Advertisement

Mathematical Methods in Dna Topology: Applications to Chromosome Organization and Site-Specific Recombination

  • Javier ArsuagaEmail author
  • Yuanan Diao
  • Mariel Vazquez
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 150)

Abstract

In recent years, knot theory and low-dimensional topology have been effectively used to study the topology and geometry of DNA under different spatial constraints, and to solve the topological mechanisms of enzymes such as site-specific recombinases and topoisomerases. Through continuous collaboration and close interaction with experimental biologists, many problems approached and the solutions proposed remain relevant to the biological community, while being mathematically and computationally interesting. In this paper, we illustrate the use of mathematical and computational methods in a variety of DNA topology problems. This is by no means an exhaustive description of techniques and applications, but is rather intended to introduce the reader to the exciting applications of topology to the study of DNA. Many more examples will be found throughout this book.

Key words

DNA knots bacteriophage P4 DNA packing, random knots site-specific recombination Xer tangles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Alén, D.J. Sherratt, and S.D. Colloms, Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination., EMBO J. 16 (1997), pp. 5188–5197.CrossRefGoogle Scholar
  2. [2]
    J. Arsuaga, T. Blackstone, Y. Diao, E. Karadayi, and M. Saito, Linking of Uniform Random Polygons in Confined Spaces, J. Physics A 40 (2007), pp. 1925–1936.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    J. Arsuaga, T. Blackstone, Y. Diao, E. Karadayi, and M. Saito, Sampling Large Random Knots in a Confined Space, J. Physics A 40 (2007), pp. 11697–11711.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Arsuaga, R. Tan, M. Vazquez, D.W. Sumners, and S.C. Harvey, Investigation of viral DNA packaging using molecular mechanics models, Biophys. Chem. 101 (2002), pp. 475–484.Google Scholar
  5. [5]
    J. Arsuaga, M. Vazquez, S. Trigueros, D.W. Sumners, and J. Roca, Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA 99 (2002), pp. 5373–5377.CrossRefGoogle Scholar
  6. [6]
    J. Arsuaga, M. Vazquez, P. McGuirk, S. Trigueros, D.W. Sumners, and J. Roca, DNA knots reveal a chiral organization of DNA in phage capsids, Proc. Natl. Acad. Sci. USA 102 (2005), pp. 9165–9169.CrossRefGoogle Scholar
  7. [7]
    J. Arsuaga and Y. Diao, DNA Knotting in Spooling Like Conformations in Bacteriophages, Computational and Mathematical Methods in Medicine 9 (3) (2008), pp. 303–316.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    K. Aubrey, S. Casjens, and G. Thomas, Secondary structure and interactions of the packaged ds DNA genome of bacteriophage P22 investigated by Raman difference spectroscopy, Biochemistry 31 (1992), pp. 11835–11842.CrossRefGoogle Scholar
  9. [9]
    F.X. Barre and D.J. Sherratt, Chromosome dimer resolution . In The Bacterial Chromosome (Higgins, N.P., ed.), Washington, DC: ASM Press (2005), pp. 513–524.Google Scholar
  10. [10]
    L. Black,W. Newcomb, J. Boring, and J. Brown, Ion etching bacteriophage T4: support for a spiral-fold model of packaged DNA, Proc. Natl. Acad. Sci. USA 82 (1985), pp. 7960–7964.CrossRefGoogle Scholar
  11. [11]
    T. Blackstone,P. McGuirck,C. Laing, M. Vazquez, J. Roca, and J. Arsuaga, The role of writhe in DNA condensation, Proceedings of International Workshop on Knot Theory for Scientific Objects. OCAMI Studies Volume 1 (2007). Osaka Municipal Universities Press; pp. 239–250.Google Scholar
  12. [12]
    M. Bregu, D.J. Sherratt, and S.D. Colloms, Accessory factors determine the order of strand exchange in Xer recombination at psi., EMBO J. 21 (2002), pp. 3888–3897.CrossRefGoogle Scholar
  13. [13]
    D. Buck and E. Flapan, Predicting Knot or Catenane Type of Site-Specific Recombination Products, J Molecular Biology 374 (5) (2007), pp. 1186-1199.CrossRefGoogle Scholar
  14. [14]
    D. Buck and E. Flapan, A topological characterization of knots and links arising from site-specific recombination., J. Phys. A: Math. Gen. 40 (2007), pp. 12377–12395.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    D. Buck and C. Verjovsky-Marcotte, Tangle-solutions for a family of DNA rearranging proteins., Math Proc Camb Phil Soc 139 (2005), pp. 59–80.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    D. Buck and C. Verjovsky-Marcotte, Classification of Tangle Solutions for Integrases, A Protein Family that Changes DNA Topology., J. Knot. Theory Ramifications 16 (2007), pp. 969–995.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    G. Burde and H. Zieschang, Knots., vol. 5, In de Gruytier Studies in Mathematics (Gabriel, P., ed.) Walter de Gruyter, Berlin., 1985.Google Scholar
  18. [18]
    H. Cabrera Ibarra, On the classification of rational 3-tangles, J. Knot Theory Ramifications 12 (7) (2003), pp. 921–946.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    H. Cabrera Ibarra, Results on the classification of rational 3-tangles, J. Knot Theory Ramifications 13 (2) (2004), pp. 175–192.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    K. Cerritelli, N. Cheng, A. Rosenberg, C. Mcpherson, F. Booy, and A. Steven, Encapsidated conformation of bacteriophage T7 DNA, Cell 91 (1997), pp. 271–280.CrossRefGoogle Scholar
  21. [21]
    D.K. Chattoraj and R.B. Inman, Location of DNA ends in P2, 186, P4 and lambda bacteriophage heads, J. Mol. Biol. 87 (1974), pp. 11–22.CrossRefGoogle Scholar
  22. [22]
    S.D. Colloms, J. Bath, and D.J. Sherratt, Topological selectivity in Xer site-specific recombination, Cell 88 (1997), pp. 855–864.CrossRefGoogle Scholar
  23. [23]
    J.H. Conway, An enumeration of knots and links, and some of their algebraic properties., Computational Problems in Abstract Algebra, Pergamon, Oxford, UK (1967), pp. 329–358.Google Scholar
  24. [24]
    N.R. Cozzarelli, M.A. Kraznow, S.P. Gerrard, and J.H. White, A topological treatment of recombination and topoisomerases., Cold Spring Harbor Symp. Quant. Biol. 49 (1984), pp. 383–400.Google Scholar
  25. [25]
    N.J. Crisona, R.L. Weinberg, B.J. Peter, D.W. Sumners, and N.R. Cozzarelli, The topological mechanism ofphage lambda integrase., J. Mol. Biol. 289 (1999), pp. 747–775.CrossRefGoogle Scholar
  26. [26]
    I. Darcy, Biological distances on DNA knots and links: applications to Xer recombination., J. Knot Theory Ramification 10 (2001), pp. 269–294.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    I.K. Darcy, J. Chang, N. Druivenga, C. McKinney, R.K. Medikonduri, S. Mills, J. Navarra-Madsen, A. Ponnusamy, J. Sweet, and T. Thompson, sl Coloring the Mu transpososome., BMC Bioinformatics 7 (2006), pp. 435.CrossRefGoogle Scholar
  28. [28]
    I.K. Darcy, J. Luecke, and M. Vazquez Tangle analysis of difference topology experiments: applications to a Mu-DNA protein complex, IMA preprint series, (2008),http://www.ima.umn.edu/preprints/oct2007/2177.pdf.
  29. [29]
    I.K. Darcy and R.G. Scharein, TopoICE-R: 3D visualization modeling the topology of DNA recombination., Bioinformatics 22 (14) (2006), pp. 1790–1791.CrossRefGoogle Scholar
  30. [30]
    Y. Diao, The Knotting of Equilateral Polygons in R 3, Journal of Knot Theory and its Ramifications, 4 (2) (1995), pp. 189–196.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Y. Diao, A. Dobay, R.B. Kusner, K. Millet, and A. Stasiak, The Average Crossing Number of Equilateral Random Polygons J. Physics A 36 (46) (2003), pp. 11561–11574.zbMATHCrossRefGoogle Scholar
  32. [32]
    Y. Diao and C. Ernst, The Average Crossing Number of Gaussian Random Walks and Polygons, Physical and numerical models in knot theory, J.A. Calvo, K.C. Millett, E.J. Rawdon, and A. Stasiak, editors, Series on Knots and Everything 36 (2005), World Scientific, pp. 275–292.Google Scholar
  33. [33]
    Y. Diao, J. Nardo, and Y. Sun, Global Knotting in Equilateral Random Polygons; Journal of Knot Theory and its Ramifications, 10 (4) (2001), pp. 597– 607.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    Y. Diao, N. Pippenger, and D.W. Sumners, On Random Knots, Journal of Knot Theory and its Ramifications, 3 (3) (1994), pp. 419–429.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    W.C. Earnshaw and S.R. Casjens, DNA packaging by the double-stranded DNA bacteriophages, Cell 21 (1980), pp. 319–331.CrossRefGoogle Scholar
  36. [36]
    J. Emert and C. Ernst, N-string tangles, J. Knot. Theory Ramifications 9 (8)(2000), pp. 987–1004.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    C. Ernst, Tangle equations, J. Knot. Theory Ramifications 5 (1996), pp. 145–159.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    C. Ernst, Tangle equations II, J. Knot. Theory Ramifications 6 (1997), pp. 1–11.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    C. Ernst and D.W. Sumners, A calculus for rational tangles: applications to DNA recombination, Math. Proc. Cambridge Phil. Soc. 108 (1990), pp. 489–515.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    C. Ernst and D.W. Sumners, Solving tangle equations arising in a DNA recombination model, Math. Proc. Cambridge Phil. Soc. 126 (1999), pp. 23–36.zbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    O. Espeli and K.J. Marians,, Untangling intracellular DNA topology, Mol Mi–crobiol 52 (2004), pp. 925–931.CrossRefGoogle Scholar
  42. [42]
    A. Evilevitch, L. Lavelle, C.M. Knobler, E. Raspaud, and W.M. Gelbart, Osmotic pressure inhibition of DNA ejection from phage, Proc. Natl. Acad. Sci. USA 100 (2003), pp. 9292–9295.CrossRefGoogle Scholar
  43. [43]
    J.R. Goldman and L.H. Kauffman, Rational tangles, Advan. Appl. Math. 18 (1997), pp. 300–332.zbMATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    D.N. Gopaul, F. Guo, and G.D. Van Duyne, Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination, EMBO J. 17 (1998), pp. 4175–4187.CrossRefGoogle Scholar
  45. [45]
    S.C. Gourlay and S.D. Colloms, Control of Cre recombination by regulatory elements from Xer recombination systems, Mol. Microbiol. 52 (2004), pp. 53–65.CrossRefGoogle Scholar
  46. [46]
    I. Grainge, D. Buck, and M. Jayaram, Geometry of site alignment during Int family recombination: antiparallel synapsis by the FLP recombinase, J. Mol. Biol. 298 (2000), pp. 749–764.CrossRefGoogle Scholar
  47. [47]
    I. Grainge, M. Bregu, M. Vazquez, V. Sivanathan, S.C. Ip, and D.J. Sherratt, Unlinking chromosomes catenated in vivo by site-specific recombination, EMBO J 26 (19) (2007), pp. 4228–4238.CrossRefGoogle Scholar
  48. [48]
    B. Hallet and D.J. Sherratt, Transposition and site-specific recombination adapting DNA cut-and paste mechanism to a variety of genetic rearrangements, FEMS Microbiol. Rev. (1997), p. 21.Google Scholar
  49. [49]
    M. Hirasawa and K. Shimokawa, Dehn surgeries on strongly invertible knots which yield lens spaces, Proc. Am. Math. Soc. 128 (2000), pp. 3445–3451.zbMATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    V.F. Holmes and N.R. Cozzarelli, Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling, Proc. Natl. Acad. Sci. USA 97 (2000), pp. 1322–1324.CrossRefGoogle Scholar
  51. [51]
    N. Hud, Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model, Biophys. J. 69 (1995), pp. 1355–1362.CrossRefGoogle Scholar
  52. [52]
    S.C. Ip, M. Bregu, F.X. Barre, and D.J. Sherratt, Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination., EMBO J 22 (2003), pp. 6399–6407.CrossRefGoogle Scholar
  53. [53]
    P.J. Jardine and D.L. Anderson, DNA packaging in double-stranded DNA phages The bacteriophages (2006), Ed. Richard Calendar, Oxford University Press, pp. 49–65.Google Scholar
  54. [54]
    R. Kanaar, A. Klippel, E. Shekhtman, J. M. Dungan, R. Kahmann, and N.R. Cozzarelli, Processive recombination by the phage Mu Gin system: implications for the mechanisms of DNA strand-exchange, DNA site alignment, and enhancer action, Cell 62 (1990), pp. 353–366CrossRefGoogle Scholar
  55. [55]
    V. Katritch, Bednar, D. Michoud, R. G. Scharein, J. Dubochet, and A. Stasiak, Geometry and physics of knots, Nature 384 (1996), pp. 142–145.CrossRefMathSciNetGoogle Scholar
  56. [56]
    E. Kellenberger, E. Carlemalm, J. Sechaud, A. Ryter, and G. Haller, Considerations on the condensation and the degree of compactness in non-eukaryotic DNA-containing plasmas, In Bacterial Chromatin: Proceedings of the Symposium "Selected Topics on Chromatin Structure and Function" (eds. C. Gualerzi and C. L. Pon), Springer, Berlin (1986), pp. 11–25.Google Scholar
  57. [57]
    S. Kim and I.K. Darcy, Topological analysis of DNA-protein complexes, Included in this volume, Mathematics of DNA Structure, Function and Interactions (eds C.J. Benham, S. Harvey, W.K. Olson, D.W. Sumners and D. Swigon), Springer Science + Business Media, LLC, New York, (2009).Google Scholar
  58. [58]
    K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne, and M.D. Frank-kamenetskii, Effect of Excluded Volume on Topological Properties of Circular DNA, J. Biomolec. Str. and Dyn. 5 (1988), pp. 1173–1185.Google Scholar
  59. [59]
    J.C. LaMarque, T.L. Le, and S.C. Harvey, Packaging double-helical DNA into viral capsids, Biopolymers 73 (2004), pp. 348–355.CrossRefGoogle Scholar
  60. [60]
    A. Landy, Coming or going its another pretty picture for the lambda-Int family album, Proc. Natl Acad. Sci. USA 96 (1999), pp. 7122–7124.CrossRefGoogle Scholar
  61. [61]
    J. Lepault, J. Dubochet, W. Baschong, and E. Kellenberger, Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples EMBO J. 6 (1987), pp. 1507–1512.Google Scholar
  62. [62]
    W.B.R. Lickorish, Prime knots and tangles., Trans. Am. Math. Soc. 267 (1981), pp. 321–332.zbMATHCrossRefMathSciNetGoogle Scholar
  63. [63]
    L.F. Liu, J.L. Davis, and R. Calendar, Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases, Nucleic Acids Res. 9 (1981), pp. 3979–3989.CrossRefGoogle Scholar
  64. [64]
    L.F. Liu, L. Perkocha, R. Calendar, and J.C. Wang, Knotted DNA from bacteriophage capsids, Proc. Natl. Acad. Sci. USA 78 (1981), pp. 5498–5502.CrossRefGoogle Scholar
  65. [65]
    J.P.J. Michels and F.W. Wiegel, On the topology of a polymer ring, Proc. R. Soc. London Ser A 403 (1986), pp. 269–284.zbMATHCrossRefMathSciNetGoogle Scholar
  66. [66]
    C. Micheletti, D. Marenduzzo, E. Orlandini, and D.W. Sumners, Knotting of random ring polymers in confined spaces, J. Chem. Phys. 124 (2006), pp. 064903.1–10.Google Scholar
  67. [67]
    K. Millett, Knotting of regular polygons in 3-space, Random knotting and linking (Vancouver, BC, 1993), World Sci. Publishing, Singapore (1994), pp. 31–46.Google Scholar
  68. [68]
    K. Millett, Monte Carlo Explorations of Polygonal Knot Spaces, Knots in Hellas'98 (Delphi), Ser. Knots Everything 24 (2000), World Scientific, pp. 306–334.CrossRefMathSciNetGoogle Scholar
  69. [69]
    H.R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Phil. Soc. 99 (1986), pp. 107–109.zbMATHCrossRefMathSciNetGoogle Scholar
  70. [70]
    K. Murasugi, Knot Theory, Its Applications (Translated by B. Kurpita), Birkhauser, Boston, MA. 1996.Google Scholar
  71. [71]
    S.E. Nunes-Duby, H.J. Kwon, R.S.T. Tirumalai, T. Ellenberger, and A. Landy, Similarities and differences among 105 members of the Int family of site-specific recombinases, Nucl. Acids Res. 26 (1998), pp. 391–406.CrossRefGoogle Scholar
  72. [72]
    A.S. Petrov, M.B. Boz, and S.C. Harvey, The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape, J Struct Biol. 160 (2007) pp. 241–248.CrossRefGoogle Scholar
  73. [73]
    P. Plunkett, M. Piatek, A. Dobay, J.C. Kern, K. Millet, A. Stasiak, and E. Rawdon, Total curvature and total torsion of knotted polymers, Macromolecules 40 (2007), pp. 3860–3867.CrossRefGoogle Scholar
  74. [74]
    L. Rayleigh, On the problems of random vibrations, and of random flights in one, two, or three dimensions, Phil. Mag. S. 6. 37 (220) (1919), pp. 321–347.CrossRefGoogle Scholar
  75. [75]
    D. Raymer and D. Smith, Spontaneous knotting of an agitated string Proc. Natl. Acad. SciGoogle Scholar
  76. [76]
    K. Richards, R. Williams, and R. Calendar, Mode of DNA packing within bacteriophage heads J. Mol. Biol. 78 (1973), pp. 255–259.CrossRefGoogle Scholar
  77. [77]
    D. Rolfsen, Knots Mathematics Lecture Series 7, Publish or Perish, Berkeley, CA., 1976.Google Scholar
  78. [78]
    V.V. Rybenkov, N.R. Cozzarelli, and A.V. Vologodskii, Probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Natl. Acad. Sci. USA 90 (1993), pp. 5307–5311.CrossRefGoogle Scholar
  79. [79]
    P.D. Sadowski, Site-specific genetic recombination: hops, flips, and flops, FASEB J. 7 (1993), pp. 760–767.Google Scholar
  80. [80]
    Y. Saka and M. Vazquez, TangleSolve: topological analysis of site-specific recombination, Bioinformatics 18 (2002), pp. 1011–1012.CrossRefGoogle Scholar
  81. [81]
    J.B. Schvartzman and A. Stasiak, A topological view of the replicon, EMBO Rep. 5 (3) (2004), 256–261.CrossRefGoogle Scholar
  82. [82]
    P. Serwer, Arrangement of double-stranded DNA packaged in bacteriophage capsids: An alternative model J. Mol. Biol. 190 (1986), pp. 509–512.CrossRefGoogle Scholar
  83. [83]
    S. Y. Shaw and J.C. Wang, Knotting of a DNA chain during ring closure, Science 260 (1993), pp. 533–536.CrossRefGoogle Scholar
  84. [84]
    Arciszewska, L.K. and D.J. Sherratt Site-specific recombination and circular chromosome segregation, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 347 (1995), pp. 37–42.CrossRefGoogle Scholar
  85. [85]
    K. Shimokawa, K. Ishihara, I. Grainge, D.J. Sherratt, and M. Vazquez, DNA unlinking by site-specific recombination: topological analysis of XerCD-FtsK action, Preliminary report.Google Scholar
  86. [86]
    W.M. Stark and M.R. Boocock, Topological selectivity in site-specific recombination, In Mobile Genetic Elements (Sherratt, D. J., ed.), IRL Press at Oxford University, Oxford (1995), pp. 101–129.Google Scholar
  87. [87]
    W.M. Stark, D.J. Sherratt, and M.R. Boocock, Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions, Cell 58 (1989), pp. 779–790.CrossRefGoogle Scholar
  88. [88]
    N. Strater, D.J. Sherratt, and S.D. Colloms, X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination., EMBO J. 18 (1999), pp. 4513–4522.CrossRefGoogle Scholar
  89. [89]
    D.K. Summers and D.J. Sherratt, Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization and stability, Cell 36 (1984), pp. 1097–1103.CrossRefGoogle Scholar
  90. [90]
    D.W. Sumners, C. Ernst, N.R. Cozzarelli, and S.J. Spengler, Mathematical analysis of the mechanisms of DNA recombination using tangles, Quarterly Reviews of Biophysics 28 (1995), pp. 253–313.CrossRefGoogle Scholar
  91. [91]
    S. Trigueros, J. Arsuaga, M. Vazquez, D.W. Sumners, and J. Roca, Novel display of knotted DNA molecules by two dimensional gel electrophoresis, Nucleic Acids Research 29 (2001), e67.CrossRefGoogle Scholar
  92. [92]
    S. Trigueros and J. Roca, Production of highly knotted DNA by means of cosmid circularization inside phage capsids, BMC Biotechnol 7 (1) (2007), pp. 94.CrossRefGoogle Scholar
  93. [93]
    S. Tzill, J.K. Kindt, W.M. Gelbart, and A. Ben-Shaul, Forces and Pressures in DNA Packaging and Release from Viral Capsids, Biophys. J. 84 (2003), pp. 1616–1627.CrossRefGoogle Scholar
  94. [94]
    G.D. Van Duyne, A structural view of Cre-loxP site-specific recombination, Annu. Rev. Biophys. Biomol. Struct. 30 (2001), pp. 87–104.CrossRefGoogle Scholar
  95. [95]
    V. Vanhooff, C. Galloy, H. Agaisse, D. Lereclus, B. Revet, and B. Hallet, Self-Control in DNA site-specific recombination mediated by the tyrosine recombinase TnpI, Molecular Microbiology 60(3) (2006), pp. 617–629.CrossRefGoogle Scholar
  96. [96]
    M.Vazquez, Tangle analysis of site-specific recombination: Gin and Xer systems, PhD dissertation in mathematics, Florida State University, Tallahassee, FL, 2000.Google Scholar
  97. [97]
    M. Vazquez, S.D. Colloms, and D.W. Sumners, Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single 3-dimensional topological pathway, J. Mol. Biol. 346 (2005), pp. 493–504.CrossRefGoogle Scholar
  98. [98]
    M. Vazquez and D.W. Sumners, Tangle analysis of Gin site-specific recombination, Math. Proc. Cambridge Phil. Soc. 136 (2004), pp. 565–582.zbMATHCrossRefMathSciNetGoogle Scholar
  99. [99]
    A.V. Vologodskii, N.J. Crisona, B. Laurie, P. Pieranski, V. Katritch, J. Dubochet, and A. Stasiak, Sedimentation and electrophoretic migration of DNA knots and catenanes, J. Mol. Biol. 278 (1998), pp. 1–3.CrossRefGoogle Scholar
  100. [100]
    S.A. Wasserman, J.M. Dungan, and N.R. Cozzarelli, Discovery of a predicted DNA knot substantiates a model for site-specific recombination, Science 229 (1985), pp. 171–174.CrossRefGoogle Scholar
  101. [101]
    W. Zheng, C. Galloy, B. Hallet, and M. Vazquez, The tangle model for site-specific recombination: a computer interface and the TnpI-IRS recombination system, Knot Theory for Specific Objects, OCAMI studies 1 (2) (2007), pp. 251–271.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA
  2. 2.Department of Mathematics and StatisticsUniversity of North Carolina at CharlotteCharlotteUSA
  3. 3.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA

Personalised recommendations