Skip to main content

Conformational Statistics of Dna and Diffusion Equations on The Euclidean Group

  • Conference paper
  • First Online:
Mathematics of DNA Structure, Function and Interactions

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 150))

  • 1813 Accesses

Abstract

Semi-flexible (or wormlike) polymer chains such as DNA possess bending and torsional stiffness. Given a semi-flexible polymer structure that is subjected to Brownian motion forcing, the distribution of relative positions and orientations visited by the distal end of the chain relative to its proximal end provides important information about the molecule that can be linked to experimental observations. This probability density of end-to-end position and orientation can be obtained by solving a Fokker-Planck equation that describes a diffusion process on the Euclidean motion group. In this paper, methods for solving this diffusion equation are reviewed. The techniques presented are valid for chains of up to several persistence lengths in open environments, where the effects of excluded volume can be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antman S.S., Nonlinear Problems of Elasticity, Springer-Verlag, New York, 1995.

    Google Scholar 

  2. Balaeff A., Mahadevan L., and Schulten K., “Modeling DNA loops using the theory of elasticity,” E-print archive arXiv.org (http://arxiv.org/abs/physics/0301006, 2003).

  3. Balaeff A., Mahadevan L., and Schulten K., “Structural basis for cooperative DNA binding by CAP and Lac Repressor,” Structure, 12: 123–132, 2004.

    CAS  PubMed  Google Scholar 

  4. Baumann C.G., Smith S.B., Bloomfield V.A., and Bustamante C. “Ionic Effects on the Elasticity of Single DNA Molecules,” Proceedings of the National Academy of Sciences of the USA, 94(12): 6185–6190, 1997.

    CAS  PubMed  Google Scholar 

  5. Bawendi M.G. and Karl F.F., “A Wiener Integral Model for Stiff Polymer Chains,” Journal of Chemical Physics 83(5): 2491–2496, Sep. 1, 1985.

    CAS  Google Scholar 

  6. Benham C.J., “Elastic Model of the Large-Scale Structure of Duplex DNA,” Biopolymers, 18(3): 609–23, 1979.

    CAS  PubMed  Google Scholar 

  7. Benham C.J. and Mielke S.P., “DNA mechanics,” Annual Review of Biomedical Engineering, 7: 21–53, 2005

    CAS  PubMed  Google Scholar 

  8. Bhattacharjee S.M. and Muthukumar M., “Statistical Mechanics of Solutions of Semiflexible Chains: A Pathe Integral Formulation,” Journal of Chemical Physics, 86(1): 411–418, Jan. 1, 1987.

    CAS  Google Scholar 

  9. Buchiat C., Wang M.D., Allemand J.F., Strick T., Block S.M., and Croquette V., “Estimating the Persistence Length of a Worm-like ChainMolecule from Force-Extension Measurements,” Biophysical Journal, 76: 409–413, Jan. 1999.

    Google Scholar 

  10. Chirikjian G.S. and Wang Y.F., “Conformational Statistics of Stiff Macromolecules as Solutions to PDEs on the Rotation and Motion Groups,” Physical Review E, 62(1): 880–892, July 2000.

    CAS  Google Scholar 

  11. Chirikjian G.S. and Kyatkin A.B., “An Operational Calculus for the Euclidean Motion Group with Applications in Robotics and Polymer Science,” J. Fourier Analysis and Applications, 6(6): 583–606, December 2000.

    Google Scholar 

  12. Chirikjian G.S. and Kyatkin A.B., Engineering Applications of Noncommutative Harmonic Analysis, CRC Press, Boca Raton, FL 2001.

    Google Scholar 

  13. Chirikjian G.S., Stochastic Models, Information Theory, and Lie Groups, Birkhäuser, 2009.

    Google Scholar 

  14. Chirikjian G.S., “The Stochastic Elastica and Excluded-Volume Perturbations of DNA Conformational Ensembles,” unpublished manuscript, 2008.

    Google Scholar 

  15. Chirikjian G.S., “Conformational Statistics of Macromolecules Using Generalized Convolution,” Computational and Theoretical Polymer Science, 11: 143–153, February 2001.

    CAS  Google Scholar 

  16. Cluzel P., Lebrun A., Christoph H., Lavery R., Viovy J.L., Chatenay D., and Caron F., “DNA: An Extensible Molecule,” Science, 271: 792, Feb 9, 1996.

    CAS  PubMed  Google Scholar 

  17. Coleman B.D., Dill E.H., Lembo M., Lu Z., and Tobias I., “On the dynamics of rods in the theory of Kirchhoff and Clebsch,” Arch. Rational Mech. Anal., 121: 339–359, 1993.

    Google Scholar 

  18. Coleman B.D., Tobias I., and Swigon D., “Theory of the influence of end conditions on self-contact in DNA loops,” J. Chem. Phys., 103: 9101–9109, 1995.

    CAS  Google Scholar 

  19. Coleman B.D., Swigon D., and Tobias I., “Elastic stability of DNA configurations. II: Supercoiled plasmides with self-contact,” Phys. Rev. E, 61: 759–770, 2000.

    CAS  Google Scholar 

  20. Coleman B.D., Olson W.K., and Swigon D., “Theory of sequence-dependent DNA elasticity,” J. Chem. Phys., 118: 7127–7140, 2003.

    CAS  Google Scholar 

  21. Daniels H.E., ‘The Statistical Theory of Stiff Chains,” Proc. Roy. Soc. (Edinburgh), A63: 290–311, 1952.

    Google Scholar 

  22. des Cloizeaux J. and Jannink G., Polymers in Solution: Their Modelling and Structure, Clarendon Press, Oxford, 1990.

    Google Scholar 

  23. de Gennes P.G., Scaling Concepts in Polymer Physics, Cornell University Press, 1979.

    Google Scholar 

  24. Dichmann D.J., Li Y., and Maddocks J.H., “Hamiltonian Formulations and Symmetries in Rod Mechanics,” in Mathematical Approaches to Biomolecular Structure and Dynamics, Mesirov J.P., Schulten K., and Summers D., eds., pp. 71–113, Springer-Verlag, New York, 1995.

    Google Scholar 

  25. Doi M. and Edwards S.F., The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986.

    Google Scholar 

  26. Fain B. and Rudnick J., “Conformations of closed DNA,” Phys. Rev. E, 60: 7239–7252, 1999.

    CAS  Google Scholar 

  27. Fain B. and Rudnick J., Östlund, S., “Conformations of linear DNA,” Phys. Rev. E, 55: 7364–7368, 1997.

    CAS  Google Scholar 

  28. Flory P.J., Statistical Mechanics of Chain Molecules, Wiley-Interscience, New York, 1969.

    Google Scholar 

  29. Gobush W., Yamakawa H., Stockmayer W.H., and Magee W.S., ”Statistical Mechanics of Wormlike Chains. I. Asymptotic Behavior,” The Journal of Chemical Physics, 57(7): 2839–2843, Oct. 1972.

    CAS  Google Scholar 

  30. Gonzalez O. and Maddocks J.H., “Extracting parameters for base-pair level models of DNA from molecular dynamics simulations,” Theor. Chem. Acc., 106: 76–82, 2001.

    CAS  Google Scholar 

  31. Goyal S., Perkins N.C., and Lee C.L., “Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables,” J. Comp. Phys., 209: 371–389, 2005.

    CAS  Google Scholar 

  32. Grosberg A.Yu. and Khokhlov A.R., Statistical Physics of Macromolecules, American Institute of Physics, New York, 1994.

    Google Scholar 

  33. Ha B.Y. and Thirumalai D., “Semiflexible Chains under Tension,” Journal of Chemical Physics, 106(8): 4243–4247, 1997.

    CAS  Google Scholar 

  34. Hagerman P.J., ”Analysis of the Ring-Closure Probabilities of Isotropic Wormlike Chains: Application to Duplex DNA,” Biopolymers, 24: 1881–1897, 1985.

    CAS  PubMed  Google Scholar 

  35. Hermans J.J. and Ullman R., “The Statistics of Stiff Chains, with Applications to Light Scattering,” Physica, 18(11): 951–971, 1952.

    CAS  Google Scholar 

  36. Horowitz D.S. and Wang J.C., ”Torsional Rigidity of DNA and Length Dependence of the Free Energy of DNA Supercoiling,” Journal of Molecular Biology, 173: 75–91, 1984.

    CAS  PubMed  Google Scholar 

  37. Kamein R.D., Lubensky T.C., Nelson P., and O’Hern C.S., “Direct Determination of DNA Twist-Stretch Coupling,” Europhysics Letters, 28(3): 237–242, Apr. 20, 1997.

    Google Scholar 

  38. Kholodenko A.L., “Statistical Mechanics of Semiflexible Polymers: Yesterday, Today and Tomorrow,” J. Chem. Soc. Farady Trans., 91(16): 2473–2482, 1995.

    CAS  Google Scholar 

  39. Kleinert H., Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, 2nd ed., World Scientific, Singapore, 1995.

    Google Scholar 

  40. Klenin K., Merlitz H., and Langowski J., ”A Brownian Dynamics Program for the Simulation of Linear and Circular DNA and Other Wormlike Chain Polyelectrolytes,” Biophysical Journal, 74: 780–788, Feb. 1998.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kratky O. and Porod G., “Röntgenuntersuchung Gelöster Fadenmoleküle,” Recueil des Travaux Chimiques des Pays-Bas, 68(12): 1106–1122, 1949.

    CAS  Google Scholar 

  42. Kroy K. and Frey E., “Force-Extension Relation and Plateau Modulus forWormlike Chains,” Physical Review Letters, 77(2): 306–309, 1996.

    CAS  PubMed  Google Scholar 

  43. Lagowski J.B., Noolandi J., and Nickel B., “Stiff Chain Model – functional Integral Approach,” Journal of Chemical Physics, 95(2): 1266–1269, 1991.

    CAS  Google Scholar 

  44. Levene S.D. and Crothers D.M., “Ring Closure Probabilities for DNA Fragments by Monte Carlo Simulation,” J. Mol. Biol., 189: 61–72, 1986.

    CAS  PubMed  Google Scholar 

  45. Liverpool T.B. and Edwards S.F., “Probability Distribution of Wormlike Polymer Loops,” Journal of Chemical Physics, 103(15): 6716–6719, Oct. 15, 1995.

    CAS  Google Scholar 

  46. Liverpool T.B., Golestanian R., and Kremer K., “Statistical Mechanics of Double-Stranded Semiflexible Polymers,” Physical Review Letters, 80(2): 405–408, 1998.

    CAS  Google Scholar 

  47. Love A.E.H., A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944.

    Google Scholar 

  48. Marko J.F. and Siggia E.D., “Bending and Twisting Elasticity of DNA,” Macromolecules, 1994, 27: 981–988.

    CAS  Google Scholar 

  49. Marko J.F., “DNA Under High Tension: Overstretching, Undertwisting, and Relaxation Dynamics,” Physical Review E, 57(2): 2134–2149, Feb. 1998.

    CAS  Google Scholar 

  50. Maroun R.C. and Olson W.K., “Base sequence effects in double-helical DNA. 2. Configurational statistics of rodlike chains,” Biopolymers, 27: 561–584, 1988.

    CAS  PubMed  Google Scholar 

  51. Matsutani S., “Statistical Mechanics of no-stretching elastica in three-dimensional space,” J. Geometry and Physics, 29: 243–259, 1999.

    Google Scholar 

  52. Miller W., “Some Applications of the Representation Theory of the Euclidean Group in Three-Space,” Commun. Pure App. Math., 17: 527–540, 1964.

    Google Scholar 

  53. Miyake A., “Stiff-Chain Statistics in Relation to the Brownian Process,” Journal of the Physical Society of Japan, 50(5): 1676–1682, May 1981.

    Google Scholar 

  54. Moroz J.D. and Nelson P., “Torsional directed walks, entropic elasticity, and DNA twist stiffness,” Proceedings of the National Academy of Sciences of the USA, 94(26): 14418–14422, 1997.

    CAS  PubMed  Google Scholar 

  55. Moroz J.D. and Nelson P., “Entropic elasticity of twist-storing polymers,” Macromolecules, 31(18): 6333–6347, 1998.

    CAS  Google Scholar 

  56. Norisuye T., Tsuboi A., and Teramoto A., “Remarks on Excluded-Volume Effects in Semiflexible Polymer Solutions,” Polymer Journal, 28(4): 357–361, 1996.

    CAS  Google Scholar 

  57. Odijk T., “Stiff Chains and Filaments under Tension,” Macromolecules, 28(20): 7016–7018, 1995.

    CAS  Google Scholar 

  58. Park W., Liu Y., Zhou Y., Moses M., and Chirikjian G.S., “Kinematic State Estimation and Motion Planning for Stochastic Nonholonomic Systems Using the Exponential Map,” Robotica, 26(4): 419–434. 2008.

    PubMed  PubMed Central  Google Scholar 

  59. Schiessel H., Rudnick J., Bruinsma R., and Gelbart W.M., “Organized condensation of worm-like chains,” Europhys. Lett., 51: 237–243, 2000.

    CAS  Google Scholar 

  60. Schmidt M. and Stockmayer W.H., “Quasi-Elastic Light Scattering by Semiflexible Chains,” Macromolecules, 17(4): 509–514, 1984.

    CAS  Google Scholar 

  61. Shäfer L., Excluded volume effects in polymer solutions, as explained by the renormalization group, Springer, New York : 1999.

    Google Scholar 

  62. Shi Y., He S., and Hearst J. E., ”Statistical mechanics of the extensible and shearable elastic rod and of DNA,” Journal of Chemical Physics, 105(2): 714–731, July 1996.

    CAS  Google Scholar 

  63. Shimada J. and Yamakawa H., ”Statistical Mechanics of DNA Topoisomers,” Journal of Molecular Biology, 184: 319–329, 1985.

    CAS  PubMed  Google Scholar 

  64. Shore D. and Baldwin R. L., ”Energetics of DNA Twisting,” Journal of Molecular Biology, 170: 957–981, 1983.

    CAS  PubMed  Google Scholar 

  65. Simo J.C. and Vu-Quoc L., “A three dimensional finite-strain rod model. Part II: Computational aspects,” Comput. Meth. Appl. Mech. Engr., 58: 79–116, 1986.

    Google Scholar 

  66. Smith S.B., Finzi L., and Bustamante C., “Direct Mechanical Measurements of the Elasticity of Single DNA-Molecules by Using Magnetic Beads,” Science, 258: 1122–1126, Nov. 13, 1992.

    CAS  PubMed  Google Scholar 

  67. Steigmann D.J. and Faulkner M.G., “variational theory for spatial rods,” Arch. Rational Mech. Anal., 133: 1–26, 1993.

    Google Scholar 

  68. Stepanow S., “Kramer Equation as a Model for Semiflexible Polymers,” Physical Review E, 54(3): R2209–R2211, 1996.

    CAS  Google Scholar 

  69. Strick T.R., Allemand J.F., Bensimon D., Bensimon A., and Croquette V., “The Elasticity of a Single Supercoiled DNA Molecule,” Science, 271: 1835– 1837, Mar. 29, 1996.

    CAS  PubMed  Google Scholar 

  70. Swigon D., Coleman B.D., and Tobias I., “The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in Mononucleosomes,” Biophys. J., 74: 2515–2530, 1998.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Thirumalai D. and Ha B.-Y., “Statistical Mechanics of Semiflexible Chains: A Mean Field Variational Approach,” pp. 1–35 in Theoretical and Mathematical Models in Polymer Research, A. Grosberg, ed., Academic Press, 1998.

    Google Scholar 

  72. Tobias I., Swigon D., and Coleman B.D., “Elastic stability of DNA configurations. I: General theory,” Phys. Rev. E, 61: 747–758, 2000.

    CAS  Google Scholar 

  73. Vilenkin N.J., Akim E.L., and Levin A.A., The Matrix Elements of Irreducible Unitary Representations of the Group of Euclidean Three-Dimensional Space Motions and Their Properties, Dokl. Akad. Nauk SSSR 112: 987–989, 1957 (in Russian); also Vilenkin N.J and Klimyk A.U., Representation of Lie Groups and Special Functions, Vols. 1–3, Kluwer Academic Publ., Dordrecht, Holland 1991.

    Google Scholar 

  74. Vologodskii A.V., Anshelevich V.V., Lukashin A.V., and Frank-Kamenetskii M.D., ”Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix,” Nature, 280: 294–298, July 1979.

    CAS  PubMed  Google Scholar 

  75. Wang M.D., Yin H., Landick R., Gelles J., and Block. S.M., “Stretching DNA with Optical Tweezers,” Biophysical Journal, 72: 1335–1346, Mar. 1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wiggins P.A., Phillips R., and Nelson P.C., “Exact theory of kinkable elastic polymers,” E-print archive arXiv.org (arXiv:cond-mat/0409003 v1, Aug. 31, 2004).

    Google Scholar 

  77. Wilhelm J. and Frey E., “Radial Distribution Function of Semiflexible Polymers,” Physical Review Letters, 77(12): 2581–2584, Sept. 16, 1996.

    CAS  PubMed  Google Scholar 

  78. Winkler R.G., Harnau L., and Reineker P., “Distribution functions and dynamical properties of stiff macromolecules,” Macromolecular Theory and Simulation, 6: 1007–1035, 1997.

    CAS  Google Scholar 

  79. Winkler R.G., “Analytical Calculation of the Relaxation Dynamics of Partially Stretched Flexible Chain Molecules: Necessity of a Wormlike Chain Descrption,” Physical Review Letters, 82(9): 1843–1846, 1999.

    CAS  Google Scholar 

  80. Yamakawa H. and Stockmayer W.H., ”Statistical Mechanics of Wormlike Chains. II. Excluded Volume Effects”, Journal of Chemical Physics, 57(7): 2843–2854, October 1, 1972.

    CAS  Google Scholar 

  81. Yamakawa H., Helical Wormlike Chains in Polymer Solutions, Springer, 1997.

    Google Scholar 

  82. Zandi R. and Rudnick J., “Constrainst, histones, and 30-nm spiral,” Phys. Rev. E, 64, Art. No. 051918, 2001.

    Google Scholar 

  83. Zhao S.R., Sun C.P., and Zhang W.X., ”Statistics of wormlike chains. I. Properties of a Single Chain”, Journal of Chemical Physics, 106(6): 2520–2529, February 8, 1997.

    CAS  Google Scholar 

  84. Zhou Y. and Chirikjian G.S., “Conformational statistics of bent semiflexible polymers,” Journal of Chemical Physics, 119(9): 4962–4970, Sept. 1, 2003.

    CAS  Google Scholar 

  85. Zhou Y. and Chirikjian G.S., “Conformational Statistics of Semi-Flexible Macromolecular Chains with Internal Joints,” Macromolecules, 39(5): 1950–1960, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Chirikjian, G.S. (2009). Conformational Statistics of Dna and Diffusion Equations on The Euclidean Group. In: Benham, C., Harvey, S., Olson, W., Sumners, D., Swigon, D. (eds) Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and its Applications, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0670-0_3

Download citation

Publish with us

Policies and ethics