Advertisement

The Mathematics of DNA Sturcture, Mechanics, and Dynamics

  • David SwigonEmail author
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 150)

Abstract

A brief review is given of the main concepts, ideas, and results in the fields of DNA topology, elasticity, mechanics and statistical mechanics. Discussion in- cludes the notions of the linking number, writhe, and twist of closed DNA, elastic rod models, sequence-dependent base-pair level models, statistical models such as helical worm-like chain and freely jointed chain, and dynamical simulation procedures. Experimental methods that lead to the development of the models and the implications of the models are also discussed. Emphasis is placed on illustrating the breadth of approaches and the latest developments in the field, rather than the depth and completeness of exposition.

Key words

DNA topology elasticity mechanics statistical mechanics stretching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author wishes to express his thanks to Zuzana Swigonova for careful proofreading of the manuscript and numerous suggestions. Much of this work was written during a stimulating one semester visit at the Institute for Mathematics and its Applications, University of Minnesota. Support by A.P. Sloan Fellowship and NSF grant DMS-05-16646 is also acknowledged.

References

  1. [1]
    J. Aldinger, I. Klapper, and M. Tabor, Formulae for the calculation and estimation of writhe, J. Knot Theory Ramifications, 4(1995), pp. 343–372.zbMATHMathSciNetGoogle Scholar
  2. [2]
    S.S. Antman, Nonlinear problems of elasticity, Vol. 107 of Applied Mathematical Sciences, Springer, New York, second ed., 2005.Google Scholar
  3. [3]
    S.S. Antman, and C.S. Kenney, Large buckled states of nonlinearly elastic rods under torsion, thrust, and gravity, Arch. Rational Mech. Anal., 76(1981), pp. 289–338.zbMATHMathSciNetGoogle Scholar
  4. [4]
    S.S. Antman and T.-P. Liu, Travelling waves in hyperelastic rods, Quart. Appl. Math., 36(1979), pp. 377–399.zbMATHMathSciNetGoogle Scholar
  5. [5]
    J. Arsuaga, M. v´azquez, S. Trigueros, D. Sumners, and J. Roca, Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids, Proc. Natl. Acad. Sci. U.S.A., 99(2002), pp. 5373–5377.Google Scholar
  6. [6]
    A. Balaeff, C.R. Koudella, L. Mahadevan, and K. Schulten, Modelling DNA loops using continuum and statistical mechanics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362(2004), pp. 1355–1371.zbMATHMathSciNetGoogle Scholar
  7. [7]
    A. Balaeff, L. Mahadevan, and K. Schulten, Modeling DNA loops using the theory of elasticity, Phys. Rev. E (3), 73(2006), pp. 031919, 23.MathSciNetGoogle Scholar
  8. [8]
    A. Barbic and D.M. Crothers, Comparison of analyses of DNA curvature, J. Biomol. Struct. Dyn., 21(2003), pp. 89–97.Google Scholar
  9. [9]
    A.D. Bates and A. Maxwell, DNA topology, Oxford University Press, 1993.Google Scholar
  10. [10]
    C. Baumann, S. Smith, V. Bloomfield, and C. Bustamante, Ionic effects on the elasticity of single DNA molecules, Proc. Natl. Acad. Sci. U.S.A., 94(1997), pp. 6185–6190.Google Scholar
  11. [11]
    C. Benham and S. Mielke, DNA mechanics, Annu Rev Biomed Eng, 7(1997), pp. 21–53.Google Scholar
  12. [12]
    C.J. Benham, Elastic model of supercoiling, Proc. Natl. Acad. Sci. U.S.A., 74(1977), pp. 2397–2401.Google Scholar
  13. [13]
    C.J. Benham,An elastic model of the large-scale structure of duplex DNA, Biopolymers, 18(1979), pp. 609–623.Google Scholar
  14. [14]
    C.J. Benham,Theoretical analysis of heteropolymeric transitions in superhelical DNA molecules of specified sequence., J. Chem. Phys., 92(1990), pp. 6294–6305.Google Scholar
  15. [15]
    C.J. Benham,Energetics of the strand separation transition in superhelical DNA, J. Mol. Biol., 225(1992), pp. 835–847.Google Scholar
  16. [16]
    C.J. Benham,Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions., J. Mol. Biol., 255(1996), pp. 425–434.Google Scholar
  17. [17]
    D.L. Beveridge, G. Barreiro, K.S. Byun, D.A. Case, T.E. Cheatham, S.B. Dixit, E. Giudice, F. Lankas, R. Lavery, J.H. Maddocks, R. Osman, E. Seibert, H. Sklenar, G. Stoll, K.M. Thayer, P. Varnai, and M.A. Young, Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I. Research design and results on d(CpG) steps, Biophys. J., 87(2004), pp. 3799–3813.Google Scholar
  18. [18]
    Y.Y. Biton, B.D. Coleman, and D. Swigon, On bifurcations of equilibria of intrinsically curved, electrically charged, rod-like structures that model DNA molecules in solution, J. Elasticity, 87(2007), pp. 187–210.zbMATHMathSciNetGoogle Scholar
  19. [19]
    V.A. Bloomfield and I. Rouzina, Use of Poisson-Boltzmann equation to analyze ion binding to DNA, Meth. Enzymol., 295(1998), pp. 364–378.Google Scholar
  20. [20]
    A. Bolshoy, P. Mcnamara, R.E. Harrington, AND E.N. Trifonov, Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles, Proc. Natl. Acad. Sci. U.S.A., 88(1991), pp. 2312–2316.Google Scholar
  21. [21]
    A.H. Boschitsch and M.O. Fenley, Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation, J. Comput. Chem., 25(2004), pp. 935–955.Google Scholar
  22. [22]
    C. Bouchiat and M. Mezard, Elasticity model of a supercoiled DNA molecule, Phys. Rev. Lett., 80(1998), pp. 1556–1559.Google Scholar
  23. [23]
    C. Bouchiat, M. Wang, J. Allemand, T. Strick, S. Block, and V. Croquette, Estimating the persistence length of a worm-like chain molecule from force-extension measurements, Biophys. J., 76(1999), pp. 409–413.Google Scholar
  24. [24]
    Z. Bryant, M.D. Stone, J. Gore, S.B. Smith, N.R. Cozzarelli, and C. Bustamante, Structural transitions and elasticity from torque measurements on DNA, Nature, 424(2003), pp. 338–341.Google Scholar
  25. [25]
    G.R. Buck and E.L. Zechiedrich, DNA disentangling by type-2 topoisomerases, J. Mol. Biol., 340(2004), pp. 933–939.Google Scholar
  26. [26]
    C. Bustamante, Z. Bryant, and S.B. Smith, Ten years of tension: singlemolecule DNA mechanics, Nature, 421(2003), pp. 423–427.Google Scholar
  27. [27]
    C. Bustamante, S.B. Smith, J. Liphardt, and D. Smith, Single-molecule studies of DNA mechanics, Curr. Opin. Struct. Biol., 10(2000), pp. 279–285.Google Scholar
  28. [28]
    C.R. Calladine and H.R. Drew, Understanding DNA, Academic Press, 1992.Google Scholar
  29. [29]
    G. CĂalugĂareanu, Sur les classes d’isotopie des noeuds tridimensionnels et leurs invariants, Czechoslovak Math. J., 11(86) (1961), pp. 588–625.MathSciNetGoogle Scholar
  30. [30]
    G. Charvin, J.F. Allemand, T.R. Strick, D. Bensimon, and V. Croquette, Twisting DNA: single molecule studies, Cont. Phys., 45(2004), pp. 383–403.Google Scholar
  31. [31]
    G. Chirico and J. Langowski, Calculating hydrodynamic properties of DNA through a second-order Brownian dynamics algorithm, Macromolecules, 25(1992), pp. 769–775.Google Scholar
  32. [32]
    G. Chirico and J. Langowski, Kinetics of DNA supercoiling studied by Brownian dynamics simulation, Biopolymers, 34(1994), pp. 211–225.Google Scholar
  33. [33]
    G. Chirico and J. Langowski, Brownian dynamics simulations of supercoiled DNA with bent sequences, Biophys. J., 71(1996), pp. 955–971.Google Scholar
  34. [34]
    G.S. Chirikjian and Y. Wang, Conformational statistics of stiff macromolecules as solutions to partial differential equations on the rotation and motion groups, Phys. Rev. E Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Top- ics, 62(2000), pp. 880–892.Google Scholar
  35. [35]
    T. Cloutier and J. Widom, Spontaneous sharp bending of double-stranded DNA, Mol. Cell, 14(2004), pp. 355–362.Google Scholar
  36. [36]
    T. Cloutier and J. Widom, DNA twisting flexibility and the formation of sharply looped protein-DNA complexes, Proc. Natl. Acad. Sci. U.S.A., 102(2005), pp. 3645–3650.Google Scholar
  37. [37]
    B.D. Coleman, E.H. Dill, M. Lembo, Z. Lu, and I. Tobias, On the dynamics of rods in the theory of Kirchhoff and Clebsch, Arch. Rational Mech. Anal., 121(1992), pp. 339–359.zbMATHMathSciNetGoogle Scholar
  38. [38]
    B.D. Coleman, W.K. Olson, and D. Swigon, Theory of sequence-dependent DNA elasticity, J. Chem. Phys., 118(2003), pp. 7127–7140.Google Scholar
  39. [39]
    B.D. Coleman and D. Swigon, Theory of supercoiled elastic rings with selfcontact and its application to DNA plasmids, J. Elasticity, 60 (2000), pp. 173–221 (2001).zbMATHMathSciNetGoogle Scholar
  40. [40]
    B.D. Coleman and D. Swigon, Theory of self-contact in Kirchhoff rods with applications to supercoiling of knotted and unknotted DNA plasmids, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362(2004), pp. 1281–1299.Google Scholar
  41. [41]
    B.D. Coleman, D. Swigon, and I. Tobias, Elastic stability of DNA configurations. II. Supercoiled plasmids with self-contact, Phys. Rev. E (3), 61(2000), pp. 759–770.MathSciNetGoogle Scholar
  42. [42]
    R. Courant, Differential and Integral Calculus, Vol. 2, Blackie, London, 1936.zbMATHGoogle Scholar
  43. [43]
    D.M. Crothers, J. Drak, J.D. Kahn, and S.D. Levene, DNA bending, flexibility, and helical repeat by cyclization kinetics, Meth. Enzymol., 212(1992), pp. 3–29.Google Scholar
  44. [44]
    L. Czapla, D. Swigon, and W.K. Olson, Sequence-dependent effects in the cyclization of short DNA, J. Chem. Theory Comput., 2(2006), pp. 685–695.Google Scholar
  45. [45]
    L. Czapla, D. Swigon, and W.K. Olson, Effects of the nucleoid protein HU on the structure, flexibility, and ringclosure properties of DNA deduced from monte-carlo simulations, submitted to J. Mol. Biol. (2008).Google Scholar
  46. [46]
    I.K. Darcy and D.W. Sumners, A strand passage metric for topoisomerase action, in KNOTS ’96 (Tokyo), World Sci. Publ., River Edge, NJ, 1997, pp. 267–278.Google Scholar
  47. [47]
    I.K. Darcy and D.W. Sumners, Rational tangle distances on knots and links, Math. Proc. Cambridge Philos. Soc., 128(2000), pp. 497–510.Google Scholar
  48. [48]
    Y. Diao, J.C. Nardo, and Y. Sun, Global knotting in equilateral random polygons, J. Knot Theory Ram., 10(2001), pp. 597–607.zbMATHMathSciNetGoogle Scholar
  49. [49]
    D.J. Dichmann, Y. Li, and J.H. Maddocks, Hamiltonian formulations and symmetries in rod mechanics, in Mathematical approaches to biomolecular structure and dynamics (Minneapolis, MN, 1994), Vol. 82 of IMA Vol. Math. Appl., Springer, New York, 1996, pp. 71–113.Google Scholar
  50. [50]
    D.J. Dichmann, J.H. Maddocks, and R.L. Pego, Hamiltonian dynamics of an elastica and the stability of solitary waves, Arch. Rational Mech. Anal., 135(1996), pp. 357–396.zbMATHMathSciNetGoogle Scholar
  51. [51]
    [52] E.H. Dill, Kirchhoff’s theory of rods, Arch. Hist. Exact Sci., 44(1992), pp. 1–23.zbMATHMathSciNetGoogle Scholar
  52. [52]
    [52] S.B. Dixit, D.L. Beveridge, D.A. Case, T.E. Cheatham, E. Giudice, F. Lankas, R. Lavery, J.H. Maddocks, R. Osman, H. Sklenar, K.M. Thayer, and P. Varnai, Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. II: sequence context effects on the dynamical structures of the 10 unique dinucleotide steps, Bio- phys. J., 89(2005), pp. 3721–3740.Google Scholar
  53. [53]
    L.D. Doi and S.F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, 1988.Google Scholar
  54. [54]
    Q. Du, A. Kotlyar, and A. Vologodskii, Kinking the double helix by bending deformation, Nucleic Acids Res., 36(2008), pp. 1120–1128.Google Scholar
  55. [55]
    C. Ernst and D. W. Sumners, A calculus for rational tangles: applications to DNA recombination, Math. Proc. Cambridge Philos. Soc., 108(1990), pp. 489–515.zbMATHMathSciNetGoogle Scholar
  56. [56]
    M.D. Frank-kamenetskii, A.V. Lukashin, and A.V. Vologodskii, Statistical mechanics and topology of polymer chains, Nature, 258(1975), pp. 398–402.Google Scholar
  57. [57]
    F.B. Fuller, The writhing number of a space curve, Proc. Nat. Acad. Sci. U.S.A., 68(1971), pp. 815–819.zbMATHMathSciNetGoogle Scholar
  58. [58]
    P.B. Furrer, R.S. Manning, and J.H. Maddocks, DNA rings with multiple energy minima, Biophys. J., 79(2000), pp. 116–136.Google Scholar
  59. [59]
    S. Gavryushov and P. Zielenkiewicz, Electrostatic potential of B-DNA: effect of interionic correlations, Biophys. J., 75(1998), pp. 2732–2742.Google Scholar
  60. [60]
    J.A. Gebe, S.A. Allison, J.B. Clendenning, and J.M. Schurr, Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs, Biophys. J., 68(1995), pp. 619–633.Google Scholar
  61. [61]
    O. Gonzales and J.H. Maddocks, Extracting parameters for base-pair level models of DNA from molecular dynamics simulations, Theor. Chem. Acc., 106(2001), pp. 76–82.Google Scholar
  62. [62]
    O. Gonzalez, J.H. Maddocks, F. Schuricht, and H. Von der mosel, Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations, 14(2002), pp. 29–68.zbMATHMathSciNetGoogle Scholar
  63. [63]
    A. Goriely and M. Tabor, Nonlinear dynamics of filaments. IV. Spontaneous looping of twisted elastic rods, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1998), pp. 3183–3202.zbMATHMathSciNetGoogle Scholar
  64. [64]
    A. Goriely and M. Tabor, The nonlinear dynamics of filaments, Nonlinear Dynam., 21(2000), pp. 101–133. 316 DAVID SWIGONGoogle Scholar
  65. [65]
    S. Goyal, N.C. Perkins, and C.L. Lee, Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables, J. Comput. Phys., 209(2005), pp. 371–389.zbMATHMathSciNetGoogle Scholar
  66. [66]
    P.J. Hagerman, Flexibility of DNA, Annu Rev Biophys Biophys Chem, 17(1988), pp. 265–286.Google Scholar
  67. [67]
    K.A. Hoffman, Methods for determining stability in continuum elastic-rod models of DNA, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362(2004), pp. 1301–1315.zbMATHMathSciNetGoogle Scholar
  68. [68]
    K.A. Hoffman, R.S. Manning, and J.H. Maddocks, Link, twist, energy, and the stability of DNA minicircles, Biopolymers, 70(2003), pp. 145–157.Google Scholar
  69. [69]
    D.S. Horowitz and J.C. Wang, Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling, J. Mol. Biol., 173(1984), pp. 75–91.Google Scholar
  70. [70]
    X. Hua, D. Nguyen, B. Raghavan, J. Arsuaga, and M. Vazquez, Random state transitions of knots: A first step towards modeling unknotting by type II topoisomerases, Topology Appl., 154(2007), pp. 1381–1397.zbMATHMathSciNetGoogle Scholar
  71. [71]
    J. Huang, T. Schlick, and A. Vologodskii, Dynamics of site juxtaposition in supercoiled DNA, Proc. Natl. Acad. Sci. U.S.A., 98(2001), pp. 968–973.Google Scholar
  72. [72]
    N. Hud and J. Plavec, A unified model for the origin of DNA sequence-directed curvature, Biopolymers, 69(2003), pp. 144–158.Google Scholar
  73. [73]
    H. Jian, T. Schlick, and A. Vologodskii, Internal motion of supercoiled DNA: Brownian dynamics simulations of site juxtaposition, J. Mol. Biol., 284(1998), pp. 287–296.Google Scholar
  74. [74]
    F. Julicher, Supercoiling transitions of closed DNA, Phys. Rev. E, 49(1994), pp. 2429–2435.Google Scholar
  75. [75]
    G. Kirchhoff, Über das Gleichgewicht und die Bewegung eines unendlich d¨unen elastischen Stabes, J. Reine angew. Math. (Crelle), 56(1859), pp. 285–313.zbMATHCrossRefGoogle Scholar
  76. [76]
    J.G. Kirkwood, On the theory of strong electrolyte solutions, J. Chem. Phys., 2(1934), pp. 767–781.Google Scholar
  77. [77]
    I. Klapper, Biological applications of the dynamics of twisted elastic rods, J. Comput. Phys., 125(1996), pp. 325–337.zbMATHMathSciNetGoogle Scholar
  78. [78]
    K. Klenin, H. Merlitz, and J. Langowski, A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes, Biophys. J., 74(1998), pp. 780–788.Google Scholar
  79. [79]
    K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne, and M.D. FRANK-KAMENETSKII, Computer simulation of DNA supercoiling, J. Mol. Biol., 217(1991), pp. 413–419.Google Scholar
  80. [80]
    K.M. Kosikov, A.A. Gorin, X.J. Lu, W.K. Olson, and G.S. Manning, Bending of DNA by asymmetric charge neutralization: all-atom energy simulations, J. Am. Chem. Soc., 124(2002), pp. 4838–4847.Google Scholar
  81. [81]
    O. Kratky and G. Porod, Röontgenuntersuchung gelüster fadenmolek¨ule, Rec. Trav. Chim. Pays-Bas., 68(1949), pp. 1106–1123.Google Scholar
  82. [82]
    L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Pergamon Press, Oxford, 1959.Google Scholar
  83. [83]
    L.D. Landau and E.M. Lifshitz, Statistical Physics, Butterworth-Heinemann, 1984.Google Scholar
  84. [84]
    J. Langer and D.A. Singer, Knotted elastic curves in R 3, J. London Math. Soc. (2), 30(1984), pp. 512–520.zbMATHMathSciNetGoogle Scholar
  85. [85]
    F. Lankas, R. Lavery, and J. Maddocks, Kinking occurs during molecular dynamics simulations of small DNA minicircles, Structure, 14(2006), pp. 1527–1534.Google Scholar
  86. [86]
    C.L. Lawson, D. Swigon, K.S. Murakami, S.A. Darst, H.M. Berman, and R.H. Ebright, Catabolite activator protein: DNA binding and transcription activation, Curr. Opin. Struct. Biol., 14(2004), pp. 10–20.Google Scholar
  87. [87]
    M. Le bret, Catastrophic variation of twist and writhing of circular DNAs with constraint?, Biopolymers, 18(1979), pp. 1709–1725.Google Scholar
  88. [88]
    M. Le bret, Twist and writhing in short circular DNAs according to first-order elasticity, Biopolymers, 23(1984), pp. 1835–1867.Google Scholar
  89. [89]
    S. Levene and D. Crothers, Topological distributions and the torsional rigidity of DNA. A Monte Carlo study of DNA circles, J. Mol. Biol., 189(1986), pp. 73–83.Google Scholar
  90. [90]
    S. D. Levene and D. M. Crothers, Ring closure probabilities for DNA fragments by Monte Carlo simulation, J. Mol. Biol., 189(1986), pp. 61–72.Google Scholar
  91. [91]
    S. Lim, A. Ferent, X.S. Wang, and C.S. Peskin, Dynamics of a closed rod with twist and bend in fluid, preprint.Google Scholar
  92. [92]
    A.E.H. Love, Treatise on the mathematical theory of elasticity, Cambridge Uni- versity Press, 1927.Google Scholar
  93. [93]
    J.H. Maddocks, Bifurcation theory, symmetry breaking and homogenization in continuum mechanics descriptions of DNA. Mathematical modelling of the physics of the double helix, in A celebration of mathematical modeling, Kluwer Acad. Publ., Dordrecht, 2004, pp. 113–136.Google Scholar
  94. [94]
    G.S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q. Rev. Biophys., 11(1978), pp. 179–246.Google Scholar
  95. [95]
    R.S. Manning, J.H. Maddocks, and J.D. Kahn, A continuum rod model of sequence-dependent DNA structure, J. Chem. Phys., 105(1996), pp. 5626–5646.Google Scholar
  96. [96]
    R.S. Manning, K.A. Rogers, and J.H. Maddocks, Isoperimetric conjugate points with application to the stability of DNA minicircles, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1998), pp. 3047–3074.zbMATHMathSciNetGoogle Scholar
  97. [97]
    J.F. Marko, DNA under high tension: Overstretching, undertwisting, and relaxation dynamics, Phys. Rev. E, 57(1998), pp. 2134–2149.Google Scholar
  98. [98]
    J.F. Marko and E.D. Siggia, Fluctuations and supercoiling of DNA, Science, 265(1994), pp. 506–508.Google Scholar
  99. [99]
    J.F. Marko and E.D. Siggia, Stretching DNA, Macromolecules, 28(1995), pp. 8759–8770.Google Scholar
  100. [100]
    H. Merlitz, K. Rippe, K.V. Klenin, and J. Langowski, Looping dynamics of linear DNA molecules and the effect of DNA curvature: a study by Brownian dynamics simulation, Biophys. J., 74(1998), pp. 773–779.Google Scholar
  101. [101]
    C. Micheletti, D. Marenduzzo, E. Orlandini, and D. Summers, Knotting of random ring polymers in confined spaces, J. Chem. Phys., 124(2006), p. 64903.Google Scholar
  102. [102]
    J. Moroz and P. Nelson, Torsional directed walks, entropic elasticity, and DNA twist stiffness, Proc. Natl. Acad. Sci. U.S.A., 94(1997), pp. 14418–14422.Google Scholar
  103. [103]
    J.D. Moroz and P. Nelson, Torsional directed walks, entropic elasticity, and DNA twist stiffness, Proc. Natl. Acad. Sci. U.S.A., 94(1997), pp. 14418–14422.Google Scholar
  104. [104]
    S. Neidle, Principles of nucleic acid structure, Elsevier, 2007.Google Scholar
  105. [105]
    S. Neukirch and M.E. Henderson, Classification of the spatial equilibria of the clamped elastica: symmetries and zoology of solutions, J. Elasticity, 68(2002), pp. 95–121 (2003). Dedicated to Piero Villaggio on the occasion of his 70th birthday.zbMATHMathSciNetGoogle Scholar
  106. [106]
    W.K. Olson, Simulating DNA at low resolution, Curr. Opin. Struct. Biol., 6(1996), pp. 242–256.Google Scholar
  107. [107]
    W.K. Olson, M. Bansal, S.K. Burley, R.E. Dickerson, M. Gerstein, S.C. Harvey, U. Heinemann, X.J. Lu, S. Neidle, Z. Shakked, H. Sklenar, M. Suzuki, C.S. Tung, E. Westhof, C. Wolberger, and H.M. Berman, A standard reference frame for the description of nucleic acid base-pair geometry, J. Mol. Biol., 313(2001), pp. 229–237.Google Scholar
  108. [108]
    W.K. Olson, A.A. Gorin, X.J. Lu, L.M. Hock, and V.B. Zhurkin, DNA sequence-dependent deformability deduced from protein-DNA crystal complexes, Proc. Natl. Acad. Sci. U.S.A., 95(1998), pp. 11163–11168.Google Scholar
  109. [109]
    W.K. Olson, D. Swigon, and B.D. Coleman, Implications of the dependence of the elastic properties of DNA on nucleotide sequence, Philos Transact A Math Phys Eng Sci, 362(2004), pp. 1403–1422.zbMATHMathSciNetGoogle Scholar
  110. [110]
    M.J. Packer, M.P. Dauncey, and C.A. Hunter, Sequence-dependent DNA structure: tetranucleotide conformational maps, J. Mol. Biol., 295(2000), pp. 85–103.Google Scholar
  111. [111]
    L.J. Parkhurst, K.M. Parkhurst, R. Powell, J. Wu, and S. Williams, Time-resolved fluorescence resonance energy transfer studies of DNA bending in double-stranded oligonucleotides and in DNA-protein complexes, Biopolymers, 61(2001), pp. 180–200.Google Scholar
  112. [112]
    C. Rivetti, C. Walker, and C. Bustamante, Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility, J. Mol. Biol., 280(1998), pp. 41–59.Google Scholar
  113. [113]
    V. Rybenkov, N. Cozzarelli, and A. Vologodskii, Probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Natl. Acad. Sci. U.S.A., 90(1993), pp. 5307–5311.Google Scholar
  114. [114]
    V.V. Rybenkov, C. Ullsperger, A.V. Vologodskii, and N.R. Cozzarelli, Simplification of DNA topology below equilibrium values by type II topoisomerases, Science, 277(1997), pp. 690–693.Google Scholar
  115. [115]
    W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, New York and Berlin, 1984.Google Scholar
  116. [116]
    S. Sankararaman and J. Marko, Formation of loops in DNA under tension, Phys Rev E Stat Nonlin Soft Matter Phys, 71(2005), p. 021911.MathSciNetGoogle Scholar
  117. [117]
    T. Schlick, Modeling superhelical DNA: recent analytical and dynamic approaches, Curr. Opin. Struct. Biol., 5(1995), pp. 245–262.Google Scholar
  118. [118]
    T. Schlick, B. Li, and W.K. Olson, The influence of salt on DNA energetics and dynamics, Biophys. J., 67(1994), pp. 2146–2166.Google Scholar
  119. [119]
    T. Schlick, W. Olson, T. Westcott, and J. Greenberg, On higher buckling transitions in supercoiled DNA, Biopolymers, 34(1994), pp. 565–597.Google Scholar
  120. [120]
    F. Schuricht, Global injectivity and topological constraints for spatial nonlinearly elastic rods, J. Nonlin. Science, 12(2002), pp. 423–444.zbMATHMathSciNetGoogle Scholar
  121. [121]
    J.M. Schurr, B.S. Fujimoto, P. Wu, and S.L., Fluorescence studies of nucleic acids: Dynamics, rigidities, and structures, in Biochemical Applications, Vol. 3 of Topics in Fluorescence Spectroscopy, Plenum Press, New York, 1992.Google Scholar
  122. [122]
    S. Shaw and J. Wang, Knotting of a DNA chain during ring closure, Science, 260(1993), pp. 533–536.Google Scholar
  123. [123]
    J. Shimada and H. Yamakawa, Ring-closure probabilities for twisted wormlike chains, Macromolecules, 17(1984), pp. 689–698.Google Scholar
  124. [124]
    D. Shore and R. Baldwin, Energetics of DNA twisting. I. Relation between twist and cyclization probability, J. Mol. Biol., 170(1983), pp. 957–981.Google Scholar
  125. [125]
    D. Shore and R. Baldwin, Energetics of DNA twisting. II. Topoisomer analysis, J. Mol. Biol., 170(1983), pp. 983–1007.Google Scholar
  126. [126]
    D. Shore, J. LANG¨OWSKI, AND R. L. Baldwin, DNA flexibility studied by covalent closure of short fragments into circles, Proc. Natl. Acad. Sci. Usa, 78(1981), pp. 4833–4837.Google Scholar
  127. [127]
    S. Smith, Y. Cui, and C. Bustamante, Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules, Science, 271(1996), pp. 795–799.Google Scholar
  128. [128]
    S. Smith, L. Finzi, and C. Bustamante, Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, 258(1992), pp. 1122–1126.Google Scholar
  129. [129]
    E.L. Starostin, Three-dimensional shapes of looped DNA, Meccanica, 31(1996), pp. 235–271.zbMATHGoogle Scholar
  130. [130]
    T. Strick, J. Allemand, V. Croquette, and D. Bensimon, Twisting and stretching single DNA molecules, Prog. Biophys. Mol. Biol., 74(2000), pp. 115–140.Google Scholar
  131. [131]
    T.R. Strick, J.F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette, The elasticity of a single supercoiled DNA molecule, Science, 271(1996), pp. 1835–1837.Google Scholar
  132. [132]
    D. Swigon, Configurations with Self-Contact in the Theory of the Elastic Rod Model for DNA, Doctoral Dissertation, Rutgers University, 1999.Google Scholar
  133. [133]
    D. Swigon, B. Coleman, and I. Tobias, The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes, Biophys. J., 74(1998), pp. 2515–2530.Google Scholar
  134. [134]
    D. Swigon, B.D. Coleman, and W.K. Olson, Modeling the Lac repressoroperator assembly: the influence of DNA looping on Lac repressor conformation, Proc. Natl. Acad. Sci. U.S.A., 103(2006), pp. 9879–9884.Google Scholar
  135. [135]
    D. Swigon and W.K. Olson, Mesoscale modeling of multi-protein-DNA assemblies: the role of the catabolic activator protein in Lac-repressor-mediated looping, submitted to Int. J. Nonlin. Mech. (2007).Google Scholar
  136. [136]
    J.M.T. Thompson and A.R. Champneys, From helix to localized writhing in the torsional post-buckling of elastic rods, in Localization and solitary waves in solid mechanics, Vol. 12 of Adv. Ser. Nonlinear Dynam., World Sci. Publ., River Edge, NJ, 1999, pp. 111–132.Google Scholar
  137. [137]
    J.M.T. Thompson, G.H.M. Van der HEIJDEN, AND S. Neukirch, Supercoiling of DNA plasmids: mechanics of the generalized ply, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458(2002), pp. 959–985.zbMATHMathSciNetGoogle Scholar
  138. [138]
    A.V. Tkachenko, Electrostatic effects in DNA stretching, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 74(2006), p. 041801.Google Scholar
  139. [139]
    I. Tobias, B.D. Coleman, and W.K. Olson, The dependence of DNA tertiary structure on end conditions: Theory and implications for topological transitions, J. Chem. Phys., 101(1994), pp. 10990–10996.Google Scholar
  140. [140]
    I. Tobias, D. Swigon, and B.D. Coleman, Elastic stability of DNA configurations. I. General theory, Phys. Rev. E (3), 61(2000), pp. 747–758.MathSciNetGoogle Scholar
  141. [141]
    M. Vazquez and D.W. Sumners, Tangle analysis of Gin site-specific recombination, Math. Proc. Cambridge Philos. Soc., 136(2004), pp. 565–582.zbMATHMathSciNetGoogle Scholar
  142. [142]
    E. Villa, A. Balaeff, L. Mahadevan, and K. Schulten, Multiscale method for simulating protein-DNA complexes, Multiscale Model. Simul., 2(2004), pp. 527–553 (electronic).zbMATHMathSciNetGoogle Scholar
  143. [143]
    A. Vologodskii and N. Cozzarelli, Conformational and thermodynamic properties of supercoiled DNA, Annu Rev Biophys Biomol Struct, 23(1994), pp. 609–643.Google Scholar
  144. [144]
    A. Vologodskii and N. Cozzarelli, Modeling of long-range electrostatic interactions in DNA, Biopolymers, 35(1995), pp. 289–296.Google Scholar
  145. [145]
    A.V. Vologodskii, W. Zhang, V.V. Rybenkov, A.A. Podtelezhnikov, D. Subramanian, J.D. Griffith, and N.R. Cozzarelli, Mechanism of topology simplification by type II DNA topoisomerases, Proc. Natl. Acad. Sci. U.S.A., 98(2001), pp. 3045–3049.Google Scholar
  146. [146]
    J. Wang, DNA topoisomerases, Annu. Rev. Biochem., 65(1996), pp. 635–692.Google Scholar
  147. [147]
    J.D. Watson and F.H. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid, Nature, 171(1953), pp. 737–738.Google Scholar
  148. [148]
    T.P. Westcott, I. Tobias, and W.K. Olson, Modeling self-contact forces in the elastic theory of DNA supercoiling, J. Chem. Phys., 107(1997), pp. 3967–3980.Google Scholar
  149. [149]
    J.H. White, Self-linking and the Gauss integral in higher dimensions, Amer. J. Math., 91(1969), pp. 693–728.zbMATHMathSciNetGoogle Scholar
  150. [150]
    J.H. White, An introduction to the geometry and topology of DNA structure, in Mathematical methods for DNA sequences, CRC, Boca Raton, FL, 1989, pp. 225–253.Google Scholar
  151. [151]
    P. Wiggins, R. Phillips, and P. Nelson, Exact theory of kinkable elastic polymers, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 71(2005), p. 021909.MathSciNetGoogle Scholar
  152. [152]
    J. Yan, M.O. Magnasco, and J.F. Marko, A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases, Nature, 401(1999), pp. 932–935.Google Scholar
  153. [153]
    J. Yan and J. Marko, Effects of DNA-distorting proteins on DNA elastic response, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 68(2003), p. 011905.Google Scholar
  154. [154]
    J. Yan and J. Marko, Localized single-stranded bubble mechanism for cyclization of short double helix DNA, Phys. Rev. Lett., 93(2004), p. 108108.Google Scholar
  155. [155]
    E.E. Zajac, Stability of two planar loop elasticas, J. Appl. Mech., 29(1962), pp. 136–142.zbMATHMathSciNetGoogle Scholar
  156. [156]
    Y. Zhang and D.M. Crothers, Statistical mechanics of sequence-dependent circular DNA and its application for DNA cyclization, Biophys. J., 84(2003), pp. 136–153Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Pittsburgh, The work was supported by Institute for Math-ematics and its Applications (IMA), Alfred P SLoan Fellowship and NSF Grant DMS 0516646PittsburghUSA

Personalised recommendations