Advertisement

Flexibility Of Nucleosomes On Topologically Constrained DNA

  • Andrei SivolobEmail author
  • Christophe Lavelle
  • Ariel Prunell
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 150)

Abstract

The nucleosome plays an ever increasing role in our comprehension of the regulation of gene activity. Here we review our results on nucleosome conformational flexibility, its molecular mechanism and its functional relevance. Our initial approach combined both empirical measurement and theoretical simulation of the topological properties of single particles reconstituted on DNA minicircles. Two types of particles were studied in addition to the conventional nucleosome: a subnucleosome consisting of DNA wrapped around the (H3-H4)2 histone tetramer, now known as a tetrasome, and the linker histone H5/H1-bearing nucleosome, or chromatosome. All particles were found to thermally fluctuate between two to three conformational states, which differed by their topological and mechanical characteristics. These findings were confirmed for the nucleosome and the tetrasome by the use of magnetic tweezers to apply torsions to single arrays of these particles reconstituted on linear DNA. These latter experiments further revealed a new structural form of the nucleosome, the reversome, in which DNA is wrapped in a right-handed superhelical path around a distorted octamer. This work suggests that the single most important role of chromatin may be to considerably increase overall DNA flexibility, which might indeed be a requirement of genome function.

Key Words:

Nucleosomes DNA minicircles DNA supercoiling conformational Flexibility chiral transition magnetic tweezers single molecules chromatin fibers chro-matin superstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work, which spans twenty years or so, could not have been done without the enthusiastic help of many collab-orators and co-authors of about the same number of papers referred to in the text. AP would like to express his gratitude to all of them, and especially to (by order of appearance) M. Le Bret, B. R’evet, P. Fur-rer, V. Ramakrishnan, F. De Lucia, M. Alilat, N. Conde e Silva and A. Bancaud.

References

  1. [1]
    K. luger, A.W. Mader, R.K. Richmond, D.F. Sargent, and T.J. Richmond, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, 389 (1997), 251–260.Google Scholar
  2. [2]
    J.M. Harp, B.L. Hanson, D.E. Timm, and G.J. Bunick, Asymmetries in the nucleosome core particle at 2.5 A resolution, Acta. Crystallogr. D. Biol. Crys-tallogr., 56 (2000), 1513–1534.Google Scholar
  3. [3]
    C.A. Davey, D.F. Sargent, K. Luger, A.W. Maeder, and T.J. Richmond, Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution, Journal of molecular biology, 319 (2002), 1097–1113.Google Scholar
  4. [4]
    R.K. Suto, R.S. Edayathumangalam, C.L. White, C. Melander, J.M. Gottesfeld, P.B. Dervan, and K. Luger, Crystal structures of nucle-osome core particles in complex with minor groove DNA-binding ligands, Journal of molecular biology, 326 (2003), 371–380.Google Scholar
  5. [5]
    L.A. Boyer, X. Shao, R.H. ebright, and C.L. Peterson, Roles of the histone H2A-H2B dimers and the (H3-H4)(2) tetramer in nucleosome remodeling by the SWI-SNF complex, J. Biol. Chem., 275 (2000), 11545–11552.Google Scholar
  6. [6]
    B.W. Baer and D. Rhodes, Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes, Nature, 301 (1983), 482–488.Google Scholar
  7. [7]
    M.L. kireeva, W. Walter, V. tchernajenko, V. bondarenko, M. Kashlev, and V.M. Studitsky, Nucleosome remodeling induced by RNA polymerase II: Loss of the H2A/H2B dimer during transcription, Mol. Cell., 9 (2002), 541–552.Google Scholar
  8. [8]
    B. Li, M. Carey, and J.L. Workman, The role of chromatin during transcrip- tion, Cell, 128 (2007), 707–719.Google Scholar
  9. [9]
    O.I. Kulaeva, D.A. Gaykalova, and V.M. Studitsky, Transcription through chromatin by RNA polymerase II: histone displacement and exchange, Mutat. Res., 618 (2007), 116–129.Google Scholar
  10. [10]
    V. Jackson, In vivo studies on the dynamics of histone-DNA interaction: ev-idence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both, Biochemistry, 29 (1990), 719–731.Google Scholar
  11. [11]
    R. Marmorstein, Protein modules that manipulate histone tails for chromatin regulation, Nat. Rev. Mol. Cell. Biol., 2 (2001), 422–432.Google Scholar
  12. [12]
    B.M. Turner, Cellular memory and the histone code, Cell, 111 (2002), 285–291.Google Scholar
  13. [13]
    B.D. Strahl and C.D. Allis, The language of covalent histone modifications, Nature, 403 (2000), 41–45.Google Scholar
  14. [14]
    M. Grunstein, Histone acetylation in chromatin structure and transcription, Nature, 389 (1997), 349–352.Google Scholar
  15. [15]
    C.A. Mizzen and C.D. Allis, Linking histone acetylation to transcriptional reg-ulation, Cell. Mol. Life Sci., 54 (1998), 6–20.Google Scholar
  16. [16]
    A. Hamiche, J.G. Kang, C. Dennis, H. Xiao, and C. Wu, Histone tails mod-ulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF, Proc. Natl. Acad. Sci. U.S.A., 98 (2001), 14316–14321.Google Scholar
  17. [17]
    G.J. Narlikar, H.Y. Fan, and R.E. Kingston, Cooperation between com-plexes that regulate chromatin structure and transcription, Cell, 108 (2002), 475–487.Google Scholar
  18. [18]
    V. Ramakrishnan, Histone H1 and chromatin higher-order structure, Crit. Rev. Eukaryot. Gene. Expr., 7 (1997), 215–230.MathSciNetGoogle Scholar
  19. [19]
    R.T. Simpson, Structure of the chromatosome, a chromatin particle contain-ing 160 base pairs of DNA and all the histones, Biochemistry, 17 (1978), 5524–5531.Google Scholar
  20. [20]
    J. Allan, P.G. Hartman, C. Crane-robinson, and F.X. Aviles, The structure of histone H1 and its location in chromatin, Nature, 288 (1980), 675–679.Google Scholar
  21. [21]
    A. Hamiche, P. Schultz, V. Ramakrishnan, P. Oudet, and A. Prunell, Linker histone-dependent DNA structure in linear mononucleosomes, Journal of molecular biology, 257 (1996), 30–42.Google Scholar
  22. [22]
    F. Thoma, T. Koller, and A. Klug, Involvement of histone H1 in the or-ganization of the nucleosome and of the salt-dependent superstructures of chromatin, J. Cell. Biol., 83 (1979), 403–427.Google Scholar
  23. [23]
    P.M. Schwarz and J.C. Hansen, Formation and stability of higher order chro-matin structures. Contributions of the histone octamer, J. Biol. Chem., 269 (1994), 16284–16289.Google Scholar
  24. [24]
    L.M. Carruthers and J.C. Hansen, The core histone N termini function inde-pendently of linker histones during chromatin condensation, J. Biol. Chem.,275 (2000), 37285–37290.Google Scholar
  25. [25]
    J.C. Hansen, Conformational dynamics of the chromatin fiber in solution: deter-minants, mechanisms, and functions, Annu. Rev. Biophys. Biomol. Struct., 31 (2002), 361–392.Google Scholar
  26. [26]
    G. Arya and T. Schlick, Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model, Proc. Natl. Acad. Sci. USA, 103 (2006), 16236–16241.Google Scholar
  27. [27]
    L.M. Carruthers, J. Bednar, C.L. Woodcock, and J.C. Hansen, Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding, Biochemistry, 37 (1998), 14776–14787.Google Scholar
  28. [28]
    C.L. Woodcock, S.A. Grigoryev, R.A. Horowitz, and N. Whitaker, A chromatin folding model that incorporates linker variability generates fibers resembling the native structures, Proc. Natl. Acad. Sci. USA, 90 (1993), 9021–9025.Google Scholar
  29. [29]
    S.H. Leuba, G. Yang, C. Robert, B. Samori, K. Van holde, J. Zlatanova, and C. Bustamante, Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy, Proc. Natl. Acad. Sci. USA, 91 (1994), 11621–11625.Google Scholar
  30. [30]
    K. Van holde and J. Zlatanova, What determines the folding of the chromatin fiber?, Proc. Natl. Acad. Sci. USA, 93 (1996), 10548–10555.Google Scholar
  31. [31]
    T. Schalch, S. Duda, D.F. Sargent, and T.J. Richmond, X-ray structure of a tetranucleosome and its implications for the chromatin fibre, Nature, 436 (2005), 138–141.Google Scholar
  32. [32]
    V. Katritch, C. Bustamante, and W.K. Olson, Pulling chromatin fibers: Computer simulations of direct physical micromanipulations, Journal of molecular biology, 295 (2000), 29–40.Google Scholar
  33. [33]
    D.A. Beard and T. Schlick, Computational modeling predicts the structure and dynamics of chromatin fiber, Structure, 9 (2001), 105–114.Google Scholar
  34. [34]
    G. Wedemann and J. Langowski, Computer simulation of the 30-nanometer chromatin fiber, Biophysical journal, 82 (2002), 2847–2859.Google Scholar
  35. [35]
    H. Wong, J.M. Victor, and J. Mozziconacci, An all-atom model of the chro-matin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length, PLoS ONE, 2 (2007), e877.Google Scholar
  36. [36]
    S.H. Leuba, J. Zlatanova, and K. Van holde, On the location of histones H1 and H5 in the chromatin fiber. Studies with immobilized trypsin and chymotrypsin, Journal of molecular biology, 229 (1993), 917–929.Google Scholar
  37. [37]
    V. Graziano, S.E. Gerchman, D.K. Schneider, and V. Ramakrishnan, His-tone H1 is located in the interior of the chromatin 30-nm filament, Nature, 368 (1994), 351–354.Google Scholar
  38. [38]
    J. Zlatanova, S.H. Leuba, G. Yang, C. Bustamante, and K. Van holde, Linker DNA accessibility in chromatin fibers of different conformations: a reevaluation, Proc. Natl. Acad. Sci. USA, 91 (1994), 5277–5280.Google Scholar
  39. [39]
    J. Bednar, R.A. Horowitz, J. Dubochet, and C.L. Woodcock, Chro-matin conformation and salt-induced compaction: three-dimensional struc-tural information from cryoelectron microscopy, J. Cell. Biol., 131 (1995), 1365–1376.Google Scholar
  40. [40]
    J. Bednar, R.A. Horowitz, S.A. Grigoryev, L.M. Carruthers, J.C. Hansen, A.J. Koster, and C.L. Woodcock, Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order fold-ing and compaction of chromatin, Proc. Natl. Acad. Sci. USA, 95 (1998), 14173–14178.Google Scholar
  41. [41]
    P.B. Becker and W. Horz, ATP-dependent nucleosome remodeling, Annu. Rev. Biochem., 71 (2002), 247–273.Google Scholar
  42. [42]
    T. Tsukiyama, The in vivo functions of ATP-dependent chromatin-remodelling factors, Nat. Rev. Mol. Cell. Biol., 3 (2002), 422–429.Google Scholar
  43. [43]
    B.R. Cairns, Chromatin remodeling: insights and intrigue from single-molecule studies, Nat. Struct. Mol. Biol., 14 (2007), 989–996.Google Scholar
  44. [44]
    V.K. Gangaraju and B. Bartholomew, Mechanisms of ATP dependent chro-matin remodeling, Mutat. Res., 618 (2007), 3–17.Google Scholar
  45. [45]
    P. Choudhary and P. VARGA-WEISZ, ATP-dependent chromatin remodelling: action and reaction, Subcell. Biochem., 41 (2007), 29–43.Google Scholar
  46. [46]
    K.J. Polach and J. Widom, Mechanism of protein access to specific DNA se-quences in chromatin: a dynamic equilibrium model for gene regulation, Journal of molecular biology, 254 (1995), 130–149.Google Scholar
  47. [47]
    J.D. Anderson, A. Thastrom and J. Widom, Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation, Mol. Cell. Biol., 22 (2002), 7147–7157.Google Scholar
  48. [48]
    G. Li, M. Levitus, C. Bustamante, AND J. Widom, Rapid spontaneous acces-sibility of nucleosomal DNA, Nat. Struct. Mol. Biol., 12 (2005), 46–53.Google Scholar
  49. [49]
    M. Tomschik, H. Zheng, K. Van holde, J. Zlatanova, AND S.H. Leuba, Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer, Proc. Natl. Acad. Sci. Usa, 102 (2005), 3278–3283.Google Scholar
  50. [50]
    L. Kelbauskas, N. Chan, R. Bash, P. Debartolo, J. Sun, N. Woodbury, AND D. Lohr, Sequence-dependent variations associated with H2A/H2B de-pletion of nucleosomes, Biophysical journal, 94 (2008), 147–158.Google Scholar
  51. [51]
    U.M. Muthurajan, Y.J. Park, R.S. Edayathumangalam, R.K. Suto, S. Chakravarthy, P.N. Dyer, AND K. Luger, Structure and dynamics of nucleosomal DNA, Biopolymers, 68 (2003), 547–556.Google Scholar
  52. [52]
    G. Li and J. Widom, Nucleosomes facilitate their own invasion, Nat Struct. Mol. Biol., 11 (2004), 763–769.Google Scholar
  53. [53]
    G. Meersseman, S. Pennings, AND E.M. Bradbury, Mobile nucleosomes-a gen-eral behavior, Embo. J., 11 (1992), 2951–2959.Google Scholar
  54. [54]
    J.H. White, Self-linking and the Gauss integral in higher dimensions, Am. J. Math., 91 (1969), 693–728.zbMATHGoogle Scholar
  55. [55]
    F.B. Fuller, The writhing number of a space curve, Proc. Natl. Acad. Sci. Usa, 68 (1971), 815–819.zbMATHMathSciNetGoogle Scholar
  56. [56]
    F.H. Crick, Linking numbers and nucleosomes, Proc. Natl. Acad. Sci. Usa, 73 (1976), 2639–2643.MathSciNetGoogle Scholar
  57. [57]
    D.S. Horowitz and J.C. Wang, Torsional rigidity of DNA and length depen-dence of the free energy of DNA supercoiling, Journal of molecular biology, 173 (1984), 75–91.Google Scholar
  58. [58]
    L.E. Ulanovsky and E.N. Trifonov, Superhelicity of nucleosomal DNA changes its double-helical repeat, Cell. Biophys., 5 (1983), 281–283.Google Scholar
  59. [59]
    M. Le bret, Computation of the helical twist of nucleosomal DNA, Journal of molecular biology, 200 (1988), 285–290.Google Scholar
  60. [60]
    M.Y. Tolstorukov, A.V. Colasanti, D.M. Mccandlish, W.K. Olson, AND V.B. Zhurkin, A novel roll-and-slide mechanism of DNA folding in chro-matin: implications for nucleosome positioning, Journal of molecular biology, 371 (2007), 725–738.Google Scholar
  61. [61]
    Y. Zivanovic, I. Goulet, B. Revet, M. Le bret, AND A. Prunell, Chromatin reconstitution on small DNA rings. II. Dna supercoiling on the nucleosome, Journal of molecular biology, 200 (1988), 267–290.Google Scholar
  62. [62]
    Y. Zivanovic, I. DUBAND-GOULET, P. Schultz, E. Stofer, P. Oudet, AND A. Prunell, Chromatin reconstitution on small DNA rings. III. Histone H5 dependence of DNA supercoiling in the nucleosome, Journal of molecular biology, 214 (1990), 479–495.Google Scholar
  63. [63]
    F. De lucia, M. Alilat, A. Sivolob, AND A. Prunell, Nucleosome dynam-ics. III. Histone tail-dependent fluctuation of nucleosomes between open and closed DNA conformations. Implications for chromatin dynamics and the linking number paradox. A relaxation study of mononucleosomes on DNA minicircles, Journal of molecular biology, 285 (1999), 1101–1119.Google Scholar
  64. [64]
    R.T. Simpson and D.W. Stafford, Structural features of a phased nucleosome core particle, Proc. Natl. Acad. Sci. Usa, 80 (1983), 51–55.Google Scholar
  65. [65]
    A. Hamiche and A. Prunell, Chromatin reconstitution on small DNA rings. V. DNA thermal flexibility of single nucleosomes, Journal of molecular biology, 228 (1992), 327–337.Google Scholar
  66. [66]
    A. Sivolob, C. Lavelle, AND A. Prunell, Sequence-dependent nucleosome structural and dynamic polymorphism. Potential involvement of histone H2B N-terminal tail proximal domain, Journal of molecular biology, 326 (2003), 49–63.Google Scholar
  67. [67]
    N. Conde e SILVA, B.E. Black, A. Sivolob, J. Filipski, D.W. Cleveland, AND A. Prunell, CENP-A-containing nucleosomes: Easier disassembly versus exclusive centromeric localization, Journal of molecular biology, 370 (2007), 555–573.Google Scholar
  68. [68]
    D. Swigon, B.D. Coleman, AND I. Tobias, The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleo-somes, Biophysical journal, 74 (1998), 2515–2530.Google Scholar
  69. [69]
    I. Tobias, D. Swigon, AND B.D. Coleman, Elastic stability of DNA configu-rations. I. General theory, Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 61 (2000), 747–758.MathSciNetGoogle Scholar
  70. [70]
    B.D. Coleman, D. Swigon, AND I. Tobias, Elastic stability of DNA configura-tions. II. Supercoiled plasmids with self-contact, Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 61 (2000), 759–770.MathSciNetGoogle Scholar
  71. [71]
    M. Alilat, A. Sivolob, B. Revet, AND A. Prunell, Nucleosome dynamics. Protein and DNA contributions in the chiral transition of the tetrasome, the histone (H3-H4)2 tetramer-DNA particle, Journal of molecular biology, 291 (1999), 815–841.Google Scholar
  72. [72]
    C. Lavelle and A. Prunell, Chromatin polymorphism and the nucleosome superfamily: A genealogy, Cell cycle, 6 (2007), 2113–2119.Google Scholar
  73. [73]
    A. Sivolob, F. DE LUCIA, M. Alilat, AND A. Prunell, Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles, Journal of molecular biology, 295 (2000), 55–69.Google Scholar
  74. [74]
    M. Le bret, Twist and writhing in short circular DNAs according to first-order elasticity, Biopolymers, 23 (1984), 1835–1867.Google Scholar
  75. [75]
    T. Schlick and W.K. Olson, Supercoiled DNA energetics and dynamics by computer simulation, Journal of molecular biology, 223 (1992), 1089–1119.Google Scholar
  76. [76]
    T. Schlick, W.K. Olson, T. Westcott, AND J.P. Greenberg, On higher buckling transitions in supercoiled DNA, Biopolymers, 34 (1994), 565–597.Google Scholar
  77. [77]
    J. Bednar, P. Furrer, A. Stasiak, J. Dubochet, E.H. Egelman, AND A.D. Bates, The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound super-helix. Possible implications for DNA structure in vivo, Journal of molecular biology, 235 (1994), 825–847.Google Scholar
  78. [78]
    A. Sivolob, F. De lucia, B. Revet, AND A. Prunell, Nucleosome dynamics. II. High flexibility of nucleosome entering and exiting DNAs to positive cross- ing. An ethidium bromide fluorescence study of mononucleosomes on DNA minicircles, Journal of molecular biology, 285 (1999), 1081–1099.Google Scholar
  79. [79]
    A. Sivolob and A. Prunell, Nucleosome dynamics V. Ethidium bromide versus histone tails in modulating ethidium bromide-driven tetrasome chiral tran- sition. A fluorescence study of tetrasomes on DNA minicircles, Journal of molecular biology, 295 (2000), 41–53.Google Scholar
  80. [80]
    A. Sivolob and A. Prunell, Nucleosome conformational flexibility and im- plications for chromatin dynamics, Philosophical transactions, 362 (2004), 1519–1547.zbMATHMathSciNetGoogle Scholar
  81. [81]
    V. Morales and H. RICHARD-FOY, Role of histone N-terminal tails and their acetylation in nucleosome dynamics, Mol. Cell. Biol., 20 (2000), 7230–7237.Google Scholar
  82. [82]
    A. Hamiche, V. Carot, M. Alilat, F. De lucia, M.F. O’donohue, B. Revet, AND A. Prunell, Interaction of the histone (H3-H4)2 tetramer of the nucle-osome with positively supercoiled DNA minicircles: Potential flipping of the protein from a left- to a right-handed superhelical form, Proceedings of the National Academy of Sciences of the United States of America, 93 (1996), 7588–7593.Google Scholar
  83. [83]
    A. Hamiche and H. RICHARD-FOY, The switch in the helical handedness of the histone (H3-H4)2 tetramer within a nucleoprotein particle requires a reori-entation of the H3-H3 interface, J. Biol. Chem., 273 (1998), 9261–9269.Google Scholar
  84. [84]
    S. Peterson, R. Danowit, A. Wunsch, AND V. Jackson, NAP1 catalyzes the formation of either positive or negative supercoils on DNA on basis of the dimer-tetramer equilibrium of histones H3/H4, Biochemistry, 46 (2007), 8634–8646.Google Scholar
  85. [85]
    F. Marc, K. Sandman, R. Lurz, AND J.N. Reeve, Archaeal histone tetramer- ization determines DNA affinity and the direction of DNA supercoiling, J. Biol. Chem., 277 (2002), 30879–30886.Google Scholar
  86. [86]
    J.L. Baneres, J. Parello, J. Zaccai, AND D. Svergun, A neutron scattering study of the histone sub-assemblies within the nucleosome protein core, In ILL Millenium Symposium & European User Meeting, A.J. Dianoux, ed. (I.L.L. Grenoble, France) (2001), 55–57.Google Scholar
  87. [87]
    A. Bancaud, G. Wagner, E.S.N. Conde, C. Lavelle, H. Wong, J. Mozziconacci, M. Barbi, A. Sivolob, E. Le cam, L. Mouawad, J.L. Viovy, J.M. Victor, AND A. Prunell, Nucleosome chiral transition under positive torsional stress in single chromatin fibers, Molecular cell, 27 (2007), 135–147.Google Scholar
  88. [88]
    I. Goulet, Y. Zivanovic, A. Prunell, AND B. Revet, Chromatin reconstitution on small DNA rings. I, Journal of molecular biology, 200 (1988), 253–266.Google Scholar
  89. [89]
    J. Mozziconacci and J.M. Victor, Nucleosome gaping supports a functional structure for the 30 nm chromatin fiber, J. Struct. Biol., 143 (2003), 72–76.Google Scholar
  90. [90]
    J. Mozziconacci, C. Lavelle, M. Barbi, A. Lesne, AND J.M. Victor, A phys-ical model for the condensation and decondensation of eukaryotic chromo- somes, FEBS Lett., 580 (2006), 368–372.Google Scholar
  91. [91]
    I. DUBAND-GOULET, V. Carot, A.V. Ulyanov, S. DOUC-RASY, AND A. Prunell, Chromatin reconstitution on small DNA rings. IV. DNA super- coiling and nucleosome sequence preference, Journal of molecular biology, 224 (1992), 981–1001.Google Scholar
  92. [92]
    H.M. Wu and D.M. Crothers, The locus of sequence-directed and protein-induced DNA bending, Nature, 308 (1984), 509–513.Google Scholar
  93. [93]
    D. Angelov, J.M. Vitolo, V. Mutskov, S. Dimitrov, AND J.J. Hayes, Pref-erential interaction of the core histone tail domains with linker DNA, Proc. Natl. Acad. Sci. USA, 98 (2001), 6599–6604.Google Scholar
  94. [94]
    L. Hong, G.P. Schroth, H.R. Matthews, P. Yau, AND E.M. Bradbury, Stud-ies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA, J. Biol. Chem., 268 (1993), 305–314.Google Scholar
  95. [95]
    K. Toth, N. Brun, AND J. Langowski, Chromatin compaction at the mononu-cleosome level, Biochemistry, 45 (2006), 1591–1598.Google Scholar
  96. [96]
    B.P. Chadwick and H.F. Willard, A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome, J. Cell. Biol., 152 (2001), 375–384.Google Scholar
  97. [97]
    Y. Bao, K. Konesky, Y.J. Park, S. Rosu, P.N. Dyer, D. Rangasamy, D.J. Tremethick, P.J. Laybourn, AND K. Luger, Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA, Embo. J., 23 (2004), 3314–3324.Google Scholar
  98. [98]
    C.M. Doyen, F. Montel, T. Gautier, H. Menoni, C. Claudet, M. DELACOUR-LAROSE, D. Angelov, A. Hamiche, J. Bednar, C. FAIVRE-MOSKALENKO, P. Bouvet, AND S. Dimitrov, Dissection of the unusual structural and func- tional properties of the variant H2A.Bbd nucleosome, Embo. J., 25 (2006), 4234–4244.Google Scholar
  99. [99]
    D.K. Palmer, K. O’DAY, M.H. Wener, B.S. Andrews, AND R.L. Margolis, A 17-kD centromere protein (CENP-A) copurifies with nucleosome core par- ticles and with histones, J. Cell. Biol., 104 (1987), 805–815.Google Scholar
  100. [100]
    K. Yoda, S. Ando, S. Morishita, K. Houmura, K. Hashimoto, K. Takeyasu, AND T. Okazaki, Human centromere protein A (CENP-A) can replace his- tone H3 in nucleosome reconstitution in vitro, Proc. Natl. Acad. Sci. USA, 97 (2000), 7266–7271.Google Scholar
  101. [101]
    K.A. Collins, S. Furuyama, AND S. Biggins, Proteolysis contributes to the ex-clusive centromere localization of the yeast Cse4/CENP-A histone H3 vari- ant, Curr. Biol., 14 (2004), 1968–1972.Google Scholar
  102. [102]
    O. MORENO-MORENO, M. TORRAS-LLORT, AND F. Azorin, Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres, Nucleic acids research, 34 (2006), 6247–6255.Google Scholar
  103. [103]
    M.G. Schueler and B.A. Sullivan, Structural and functional dynamics of hu-man centromeric chromatin, Annual review of genomics and human genetics, 7 (2006), 301–313.Google Scholar
  104. [104]
    A. Sivolob and A. Prunell, Linker histone-dependent organization and dy-namics of nucleosome entry/exit DNAs, Journal of molecular biology, 331 (2003), 1025–1040.Google Scholar
  105. [105]
    A. Bancaud, N. Conde e SILVA, M. Barbi, G. Wagner, J.F. Allemand, J. Mozziconacci, C. Lavelle, V. Croquette, J.M. Victor, A. Prunell, AND J.L. Viovy, Structural plasticity of single chromatin fibers revealed by torsional manipulation, Nature structural & molecular biology, 13 (2006), 444–450.Google Scholar
  106. [106]
    T.R. Strick, J.F. Allemand, D. Bensimon, A. Bensimon, AND V. Croquette, The elasticity of a single supercoiled DNA molecule, Science, 271 (1996), 1835–1837.Google Scholar
  107. [107]
    S. Neukirch, Extracting DNA twist rigidity from experimental supercoiling data, Physical review letters, 93 (2004), 198107.Google Scholar
  108. [108]
    C. Bouchiat and M. M´EZARD, Elasticity model of a supercoiled DNA molecule, Physical review letters, 80 (1998), 1556–1559.Google Scholar
  109. [109]
    E. BEN-HA¨ıM, A. Lesne, AND J.M. Victor, Chromatin: a tunable spring at work inside chromosomes, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 64 (2001), 051921.Google Scholar
  110. [110]
    Y. Cui and C. Bustamante, Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure, Proc. Natl. Acad. Sci. USA, 97 (2000), 127–132.Google Scholar
  111. [111]
    B.D. BROWER-TOLAND, C.L. Smith, R.C. Yeh, J.T. Lis, C.L. Peterson, AND M.D. Wang, Mechanical disruption of individual nucleosomes reveals a re-versible multistage release of DNA, Proc. Natl. Acad. Sci. USA, 99 (2002), 1960–1965.Google Scholar
  112. [112]
    C. Bouchiat, M.D. Wang, J. Allemand, T. Strick, S.M. Block, AND V. Croquette, Estimating the persistence length of a worm-like chain molecule from force-extension measurements, Biophysical journal, 76 (1999), 409–413.Google Scholar
  113. [113]
    A. Bertin, M. Renouard, J.S. Pedersen, F. Livolant, AND D. Durand, H3 and H4 histone tails play a central role in the interactions of recombinant NCPs, Biophysical journal, 92 (2007), 2633–2645.Google Scholar
  114. [114]
    R.C. Benedict, E.N. Moudrianakis, AND G.K. Ackers, Interactions of the nucleosomal core histones: a calorimetric study of octamer assembly, Bio-chemistry, 23 (1984), 1214–1218.Google Scholar
  115. [115]
    S. Neukirch, G.H.M. Van der HEIJDEN, AND J.M.T. Thompson, Writhing instabilities of twisted rods: from infinite to finite lengths, J. Mech. Phys. Solids, 50 (2002), 1175–1191.zbMATHMathSciNetGoogle Scholar
  116. [116]
    D.J. Clark and G. Felsenfeld, Formation of nucleosomes on positively su-percoiled DNA, Embo. J., 10 (1991), 387–395.Google Scholar
  117. [117]
    J.E. Germond, B. Hirt, P. Oudet, M. GROSS-BELLARK, AND P. Chambon, Folding of the DNA double helix in chromatin-like structures from simian virus 40, Proc. Natl. Acad. Sci. USA, 72 (1975), 1843–1847.Google Scholar
  118. [118]
    R.T. Simpson, F. Thoma, AND J.M. Brubaker, Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: A model system for study of higher order structure, Cell, 42 (1985), 799–808.Google Scholar
  119. [119]
    V.G. Norton, B.S. Imai, P. Yau, AND E.M. Bradbury, Histone acetylation reduces nucleosome core particle linking number change, Cell, 57 (1989), 449–457.Google Scholar
  120. [120]
    W. Keller, U. Muller, I. Eicken, I. Wendel, AND H. Zentgraf, Biochemical and ultrastructural analysis of SV40 chromatin, Cold Spring Harb. Symp. Quant. Biol., 42 Pt 1 (1978), 227–244.Google Scholar
  121. [121]
    M.M. Garner, G. Felsenfeld, M.H. O’dea, and M. Gellert, Effects of DNA supercoiling on the topological properties of nucleosomes, Proc. Natl. Acad. Sci. USA, 84 (1987), 2620–2623.Google Scholar
  122. [122]
    A. Klug and L.C. Lutter, The helical periodicity of DNA on the nucleosome, Nucleic acids research, 9 (1981), 4267–4283.Google Scholar
  123. [123]
    J.C. Wang, The path of DNA in the nucleosome, Cell, 29 (1982), 724–726.Google Scholar
  124. [124]
    A. Prunell, A topological approach to nucleosome structure and dynamics: the linking number paradox and other issues, Biophysical journal, 74 (1998), 2531–2544.Google Scholar
  125. [125]
    J.T. Finch, L.C. Lutter, D. Rhodes, R.S. Brown, B. Rushton, M. Levitt, AND A. Klug, Structure of nucleosome core particles of chromatin, Nature, 269 (1977), 29–36.Google Scholar
  126. [126]
    A. Klug and A.A. Travers, The helical repeat of nucleosome-wrapped DNA, Cell, 56 (1989), 10–11.Google Scholar
  127. [127]
    J.H. White and W.R. Bauer, The helical repeat of nucleosome-wrapped DNA, Cell, 56 (1989), 9–10.Google Scholar
  128. [128]
    J.J. Hayes, T.D. Tullius, AND A.P. Wolffe, The structure of DNA in a nu-cleosome, Proc. Natl. Acad. Sci. USA, 87 (1990), 7405–7409.Google Scholar
  129. [129]
    A. Prunell and A. Sivolob, Paradox lost: nucleosome structure and dynamics by the DNA minicircle approach in Chromatin Structure and Dynamics: State-of-the-Art, Vol. 39 (eds. Zlatanova, J. & Leuba, S.H.) 45–73 (Elsevier, London, 2004) (2004).Google Scholar
  130. [130]
    L.C. Lutter, L. Judis, AND R.F. Paretti, Effects of histone acetylation on chromatin topology in vivo, Mol. Cell. Biol., 12 (1992), 5004–5014.Google Scholar
  131. [131]
    A. Stein, DNA wrapping in nucleosomes. The linking number problem re-examined, Nucleic acids research, 8 (1980), 4803–4820.Google Scholar
  132. [132]
    M. Shure and J. Vinograd, The number of superhelical turns in native virion SV40 DNA and minicol DNA determined by the band counting method, Cell, 8 (1976), 215–226.Google Scholar
  133. [133]
    R.H. Morse and C.R. Cantor, Effect of trypsinization and histone H5 addition on DNA twist and topology in reconstituted minichromosomes, Nucleic acids research, 14 (1986), 3293–3310.Google Scholar
  134. [134]
    A. RODRIGUEZ-CAMPOS, A. Shimamura, AND A. Worcel, Assembly and prop-erties of chromatin containing histone H1, Journal of molecular biology, 209 (1989), 135–150.Google Scholar
  135. [135]
    L.A. Freeman and W.T. Garrard, DNA supercoiling in chromatin structure and gene expression, Crit. Rev. Eukaryot. Gene. Expr., 2 (1992), 165–209.Google Scholar
  136. [136]
    R.H. Morse and C.R. Cantor, Nucleosome core particles suppress the thermal untwisting of core DNA and adjacent linker DNA, Proc. Natl. Acad. Sci. USA, 82 (1985), 4653–4657.Google Scholar
  137. [137]
    R.H. Morse, D.S. Pederson, A. Dean, AND R.T. Simpson, Yeast nucleo-somes allow thermal untwisting of DNA, Nucleic acids research, 15 (1987), 10311–10330.Google Scholar
  138. [138]
    L.F. Liu and J.C.WANG, Supercoiling of the DNA template during transcription, Proc. Natl. Acad. Sci. USA, 84 (1987), 7024–7027.Google Scholar
  139. [139]
    Y.P. Tsao, H.Y. Wu, AND L.F. Liu, Transcription-driven supercoiling of DNA: direct biochemical evidence from in vitro studies, Cell, 56 (1989), 111–118.Google Scholar
  140. [140]
    C. Lavelle, Transcription elongation through a chromatin template, Biochimie, 89 (2007), 516–527.Google Scholar
  141. [141]
    F. Caron and J.O. Thomas, Exchange of histone H1 between segments of chro-matin, Journal of molecular biology, 146 (1981), 513–537.Google Scholar
  142. [142]
    Y.J. Jin and R.D. Cole, H1 histone exchange is limited to particular regions of chromatin that differ in aggregation properties, J. Biol. Chem., 261 (1986), 3420–3427.Google Scholar
  143. [143]
    L. Louters and R. Chalkley, Exchange of histones H1, H2A, and H2B in vivo, Biochemistry, 24 (1985), 3080–3085.Google Scholar
  144. [144]
    M.A. Lever, J.P. TH’NG, X. Sun, AND M.J. Hendzel, Rapid exchange of histone H1.1 on chromatin in living human cells, Nature, 408 (2000), 873–876.Google Scholar
  145. [145]
    T. Misteli, A. Gunjan, R. Hock, M. Bustin, AND D.T. Brown, Dynamic binding of histone H1 to chromatin in living cells, Nature, 408 (2000), 877–881.Google Scholar
  146. [146]
    D.T. Brown, Histone H1 and the dynamic regulation of chromatin function, Biochem. Cell. Biol., 81 (2003), 221–227.Google Scholar
  147. [147]
    M. Bustin, F. Catez, AND J.H. Lim, The dynamics of histone H1 function in chromatin, Mol. Cell., 17 (2005), 617–620.Google Scholar
  148. [148]
    W. An, Histone acetylation and methylation: combinatorial players for transcrip-tional regulation, Subcell. Biochem., 41 (2007), 351–369.Google Scholar
  149. [149]
    M.D. Shahbazian and M. Grunstein, Functions of site-specific histone acetyla-tion and deacetylation, Annu. Rev. Biochem., 76 (2007), 75–100.Google Scholar
  150. [150]
    Y. Harada, O. Ohara, A. Takatsuki, H. Itoh, N. Shimamoto, AND K. Kinosita, JR., Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase, Nature, 409 (2001), 113–115.Google Scholar
  151. [151]
    T. Ito, T. Ikehara, T. Nakagawa, W.L. Kraus, AND M. Muramatsu, p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone, Genes. Dev., 14 (2000), 1899–1907.Google Scholar
  152. [152]
    D. Reinberg and R.J. Sims, 3rd, de FACTo nucleosome dynamics, J. Biol. Chem., 281 (2006), 23297–23301.Google Scholar
  153. [153]
    J. Salceda, X. Fernandez, AND J. Roca, Topoisomerase II, not topoisomerase I, is the proficient relaxase of nucleosomal DNA, Embo. J., 25 (2006), 2575–2583.Google Scholar
  154. [154]
    F. Kouzine, S. Sanford, Z. ELISHA-FEIL, AND D. Levens, The functional re-sponse of upstream DNA to dynamic supercoiling in vivo, Nat. Struct. Mol. Biol., 15 (2008), 146–154.Google Scholar
  155. [155]
    C. Lavelle, DNA torsional stress propagates through chromatin fiber and par- ticipates in transcriptional regulation, Nat. Struct. Mol. Biol., 15 (2008),123–125.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrei Sivolob
    • 1
    Email author
  • Christophe Lavelle
    • 2
  • Ariel Prunell
    • 3
  1. 1.Department of General and Molecular GeneticsTaras Shevchenko National Univer-sityKievUkraine
  2. 2.Laboratoire Physico-Chimie Curie, UMR CNRS 168Institut CurieParis CedexFrance
  3. 3.Centre National de la Recherche Scien-tifique, Universit´e Denis Diderot Paris 7 et Universit´e P. et MInstitut Jacques MonodParis C´edexFrance

Personalised recommendations