Advertisement

Micromechanics of Single Supercoiled DNA Molecules

  • John F. Marko
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 150)

Abstract

The theory of the mechanical response of single DNA molecules under stretching and twisting stresses is reviewed. Using established results for the the semiflexible polymer including the effect of torsional stress, and for the free energy of plectonemic supercoils, a theory of coexisting plectonemic and extended DNA is constructed and shown to produce phenomena observed experimentally. Analytical results for DNA extension and torque are presented, and effects of anharmonicities in the plectonemic free energy are described. An application of the theory to the problem of torsional-stress-induced cruciform extrusion is also discussed.

Key words

DNA molecular biology statistical mechanics polymer physics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Smith, L. Finzi, and C. Bustamante, Science 258, 1122–1126 (1992).CrossRefGoogle Scholar
  2. [2]
    Bustamante, J.F. Marko, S. Smith, and E.D. Siggia, Science 265, 1599– 1600 (1994).Google Scholar
  3. [3]
    A.V. Vologodskii, Macromolecules 27, 5623–5625 (1994).CrossRefGoogle Scholar
  4. [4]
    T. Odijk, Macromolecules 28, 7016–7018 (1995).CrossRefGoogle Scholar
  5. [5]
    J.F. Marko and E.D. Siggia, Macromolecules 28, 8759–8770 (1995).CrossRefGoogle Scholar
  6. [6]
    T.R. Strick, J.-F. Allem and, D. Bensimon, A. Bensimon, and V. Croquette, Science 271, 1835–1837 (1996).CrossRefGoogle Scholar
  7. [7]
    R. Strick, J.-F. Allem and, D. Bensimon, and V. Croquette, Biophys. J. 74, 2016–2028 (1998).CrossRefGoogle Scholar
  8. [8]
    T. Strick, J.F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, Physica A 263, 392–404 (1999).CrossRefGoogle Scholar
  9. [9]
    T.R. Strick, J.-F. Allemand, V. Croquette, and D. Bensimon, Prog. Biophys. Mol. Biol. 74, 115–140 (2000).CrossRefGoogle Scholar
  10. [10]
    J.F. Marko and E.D. Siggia, Science 265, 506–508 (1994).CrossRefGoogle Scholar
  11. [11]
    J.F. Marko and E.D. Siggia, Phys. Rev. E. 52, 2912–2938 (1995).CrossRefMathSciNetGoogle Scholar
  12. [12]
    J.F. Marko and A. Vologodskii, Biophys. J. 73 123–132 (1997).CrossRefGoogle Scholar
  13. [13]
    B.Fain, J. Rudnick, and S. Ostlund, Phys. Rev. E 55, 7364–7368 (1997).CrossRefGoogle Scholar
  14. [14]
    J.F. Marko, Phys. Rev. E 55, 1758–1772 (1997).CrossRefGoogle Scholar
  15. [15]
    J.F. Marko, Phys. Rev. E 57, 2134–2149 (1998).CrossRefGoogle Scholar
  16. [16]
    S.Neukirch, Phys. Rev. Lett. 93, 198107 (2004).Google Scholar
  17. [17]
    T.R. Strick, V. Croquette, and D. Bensimon, Nature 404, 901–904 (2000).CrossRefGoogle Scholar
  18. [18]
    N.J. Crisona, T.R. Strick, D. Bensimon, V. Croquette, and N.R. Cozzarelli, Genes. Dev. 14, 2881–2892 (2000).CrossRefGoogle Scholar
  19. [19]
    N.H. Dekker, V.V. Rybenkov, M. Duguet, N.J. Crisona, N.R. Cozzarelli, D.Bensimon, and V. Croquette, Proc. Natl. Acad. Sci. USA 99 12126–12131 (2002).CrossRefGoogle Scholar
  20. [20]
    G. Charvin, T.R. Strick, D. Bensimon, and V. Croquette, Biophys. J. 89 384–392 (2005).CrossRefGoogle Scholar
  21. [21]
    D.A. Koster, V. Croquette, C. Dekker, S. Shuman, and N.H. Dekker, Nature 434 671–674 s(2005).CrossRefGoogle Scholar
  22. [22]
    N.H. Dekker, T. Viard, C.B.de la Tour, M. Duguet, D. Bensimon, and V. Croquette, J. Mol. Biol 329 271–282 (2003).CrossRefGoogle Scholar
  23. [23]
    B. Taneja, B. Schnurr, A. Slesarev, J.F. Marko, and A. Mondragon, Proc. Natl. Acad. Sci. USA 104, 14670–14675 (2007).CrossRefGoogle Scholar
  24. [24]
    Z. Bryant, M.D. Stone, J. Gore, S.B. Smith, N.R. Cozzarelli, and C. Bustamante, Nature 424, 338–341 (2003).CrossRefGoogle Scholar
  25. [25]
    J. Gore, Z. Bryant, M.D. Stone, M.N. Nollmann, N.R. Cozzarelli, and C. Bustamante, Nature 439 100–104 (2006).CrossRefGoogle Scholar
  26. [26]
    C. Deufel, S. Forth, C.R. Simmons, S. Dejgosha, and M.D. Wang, Nature Methods 4 223–225 (2007).CrossRefGoogle Scholar
  27. [27]
    J.F. Marko, Phys. Rev. E 76, 021926 (2007).CrossRefMathSciNetGoogle Scholar
  28. [28]
    J.F. Marko, in Les Houches Session LXXXII, Multiple aspects of DNA and RNA from biophysics to bioinformatics, ed. D. Chatenay et al., pp. 248–250 (Elsevier, San Diego CA, 2005).Google Scholar
  29. [29]
    P.J. Hagerman, Ann. Rev. Biophys. Biophys. Chem. 17 265–86 (1988).CrossRefGoogle Scholar
  30. [30]
    P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.L. Viovy, D. Chatenay, and F. Caron, Science 271, 792–794 (1996).CrossRefGoogle Scholar
  31. [31]
    S.B. Smith, Y. Cui, and C. Bustamante, Science 271, 795–9 (1996).CrossRefGoogle Scholar
  32. [32]
    R.W. Ogden, G. Saccomandi, and I. Sgura, Comp. Math. Appl. 53, 276–286 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Ch. II (Pergamon, New York NY, 1986).Google Scholar
  34. [34]
    D.M. Crothers, J. Drak, J.D. Kahn, and S.D. Levene, Meth. Enzym. 212 3–29 (1992).CrossRefGoogle Scholar
  35. [35]
    V. Rossetto, Europhys. Lett. 69 142–148 (2005).CrossRefGoogle Scholar
  36. [36]
    J.D. Moroz and P. Nelson, Proc. Natl. Acad. Sci. USA 94, 14418–14422 (1997)CrossRefGoogle Scholar
  37. [37]
    J.D. Moroz and P. Nelson, Macromolecules 31, 6333–6347 (1998).CrossRefGoogle Scholar
  38. [38]
    J.F. Marko, Europhys. Lett. 38, 183–188 (1997).CrossRefMathSciNetGoogle Scholar
  39. [39]
    R.D. Kamien, T.C. Lubensky, P. Nelson, and C.S. O’Hern, Europhys. Lett. 38, 237–242 (1997).CrossRefMathSciNetGoogle Scholar
  40. [40]
    T. Lionnet, S. Joubaud, R. Lavery, D. Bensimon, and V. Croquette, Phys. Rev. Lett. 96, 178102 (2006).CrossRefGoogle Scholar
  41. [41]
    J. Gore, Z. Bryant, M. Nollmann, M.U. Le, N.R. Cozzarelli, and C. Bustamante, Nature 442, 836–839 (2006).CrossRefGoogle Scholar
  42. [42]
    A.V. Vologodskii, S.D. Levene, K.V. Klenin, M. Frank-Kamenetskii, and N.R. Cozzarelli, J. Mol. Biol. 227, 1224–1243 (1992).CrossRefGoogle Scholar
  43. [43]
    W. Bauer and J. Vinograd, J. Mol. Biol. 47, 419–35 (1970).CrossRefGoogle Scholar
  44. [44]
    K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne, and M.D.Frank-Kamenetskii, J. Mol. Biol. 217, 413–419 (1991).CrossRefGoogle Scholar
  45. [45]
    V.V. Rybenkov, A.V. Vologodkskii, and N.R. Cozzarelli, Nucl. Acids Res. 25 1412–1418 (1997).CrossRefGoogle Scholar
  46. [46]
    A.E.H. Love, A Treatise on the mathematical theory of elasticity, pp. 417–419 (Dover, New York NY, 1944)Google Scholar
  47. [47]
    A. Sarkar, J.F. Léger, D. Chatenay, and J.F. Marko, Phys. Rev. E 63 051903 (2001).CrossRefGoogle Scholar
  48. [48]
    S. Cocco, J. Yan, J.F. Léger, D. Chatenay, and J.F. Marko, Phys. Rev. E 70 011910 (2004).CrossRefGoogle Scholar
  49. [49]
    J.F. Allemand, D. Bensimon, and V. Croquette, Proc. Natl. Acad. Sci. USA 95, 14152–14157 (1998).CrossRefGoogle Scholar
  50. [50]
    T.R. Strick, V. Croquette, and D. Bensimon, Proc. Natl. Acad. Sci. USA 95 10579–10583 (1998).CrossRefGoogle Scholar
  51. [51]
    S. Kutter and E.M. Terentjev, Eur. J. Phys. B 21, 455–462 (2001); S. Kutter, Ph.D. Thesis, (University of Cambridge, England UK, 2002).Google Scholar
  52. [52]
    A. Dawid, F. Guillemot, C. Breème, V. Croquette, and F. Heslot, Phys. ev. Lett. 96, 188102 (2006).CrossRefGoogle Scholar
  53. [53]
    J. Yan and J.F. Marko, Phys. Rev. E 68, 011905 (2003).CrossRefGoogle Scholar
  54. [54]
    S. Cocco, J.F. Marko, R. Monasson, A. Sarkar, and J. Yan, Eur. Phys. J. E 10, 249–263 (2003)CrossRefGoogle Scholar
  55. [55]
    B. Schnurr, C. Vorgias, and J. Stavans, Biophys. Rev. Lett. 1, 29–44 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John F. Marko
    • 1
  1. 1.Department of Physics and Astronomy and Department of BiochemistryMolecular Biology and Cell Biology, Northwestern UniversityEvanstonUSA

Personalised recommendations