Skip to main content

Paradox Regained: a Topological Coupling of Nuclesomal DNA Wrapping and Chromatin Fibre Coiling

  • Conference paper
  • First Online:
Mathematics of DNA Structure, Function and Interactions

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 150))

Abstract

The folding and unfolding of the chromatin fibre is a fundamental control point for the regulation of eukaryotic transcription. Although recent efforts have elucidated many of the mechanistic elaborations that regulate this process, the underlying mechanical basis of the folding transitions is poorly understood. Here I present a novel solution to the so-called 'linking number paradox' problem (Finch et al., 1977) and show that this solution implies that the chromatin fibre acts a tunable coil. The folding/unfolding process is essentially a topological transition in which the wrapping of DNA around the nucleosome core particle is directly coupled to degree of compaction of the coil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelov D., Vitolo J.M., Mutskov V., Dimitrov S., and Hayes J.J. (2001). Preferential interaction of the core histone tail domains with linker DNA. Proc. Nat. Acad. Sci. USA 98: 6599–6599.

    Article  CAS  Google Scholar 

  • Athey B.D., Smith M.F., Rankert D.A., Williams S.P., and Langmore J.P. (1990). The diameters of frozen-hydrated chromatin fibers increase with DNA linker length: evidence in support of variable diameter models for chromatin. J. Cell Biol. 111: 795–795.

    Article  CAS  Google Scholar 

  • Bauer W.R., Hayes J.J., White J.H., and Wolffe A.P. (1994). Nucleosome structural changes due to acetylation. J. Mol. Biol. 236: 685–690.

    Article  CAS  Google Scholar 

  • Bednar J., Horowitz R.A., Dubochet J., and Woodcock C.L. (1995). Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J. Cell Biol. 131: 1365–1376.

    Article  CAS  Google Scholar 

  • Butler P.J. and Thomas J.O. (1980). Changes in chromatin folding in solution. J. Mol. Biol. 140: 505–529.

    Article  CAS  Google Scholar 

  • De Lucia F., Alilat M., Sivolob A., and Prunell A. (1999). Nucleosome dynamics. III. Histone tail-dependent fluctuation of nucleosomes between open and closed DNA conformations. Implications for chromatin dynamics and the linking number paradox. A relaxation study of mononucleosomes on DNA minicircles. J. Mol. Biol. 285: 1101–1119.

    PubMed  Google Scholar 

  • Dimitrov S.I., Makarov V.L., and Pashev I.G. (1990). The chromatin fiber: structure and conformational transitions as revealed by optical anisotropytudies. J. Biomol. Struct. Dynam. 8: 23–23.

    Article  CAS  Google Scholar 

  • Dorigo B.,Schalch T., Kulangara A., Duda S., Schroeder R.R., and Richmond T.J. (2004) Nucleosome arrays reveal a two-start organisation of the chromatin fiber. Science 306: 1571–1573.

    Article  CAS  Google Scholar 

  • Finch J.T., Lutter L.C., Rhodes D., Brown R.S., Rushton B., Levitt M., and Klug A. (1977). Structure of nucleosome core particles of chromatin. Nature 269: 29–36.

    Article  CAS  Google Scholar 

  • Gasser S.M., Laroche T., Falquet J., Boy de la Tour E., and Laemmli U.K. (1986).Metaphase chromosome structure. Involvement of topoisomerase II. J. Mol. Biol. 188: 613–629.

    CAS  PubMed  Google Scholar 

  • Gerchman S.E. and Ramakrishnan V. (1987). Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proc. Nat. Acad. Sci. USA 84: 7802–7806.

    Article  CAS  Google Scholar 

  • Germond J.E., Hirt B., Oudet P., Gross-Bellark M., and Chambon P. (1975). Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc. Nat. Acad. Sci. USA 72: 1843–1847.

    Article  CAS  Google Scholar 

  • Ghirlando R. and Felsenfeld G. (2008). Hydrodynamic studies on defined heterochromatin fragments support a 30 nm fiber having 6 nucleosomes per turn. J. Mol. Biol. epub. 3 Jan. 2008.

    Google Scholar 

  • Ghirlando R., Litt M.D., Prioleau M.N., Recillas-Targa F., and Felsenfeld G. (2004). Physical properties of a genomic condensed chromatin fragment. J. Mol. Biol. 336:597–605.

    Article  CAS  Google Scholar 

  • Hamiche A., Schultz P., Ramakrishnan V., Oudet P., and Prunell A. (1996). Linker histone-dependent DNA structure in linear mononucleosomes. J. Mol. Biol. 257:30–42.

    Article  CAS  Google Scholar 

  • Hizume K., Araki S., Yoshikawa K., and Takeyasu K. (2007). Topoisomerase II, scaffold component,promotes chromatin compaction in vitro in a linker-histone H1-dependent manner. Nucleic Acids Res. 35:2787–2799.

    Article  CAS  Google Scholar 

  • Hizume K., Yoshimura S.H., and TakeyasuK. (2005). Linker histone H1perse can induce three-dimensional folding of chromatin fiber. Biochemistry 44:12978–12989.

    Article  CAS  Google Scholar 

  • Keller W., Müller U., Eicken I., Wendel I., and Zentgraf H. ¨(1978). Biochemical and ultrastructural analysis of SV40 chromatin. Cold Spring Harb. Symp. Quant. Biol. 42: 227–244.

    Article  CAS  Google Scholar 

  • Klug A. and Lutter L.C. (1981). The helical periodicity of DNA on the nucleosome. Nucleic Acids Res. 9: 4267–4267.

    Article  CAS  Google Scholar 

  • Luger K., Mader A.W., Richmond R.K., Sargent D.F., and Richmond T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    Article  CAS  Google Scholar 

  • Norton V.G., Imai B.S., Yau P., and Bradbury E.M. (1989). Histone acetylation reduces nucleosome core particle linking number change. Cell 57: 449–457.

    Article  CAS  Google Scholar 

  • Richmond T.J. and Davey C.A. (2003). The structure of DNA in the nucleosome core. Nature 423: 145–150.

    Article  CAS  Google Scholar 

  • Robinson P.J., Fairall L., Huynh V.A., and Rhodes D. (2006). EM measurements define the dimensions of the "30-nm"chromatin fiber: evidence for a compact, interdigitated structure. Proc. Nat. Acad. Sci. USA 103: 6506–6511.

    Article  CAS  Google Scholar 

  • Satchwell S.C., Drew H.R., and Travers A.A. (1986). Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191: 659–675.

    Article  CAS  Google Scholar 

  • Schalch T., Duda S., Sargent D.F., and Richmond T.J. (2005). X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436: 138–141.

    Article  CAS  Google Scholar 

  • Shogren-Knaak M., Ishii H., Sun J.M., Pazin M.J., Davie J.R., and Peterson C.L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844–847.

    Article  CAS  Google Scholar 

  • Stein A. (1980). DNA wrapping in nucleosomes. The linking number problem re-examined. Nucleic Acids Res. 8: 4803–4803.

    Article  CAS  Google Scholar 

  • Thoma F., Koller T., and Klug A. (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83: 403–403.

    Article  CAS  Google Scholar 

  • Travers A. A. and Klug A. (1987). The bending of DNA in nucleosomes and its wider implications. Phil. Trans. Roy. Soc. (London) B 317: 537–561.

    Article  CAS  Google Scholar 

  • Tse C., Sera T., Wolffe A.P., and Hansen J.C. (1998). Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleo-somal arrays by RNA polymerase III. Mol. Cell. Biol. 18: 4629–4629.

    Article  CAS  Google Scholar 

  • Wang J.C. (1979). Helical repeat of DNA in solution. Proc. Nat. Acad. Sci. USA 76: 200–203.

    Article  CAS  Google Scholar 

  • White J.H., Cozzarelli N.R., and Bauer W.R. (1988). Helical repeat and linking number of surface-wrapped DNA. Science 241: 323–327.

    Article  CAS  Google Scholar 

  • Widom J. (1992). A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc. Nat. Acad. Sci. USA 89: 1095–1095.

    Article  CAS  Google Scholar 

  • Wu C., Bassett A., and Travers A.A. (2007). A variable topology for the '30 nm' chromatin fibre. EMBO Rep. 8: 1129–1129.

    Article  CAS  Google Scholar 

  • Zivanovic Y.,Duband-Goulet I.,S Chultz P., Stofer E.,Oudet P., and Prunell A. (1990).Chromatin reconstitution on small DNA rings. III. Histone H5 dependence of DNA supercoiling in the nucleosome. J. Mol. Biol. 214: 479–495.

    Article  Google Scholar 

  • Zivanovic Y., Goulet I., Revet B., Le Bret M., and Prunell A. (1988). Chromatin reconstitution on small DNA rings. II. DNA supercoiling on the nucleosome. J. Mol. Biol. 200: 267–290.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

I am most grateful to Ernesto Di Mauro for suggesting the term 'tunable' and especially to the organisers of a recent workshop on the Mathematics of DNA Structure, Function and Interac- tions held at the Institute of Mathematics and its Applications at the University of Minnesota in Minneapolis for bringing this problem to my attention again.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Travers, A. (2009). Paradox Regained: a Topological Coupling of Nuclesomal DNA Wrapping and Chromatin Fibre Coiling. In: Benham, C., Harvey, S., Olson, W., Sumners, D., Swigon, D. (eds) Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and its Applications, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0670-0_15

Download citation

Publish with us

Policies and ethics