Advertisement

Telomerase Control by Epigenetic Processes in Cellular Senescence

  • Huaping Chen
  • Trygve O. Tollefsbol

Abstract

Cellular senescence is a controversial process that can prevent age-related diseases such as cancer while also promoting the aging process. A number of genes, such as those of oncogenes and tumor suppressors, have been shown to be of high importance in this process. Telomerase is a crucial enzyme that plays a pivotal role in cellular senescence by maintaining the stability of the genome. Five components of telomerase have been discovered so far, namely hTERT which is the catalytic subunit of telomerase, hTR which provides the RNA template for hTERT, a protein termed dyskerin which binds to hTR, and two additional proteins termed pontin and reptin which can assist the assembly of telomerase. Genetic control of these genes in cellular senescence has been investigated widely and many advances have been made in understanding the basis of the control of these genes. Epigenetic processes are important mechanisms that regulate the expression of genes and epigenetic control has also been shown to play an important role in cellular senescence. Our current insights on telomerase control by epigenetic processes in cellular senescence are reviewed in this chapter.

Keywords

Telomerase Epigenetic Cellular senescence 

References

  1. Atkinson, S., Hoare, S., Glasspool, R., and Keith, W. (2005). Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res 65, 7585–7590.PubMedGoogle Scholar
  2. Autexier, C., and Lue, N. F. (2006). The structure and function of telomerase reverse transcriptase. Annu Rev Biochem 75, 493–517.CrossRefPubMedGoogle Scholar
  3. Baird, D. M., Rowson, J., Wynford-Thomas, D., and Kipling, D. (2003). Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 33, 203–207.CrossRefPubMedGoogle Scholar
  4. Baumann, P., and Cech, T. (2001). Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175.CrossRefPubMedGoogle Scholar
  5. Bavik, C., Coleman, I., Dean, J., Knudsen, B., Plymate, S., and Nelson, P. (2006). The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66, 794–802.CrossRefPubMedGoogle Scholar
  6. Bayne, S., and Liu, J. (2005). Hormones and growth factors regulate telomerase activity in ageing and cancer. Mol Cell Endocrinol 240, 11–22.CrossRefPubMedGoogle Scholar
  7. Bechter, O., Eisterer, W., Dlaska, M., Kühr, T., and Thaler, J. (2002). CpG island methylation of the hTERT promoter is associated with lower telomerase activity in B-cell lymphocytic leukemia. Exp Hematol 30, 26–33.CrossRefPubMedGoogle Scholar
  8. Blasco, M. (2005). Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 24, 1095–1103.CrossRefPubMedGoogle Scholar
  9. Bodnar, A., Ouellette, M., Frolkis, M., Holt, S., Chiu, C., Morin, G., Harley, C., Shay, J., Lichtsteiner, S., and Wright, W. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.CrossRefPubMedGoogle Scholar
  10. Bryce, L., Morrison, N., Hoare, S., Muir, S., and Keith, W. (2000). Mapping of the gene for the human telomerase reverse transcriptase, hTERT, to chromosome 5p15.33 by fluorescence in situ hybridization. Neoplasia 2, 197–201.CrossRefPubMedGoogle Scholar
  11. Campisi, J. (2005). Suppressing cancer: the importance of being senescent. Science 309, 886–887.CrossRefPubMedGoogle Scholar
  12. Campisi, J., and d’Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8, 729–740.Google Scholar
  13. Cao, Y., Bryan, T., and Reddel, R. (2008). Increased copy number of the TERT and TERC telomerase subunit genes in cancer cells. Cancer Sci 99, 1092–1099.CrossRefPubMedGoogle Scholar
  14. Celli, G., and de Lange, T. (2005). DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 7, 712–718.CrossRefPubMedGoogle Scholar
  15. Chedin, F., Lieber, M., and Hsieh, C. (2002). The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA 99, 16916–16921.CrossRefPubMedGoogle Scholar
  16. Collado, M., Blasco, M., and Serrano, M. (2007). Cellular senescence in cancer and aging. Cell 130, 223–233.CrossRefPubMedGoogle Scholar
  17. Collins, K. (2006). The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7, 484–494.CrossRefPubMedGoogle Scholar
  18. d’Adda di Fagagna, F., Reaper, P., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N., and Jackson, S. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198.Google Scholar
  19. de Lange, T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19, 2100–2110.CrossRefPubMedGoogle Scholar
  20. Dessain, S., Yu, H., Reddel, R., Beijersbergen, R., and Weinberg, R. (2000). Methylation of the human telomerase gene CpG island. Cancer Res 60, 537–541.PubMedGoogle Scholar
  21. Devereux, T., Horikawa, I., Anna, C., Annab, L., Afshari, C., and Barrett, J. (1999). DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res 59, 6087–6090.PubMedGoogle Scholar
  22. Dillon, S., Zhang, X., Trievel, R., and Cheng, X. (2005). The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6, 227.CrossRefPubMedGoogle Scholar
  23. Dunham, M., Neumann, A., Fasching, C., and Reddel, R. (2000). Telomere maintenance by recombination in human cells. Nat Genet 26, 447–450.CrossRefPubMedGoogle Scholar
  24. Feng, J., Funk, W. D., Wang, S. S., Weinrich, S. L., Avilion, A. A., Chiu, C. P., Adams, R. R., Chang, E., Allsopp, R. C., Yu, J., et al. (1995). The RNA component of human telomerase. Science 269, 1236–1241.CrossRefPubMedGoogle Scholar
  25. Gire, V., Roux, P., Wynford-Thomas, D., Brondello, J., and Dulic, V. (2004). DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J 23, 2554–2563.CrossRefPubMedGoogle Scholar
  26. Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and de Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell 97, 503–514.CrossRefPubMedGoogle Scholar
  27. Guilleret, I., Yan, P., Grange, F., Braunschweig, R., Bosman, F., and Benhattar, J. (2002a). Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer 101, 335–341.CrossRefPubMedGoogle Scholar
  28. Guilleret, I., Yan, P., Guillou, L., Braunschweig, R., Coindre, J., and Benhattar, J. (2002b). The human telomerase RNA gene (hTERC) is regulated during carcinogenesis but is not dependent on DNA methylation. Carcinogenesis 23, 2025–2030.CrossRefPubMedGoogle Scholar
  29. Harley, C., Futcher, A., and Greider, C. (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460.CrossRefPubMedGoogle Scholar
  30. Harrington, L., McPhail, T., Mar, V., Zhou, W., Oulton, R., Bass, M. B., Arruda, I., and Robinson, M. O. (1997). A mammalian telomerase-associated protein. Science 275, 973–977.CrossRefPubMedGoogle Scholar
  31. Hastie, N., Dempster, M., Dunlop, M., Thompson, A., Green, D., and Allshire, R. (1990). Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868.CrossRefPubMedGoogle Scholar
  32. Herbert, B., Pitts, A. E., Baker, S. I., Hamilton, S. E., Wright, W. E., Shay, J. W., and Corey, D. R. (1999). Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci USA 96, 14276–14281.CrossRefPubMedGoogle Scholar
  33. Herbig, U., Jobling, W., Chen, B., Chen, D., and Sedivy, J. (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14, 501–513.CrossRefPubMedGoogle Scholar
  34. Hoare, S., Bryce, L., Wisman, G., Burns, S., Going, J., van der Zee, A., and Keith, W. (2001). Lack of telomerase RNA gene hTERC expression in alternative lengthening of telomeres cells is associated with methylation of the hTERC promoter. Cancer Res 61, 27–32.PubMedGoogle Scholar
  35. Horikawa, I., Cable, P., Afshari, C., and Barrett, J. (1999). Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 59, 826–830.PubMedGoogle Scholar
  36. Jones, P. (1999). The DNA methylation paradox. Trends Genet 15, 34–37.CrossRefPubMedGoogle Scholar
  37. Jones, P., and Baylin, S. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415–428.CrossRefPubMedGoogle Scholar
  38. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015.CrossRefPubMedGoogle Scholar
  39. Knuutila, S., Björkqvist, A., Autio, K., Tarkkanen, M., Wolf, M., Monni, O., Szymanska, J., Larramendy, M., Tapper, J., Pere, H., et al. (1998). DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am J Pathol 152, 1107–1123.PubMedGoogle Scholar
  40. Lai, S., Cunningham, A., Huynh, V., Andrews, L., and Tollefsbol, T. (2007). Evidence of extra-telomeric effects of hTERT and its regulation involving a feedback loop. Exp Cell Res 313, 322–330.CrossRefPubMedGoogle Scholar
  41. Lansdorp, P. M., Verwoerd, N. P., van de Rijke, F. M., Dragowska, V., Little, M. T., Dirks, R. W., Raap, A. K., and Tanke, H. J. (1996). Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5, 685–691.CrossRefPubMedGoogle Scholar
  42. Liu, C., Fang, X., Ge, Z., Jalink, M., Kyo, S., Björkholm, M., Gruber, A., Sjöberg, J., and Xu, D. (2007). The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res 67, 2626–2631.CrossRefPubMedGoogle Scholar
  43. Liu, D., O’Connor, M., Qin, J., and Songyang, Z. (2004a). Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem 279, 51338–51342.CrossRefPubMedGoogle Scholar
  44. Liu, D., Safari, A., O’Connor, M., Chan, D., Laegeler, A., Qin, J., and Songyang, Z. (2004b). PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6, 673–680.CrossRefPubMedGoogle Scholar
  45. Lopatina, N., Poole, J., Saldanha, S., Hansen, N., Key, J., Pita, M., Andrews, L., and Tollefsbol, T. (2003). Control mechanisms in the regulation of telomerase reverse transcriptase expression in differentiating human teratocarcinoma cells. Biochem Biophys Res Commun 306, 650–659.CrossRefPubMedGoogle Scholar
  46. Luger, K., Mäder, A., Richmond, R., Sargent, D., and Richmond, T. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260.CrossRefPubMedGoogle Scholar
  47. Meyerson, M., Counter, C. M., Eaton, E. N., Ellisen, L. W., Steiner, P., Caddle, S. D., Ziaugra, L., Beijersbergen, R. L., Davidoff, M. J., Liu, Q., et al. (1997). hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795.CrossRefPubMedGoogle Scholar
  48. Moyzis, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., Meyne, J., Ratliff, R. L., and Wu, J. R. (1988). A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85, 6622–6626.CrossRefPubMedGoogle Scholar
  49. Nakamura, T. M., Morin, G. B., Chapman, K. B., Weinrich, S. L., Andrews, W. H., Lingner, J., Harley, C. B., and Cech, T. R. (1997). Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959.CrossRefPubMedGoogle Scholar
  50. Nan, X., Ng, H., Johnson, C., Laherty, C., Turner, B., Eisenman, R., and Bird, A. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.CrossRefPubMedGoogle Scholar
  51. Nugent, C., and Lundblad, V. (1998). The telomerase reverse transcriptase: components and regulation. Genes Dev 12, 1073–1085.CrossRefPubMedGoogle Scholar
  52. Okano, M., Bell, D., Haber, D., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.CrossRefPubMedGoogle Scholar
  53. Rooney, P., Murray, G., Stevenson, D., Haites, N., Cassidy, J., and McLeod, H. (1999). Comparative genomic hybridization and chromosomal instability in solid tumours. Br J Cancer 80, 862–873.CrossRefPubMedGoogle Scholar
  54. Savage, S., Chanock, S., Lissowska, J., Brinton, L., Richesson, D., Peplonska, B., Bardin-Mikolajczak, A., Zatonski, W., Szeszenia-Dabrowska, N., and Garcia-Closas, M. (2007). Genetic variation in five genes important in telomere biology and risk for breast cancer. Br J Cancer 97, 832–836.CrossRefPubMedGoogle Scholar
  55. Shin, K., Kang, M., Dicterow, E., and Park, N. (2003). Hypermethylation of the hTERT promoter inhibits the expression of telomerase activity in normal oral fibroblasts and senescent normal oral keratinocytes. Br J Cancer 89, 1473–1478.CrossRefPubMedGoogle Scholar
  56. Smith, S., Giriat, I., Schmitt, A., and de Lange, T. (1998). Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487.CrossRefPubMedGoogle Scholar
  57. Smogorzewska, A., and de Lange, T. (2004). Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73, 177–208.CrossRefPubMedGoogle Scholar
  58. Soder, A., Hoare, S., Muir, S., Going, J., Parkinson, E., and Keith, W. (1997). Amplification, increased dosage and in situ expression of the telomerase RNA gene in human cancer. Oncogene 14, 1013–1021.CrossRefPubMedGoogle Scholar
  59. Stewart, S., Hahn, W., O’Connor, B., Banner, E., Lundberg, A., Modha, P., Mizuno, H., Brooks, M., Fleming, M., Zimonjic, D., et al. (2002). Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 99, 12606–12611.CrossRefPubMedGoogle Scholar
  60. Takai, H., Smogorzewska, A., and de Lange, T. (2003). DNA damage foci at dysfunctional telomeres. Curr Biol 13, 1549–1556.CrossRefPubMedGoogle Scholar
  61. Takakura, M., Kyo, S., Inoue, M., Wright, W., and Shay, J. (2005). Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT) in human and mouse cells. Mol Cell Biol 25, 8037–8043.CrossRefPubMedGoogle Scholar
  62. Vakoc, C., Sachdeva, M., Wang, H., and Blobel, G. (2006). Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 26, 9185–9195.CrossRefPubMedGoogle Scholar
  63. Vulliamy, T., and Dokal, I. (2008). Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie 90, 122–130.CrossRefPubMedGoogle Scholar
  64. Xu, D., Popov, N., Hou, M., Wang, Q., Björkholm, M., Gruber, A., Menkel, A., and Henriksson, M. (2001). Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc Natl Acad Sci USA 98, 3826–3831.CrossRefPubMedGoogle Scholar
  65. Ye, J., Hockemeyer, D., Krutchinsky, A., Loayza, D., Hooper, S., Chait, B., and de Lange, T. (2004). POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18, 1649–1654.CrossRefPubMedGoogle Scholar
  66. Zhang, X., Mar, V., Zhou, W., Harrington, L., and Robinson, M. O. (1999). Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 13, 2388–2399.CrossRefPubMedGoogle Scholar
  67. Zhao, J., Hoare, S., McFarlane, R., Muir, S., Parkinson, E., Black, D., and Keith, W. (1998). Cloning and characterization of human and mouse telomerase RNA gene promoter sequences. Oncogene 16, 1345–1350.CrossRefPubMedGoogle Scholar
  68. Zhu, Q., Liu, C., Ge, Z., Fang, X., Zhang, X., Strååt, K., Björkholm, M., and Xu, D. (2008). Lysine-specific demethylase 1 (LSD1) Is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT) gene. PLoS ONE 3, e1446.CrossRefPubMedGoogle Scholar
  69. Zijlmans, J. M., Martens, U. M., Poon, S. S., Raap, A. K., Tanke, H. J., Ward, R. K., and Lansdorp, P. M. (1997). Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA 94, 7423–7428.CrossRefPubMedGoogle Scholar
  70. Zinn, R., Pruitt, K., Eguchi, S., Baylin, S., and Herman, J. (2007). hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res 67, 194–201.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiologyUniversity of AlabamaBirminghamUSA
  2. 2.Center for Aging and Department of BiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations