexibility in protein-DNA complexes has employed T4 ligase-mediated DNA cyclization to make minicircles. Experiments can be carried out as forward ligations, or equivalently protein binding to minicircles can be characterized. In every case we have studied, topological characterization of minicircle synthesis or properties has led to unexpected geometric or mechanistic conclusions. Examples concerning the catabolite activator protein, E. coli RNA polymerase, the Lac repressor, and the TATA-box binding protein are discussed. Topological results have the experimental advantages that they are qualitatively unmistakable and internally controlled: new topoisomers are readily identified even in small amounts, and they are formed in the same reaction as relaxed products. Simulations of topoisomer distributions are quite sensitive to geometrical and flexibility parameters, which helps set stringent constraints on possible structural/dynamic models. However, the disadvantage of a topological measurement is it is consistent with any combination of writhe and twist that sums to the observed ΔLK, so it is difficult to be confident that a structural/dynamic model is a unique solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Shore, J. Langowski, and R.L. Baldwin, DNA flexibility studied by covalent closure of short fragments into circles, Proc. Natl. Acad. Sci. USA, 78: 4833–4837, 1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. P.J. Flory, U.W. Suter, and M. Mutter, Macrocyclization Equilibria. I. Theory, J. Am. Chem. Soc., 98: 5733–5739, 1976.

    Article  CAS  Google Scholar 

  3. S.D. Levene and D.M. Crothers, Ring Closure Probabilities for DNA Fragments by Monte Carlo Simulation, J. Mol. Biol., 189: 61–72, 1986.

    Article  CAS  PubMed  Google Scholar 

  4. J.D. Kahn and D.M. Crothers, Measurement of the DNA bend angle induced by the catabolite activator protein using Monte Carlo simulation of cyclization kinetics, J. Mol. Biol., 276: 287–309, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Zhang and D.M. Crothers, Statistical mechanics of sequence-dependent circular DNA and its application for DNA cyclization, Biophys. J., 84: 136–153, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R.S. Manning, J.H. Maddocks, and J.D. Kahn, A continuum rod model of sequence- dependent DNA structure, J. Chem. Phys., 105: 5626–5646, 1996.

    Article  CAS  Google Scholar 

  7. S.S. Zinkel and D.M. Crothers, DNA bend direction by phase sensitive detection, Nature, 328: 178–181, 1987.

    Article  CAS  PubMed  Google Scholar 

  8. J.D. Kahn and D.M. Crothers, Protein-induced bending and DNA cyclization, Proc. Natl. Acad. Sci. USA, 89: 6343–6347, 1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N.A. Davis, S.S. Majee, and J.D. Kahn, TATA box DNA deformation with and without the TATA box-binding protein, J. Mol. Biol., 291: 249–265, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. M. Brenowitz, A. Pickar, and E. Jamison, Stability of a Lac repressor mediated “looped complex”, Biochemistry, 30: 5986–5998, 1991.

    Article  CAS  PubMed  Google Scholar 

  11. J.R. Jenssen, The geometry and topology of DNA in binary and ternary complexes with E. coli RNA polymerase, Dissertation, University of Maryland, College Park, MD, 2001

    Google Scholar 

  12. J.D. Kahn and D.M. Crothers, DNA Bending in Transcription Initiation, Cold Spring Harbor Symp. Quant. Biol., 58: 115–122, 1993.

    Article  CAS  PubMed  Google Scholar 

  13. J.R. Levin, B. Krummel, and M.J. Chamberlin, Isolation and Properties of Transcribing Ternary Complexes of Escherichia coli RNA Polymerase Positioned at a Single Template Base, J. Mol. Biol., 196: 85–100, 1987.

    Article  CAS  PubMed  Google Scholar 

  14. S.C. Schultz, G.C. Shields, and T.A. Steitz, Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees, Science, 253: 1001–1007, 1991.

    Article  CAS  PubMed  Google Scholar 

  15. D.M. Crothers, J. Drak, J.D. Kahn, and S.D. Levene, DNA Bending, Flexibility, and Helical Repeat by Cyclization Kinetics, Methods Enzymol., 212B: 1–29, 1992.

    Google Scholar 

  16. Y. Zhang, Z. Xi, R.S. Hegde, Z. Shakked, and D.M. Crothers, Predicting indirect readout effects in protein-DNA interactions, Proc. Natl. Acad. Sci. USA, 101: 8337–8341, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T.E. Cloutier and J. Widom, DNA twisting flexibility and the formation of sharply looped protein-DNA complexes, Proc. Natl. Acad. Sci. USA, 102: 3645–3650, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Z. Bryant, M.D. Stone, J. Gore, S.B. Smith, N.R. Cozzarelli, and C. Bustamante, Structural transitions and elasticity from torque measurements on DNA, Nature, 424: 338–341, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. N.A. Becker, J.D. Kahn, and L.J. Maher, 3rd, Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli, Nucleic Acids Res., 35: 3988–4000, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J.L. Kim and S.K. Burley, 1.9 Å resolution refined structure of TBP recognizing the minor groove of TATAAAAG, Nature Struct. Biol., 1: 638–653, 1994.

    Article  CAS  PubMed  Google Scholar 

  21. M. Roychoudhury, A. Sitlani, J. Lapham, and D.M. Crothers, Global structure and mechanical properties of a 10-bp nucleosome positioning motif, Proc. Natl. Acad. Sci. USA, 97: 13608–13613, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Thästrom, P.T. Lowary, H.R. Widlund, H. Cao, M. Kubista, and J. Widom, Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences, J. Mol. Biol., 288: 213–229, 1999.

    Article  PubMed  Google Scholar 

  23. Y. Lorch and R.D. Kornberg, Near-Zero Linking Difference upon Transcription Factor IID Binding to Promoter DNA, Mol. Cell. Biol., 13: 1872–1875, 1993.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. J.D. Kahn, Topological effects of the TATA box binding protein on minicircle DNA and a possible thermodynamic linkage to chromatin remodeling, Biochemistry, 39: 3520–3524, 2000.

    Article  CAS  PubMed  Google Scholar 

  25. K.M. Parkhurst, R.M. Richards, M. Brenowitz, and L.J. Parkhurst, Intermediate Species Possessing Bent DNA are Present Along the Pathway to Formation of a Final TBP-TATA Complex, J. Mol. Biol., 289: 1327–1341, 1999.

    Article  CAS  PubMed  Google Scholar 

  26. S.F. Tolic-Norrelykke, M.B. Rasmussen, F.S. Pavone, K. Berg-Sorensen, and L.B. Oddershede, Stepwise bending of DNA by a single TATA-box binding protein, Biophys. J., 90: 3694–3703, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. F. Kouzine, S. Sanford, Z. Elisha-Feil, and D. Levens, The functional response of upstream DNA to dynamic supercoiling in vivo, Nat. Struct. Mol. Biol., 15: 146–154, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. M. Amouyal and H. Buc, Topological Unwinding of Strong and Weak Promoters by RNA Polymerase: A Comparison Between the lac Wild-type and the UV5 Sites of Escherichia coli, J. Mol. Biol., 195: 795–808, 1987.

    Article  CAS  PubMed  Google Scholar 

  29. H.B. Gamper and J.E. Hearst, A Topological Model for Transcription Based on Unwinding Angle Analysis of E. coli RNA Polymerase Binary, Initiation and Ternary Complexes, Cell, 29: 81–90, 1982.

    Article  CAS  PubMed  Google Scholar 

  30. A. Revyakin, C. Liu, R.H. Ebright, and T.R. Strick, Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching, Science, 314: 1139–1143, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K.S. Murakami, S. Masuda, E.A. Campbell, O. Muzzin, and S.A. Darst, Structural basis of transcription initiation: an RNA polymerase holoenzyme- DNA complex, Science, 296: 1285–1290, 2002.

    Article  CAS  PubMed  Google Scholar 

  32. D.G. Vassylyev, M.N. Vassylyeva, A. Perederina, T.H. Tahirov, and I. Artsimovitch, Structural basis for transcription elongation by bacterial RNA polymerase, Nature, 448: 157–162, 2007.

    Article  CAS  PubMed  Google Scholar 

  33. G.Q. Tang and S.S. Patel, T7 RNA polymerase-induced bending of promoter DNA is coupled to DNA opening, Biochemistry, 45: 4936–4946, 2006.

    Article  CAS  PubMed  Google Scholar 

  34. J. Müller, S. Oehler, and B. Müller-Hill, Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator, J. Mol. Biol., 257: 21–29, 1996.

    Article  PubMed  Google Scholar 

  35. R.A. Mehta and J.D. Kahn, Designed hyperstable Lac repressor-DNA loop topologies suggest alternative loop geometries, J. Mol. Biol., 294: 67–77, 1999.

    Article  CAS  PubMed  Google Scholar 

  36. M. Lewis, G. Chang, N.C. Horton, M.A. Kercher, H.C. Pace, M.A. Schumacher, R.G. Brennan, and P. Lu, Crystal structure of the lactose operon repressor and its complexes with DNA and inducer, Science, 271: 1247–1254, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. A.M. Friedman, T.O. Fischmann, and T.A. Steitz, Crystal structure of lacrepressor core tetramer and its implications for DNA looping, Science, 268: 1721–1727, 1995.

    Article  CAS  PubMed  Google Scholar 

  38. L.M. Edelman, R. Cheong, and J.D. Kahn, Fluorescence Resonance Energy Transfer over ˜ 130 Basepairs in Hyperstable Lac Repressor-DNA Loops, Biophys. J., 84: 1131–1145, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Semsey, K. Virnik, and S. Adhya, A gamut of loops: meandering DNA, Trends Biochem. Sci., 30: 334–341, 2005.

    Article  CAS  PubMed  Google Scholar 

  40. S. Goyal, T. Lillian, S. Blumberg, J.C. Meiners, E. Meyhofer, and N.C. Perkins, Intrinsic curvature of DNA influences LacR-mediated looping, Bio-phys. J., 93: 4342–4359, 2007.

    CAS  Google Scholar 

  41. M.A. Morgan, K. Okamoto, J.D. Kahn, and D.S. English, Single-molecule spectroscopic determination of lac repressor-DNA loop conformation, Bio- phys. J., 89: 2588–2596, 2005.

    CAS  Google Scholar 

  42. J.D. Kahn, R. Cheong, R.A. Mehta, L.M. Edelman, and M.A. Morgan, Flexibility and Control of Protein-DNA Loops, Biophysical Reviews and Letters (BRL), 1: 327–341, 2006.

    Article  CAS  Google Scholar 

  43. M. Taraban, H. Zhan, A.E. Whitten, D.B. Langley, K.S. Matthews, L. Swint-Kruse, and J. Trewhella, Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein, J. Mol. Biol., 376: 466–481, 2008.

    Article  CAS  PubMed  Google Scholar 

  44. E. Villa, A. Balaeff, and K. Schulten, Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation, Proc. Natl. Acad. Sci. USA, 102: 6783–6788, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D. Swigon, B.D. Coleman, and W.K. Olson, Modeling the Lac repressor- operator assembly: The influence of DNA looping on Lac repressor conformation, Proc. Natl. Acad. Sci. USA, 103: 9879–9884, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Y. Zhang, A.E. McEwen, D.M. Crothers, and S.D. Levene, Statistical- mechanical theory of DNA looping, Biophys. J., 90: 1903–1912, 2006.

    Article  CAS  PubMed  Google Scholar 

  47. Y. Zhang, A.E. McEwen, D.M. Crothers, and S.D. Levene, Analysis of In- Vivo Lac R-Mediated Gene Repression Based on the Mechanics of DNA Looping, PLoS ONE, 1: e136, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. S. Goyal, N.C. Perkins, and C.L. Lee, Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables, J. Comp. Phys., 209: 371–389, 2005.

    Article  CAS  Google Scholar 

  49. L. Bintu, N.E. Buchler, H.G. Garcia, U. Gerland, T. Hwa, J. Kondev, T. Kuhlman, and R. Phillips, Transcriptional regulation by the numbers: applications, Curr. Opin. Genet. Dev., 15: 125–135, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. L. Saiz and J.M. Vilar, Multilevel deconstruction of the in vivo behavior of looped DNA-protein complexes, PLoS ONE, 2: e355, 2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. A. Travers, DNA topology: Dynamic DNA looping, Current Biology, 16: R838–R840, 2006.

    Article  CAS  PubMed  Google Scholar 

  52. N.A. Becker, J.D. Kahn, and L.J. Maher, 3rd, Bacterial repression loops require enhanced DNA flexibility, J. Mol. Biol., 349: 716–730, 2005.

    Article  CAS  PubMed  Google Scholar 

  53. Y. Zhang and D.M. Crothers, High-throughput approach for detection of DNA bending and flexibility based on cyclization, Proc. Natl. Acad. Sci. USA, 100: 3161–3166, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason D. Kahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kahn, J.D., Jenssen, J.R., Vittal, V. (2009). Useful Intrusions of DNA Topology Into Experiments on Protein-DNA Geometry. In: Benham, C., Harvey, S., Olson, W., Sumners, D., Swigon, D. (eds) Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and its Applications, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0670-0_8

Download citation

Publish with us

Policies and ethics