Skip to main content

Bridging Knowing and Proving in Mathematics: A Didactical Perspective

  • Chapter
  • First Online:
Explanation and Proof in Mathematics

Abstract

The learning of mathematics starts early but remains far from any theoretical considerations: pupils’ mathematical knowledge is first rooted in pragmatic evidence or conforms to procedures taught. However, learners develop a knowledge which they can apply in significant problem situations, and which is amenable to falsification and argumentation. They can validate what they claim to be true but using means generally not conforming to mathematical standards. Here, I analyze how this situation underlies the epistemological and didactical complexities of teaching mathematical proof. I show that the evolution of the learners’ understanding of what counts as proof in mathematics implies an evolution of their knowing of mathematical concepts. The key didactical point is not to persuade learners to accept a new formalism but to have them understand how mathematical proof and statements are tightly related within a common framework; that is, a mathematical theory. I address this aim by modeling the learners’ way of knowing in terms of a dynamic, homeostatic system. I discuss the roles of different semiotic systems, of the types of actions the learners perform and of the controls they implement in constructing or validating knowledge. Particularly with modern technological aids, this model provides a basis designing didactical situations to help learners bridge the gap between pragmatics and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Argumentation means here “verbal, social and rational activity aimed at convincing a reasonable critic of the acceptability of a standpoint by putting forward a constellation of one or more propositions to justify this standpoint” (van Eemeren et al., 2002, p.xii). “In argumentative discussion there is, by definition, an explicit or implicit appeal to reasonableness, but in practice the argumentation can, in all kinds of respects, be lacking of reasonableness. Certain moves can be made in the discussion that are not really helpful to resolving the difference of opinion concerned. Before a well-considered judgment can be given as to the quality of an argumentative discussion, a careful analysis as to be carried out that reveals those aspects of the discourse that are pertinent to making such a judgment concerning it reasonableness.” (ibid., p.4)

  2. 2.

    See e.g. Piaget J. (1969) p. 239: “L’enfant n’est guère capable, avant 10-11 ans, de raisonnement formel, c’est-à-dire de déduction portant sur des données simplement assumées, et non pas sur de vérités observées.” More precisely, For more, c.f. Piaget J. (1967) Le jugement et le raisonnement chez l’enfant. Delachaux et Niestlé.

  3. 3.

    Popper (1959) proposed falsification as the the empirical criterion of demarcation of knowledge, scientific theories or models.

  4. 4.

    Or should not be...

  5. 5.

     From Capponi (1995), Cabri-classe, sheet 4–10.

  6. 6.

     E.g. Cabri-geometry (here used for the drawing), or Geometer Sketchpad; or Geogebra or one of the several others now available sometimes open access.

  7. 7.

     A more detailed analysis can be found in Balacheff and Soury-Lavergne (1995), Sutherland and Balacheff (1999).

  8. 8.

     Another student’s search for an explanation illustrates well what is meant here by mechanical world: “So... I have said... But is not very clear... That when, for example, we put P to the left, then P3 compensates to the right. If it goes up, then the other goes down...” (Sébatien, [prot. 78–84]).

  9. 9.

    See Claudi Alsina and Roger B. Nelsen (2006), Math Made Visual: Creating Images for Understanding Mathematics, published by MAA, and a good example in Roger B. Nelsen (1993), Proofs without words: exercises in visual thinking, published by MAA. See Hanna (2000, esp. pp.15–18) for an analysis.

  10. 10.

    Considering the sequence of complex numbers zn+1 = z 2n + c, the Mandelbrot set (or set M) is obtained by fixing z0=0 and varying the complex parameter c.

  11. 11.

     Quotation from p.250 of Mendelbrot (1980) Fractal aspects of the iteration of z→λz(1-z) for complex λ and z. Annals of the New York Academy of Sciences. 357 (1) 249 - 259

  12. 12.

     Régine Douady remembers that Adrien had been quickly convinced of the connectivity of M, thanks to the theoretical argument which convinced him in an astonishingly “simple” way. However, to complete the explicit proof took some time (2008, personal communication).

  13. 13.

     Personal communication

  14. 14.

    For the convenience of the English-speaking reader, I take all the references to Brousseau’s contributions to mathematics education from Kluwer, 1997 but Brousseau’s work was primarily published between 1970 and 1990.

  15. 15.

    This proposition should be understood in the light of the development of the “situated learning paradigm” of Jeane Lave and Etienne Wenger, whose work was published in the early 1990s.

  16. 16.

    The letters cK¢ stand for : “conception,” “knowing” and “concept”; more about this model is presented and discussed on [http://ckc.imag.fr]

  17. 17.

    Vergnaud in fact proposed this definition at the beginning of the 1980s.

  18. 18.

    By extension, one can often refer to students’ conceptions as acceptable given that one can account precisely for the circumstances, which are the milieu and the constraints within which [S↔M] functioned.

  19. 19.

     “Je le vois, mais je ne le crois pas,” wrote Cantor to Dedekind, in 1877, after having proved that for any integer n, there exists a bijection between the points on the unit line segment and all of the points in an n-dimensional space.

  20. 20.

    figure 9.11 sketches the interactions between these three poles

References

  • Arsac, G., & Mantes, M. (1997). Situations d’initiation au raisonnement déductif. Educational Studies in Mathematics, 33, 21–43.

    Article  Google Scholar 

  • Balacheff, N. (1988). Une étude des processus de preuve en mathématique chez des éléves de Collège (Vols. 1 & 2). Thèse d’état. Grenoble: Université Joseph Fourier.

    Google Scholar 

  • Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: an essay on the case of proof. ZDM Mathematics Education, 40, 501–512.

    Article  Google Scholar 

  • Balacheff, N., & Soury-Lavergne, S. (1995). Analyse du rôle de l’enseignant dans une situation de préceptorat à distance: TéléCabri. In R. Noirfalise, M.-J. Perrin-Glorian (Eds.) Actes de la VII Ecole d’été de didactique des mathématiques (pp. 47–56). Clermont-Ferrand: IREM de Clermont-Ferrand.

    Google Scholar 

  • Bartolini Bussi, M. G. (1996). Mathematical discussion and perspective drawing in primary school. Educational Studies in Mathematics, 31(1/2), 11–41.

    Article  Google Scholar 

  • Bishop, A. (1991). Mathematical culture and the child. In A. Bishop (Ed.) Mathematical enculturation: a cultural perspective on mathematics education (pp. 82–91). Berlin: Springer.

    Google Scholar 

  • Boero, P., Garuti, R., Lemut, E., & Mariotti, M. A. (1996a). Challenging the traditional school approach to theorems: a hypothesis about the cognitive unity of theorems. Valencia, Spain: PME XX.

    Google Scholar 

  • Boero, P., Garuti, R., & Mariotti, M. A. (1996b). Some dynamic mental processes underlying producing and proving conjectures. Valencia, Spain: PME XX.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.

    Google Scholar 

  • Confrey, J. (1990). A review of the research on students conceptions in mathematics, science, and programming. In C. Courtney (Ed.) Review of research in education. American Educational Research Association 16, 3–56.

    Google Scholar 

  • Douady, A. (1986). Julia sets and the Mandelbrot set. In H.-O. Peitgen & P. H. Richter (Eds.), The beauty of fractals: images of complex dynamical systems (pp. 161–173). Berlin: Springer.

    Google Scholar 

  • Douady, R. (1985). The interplay between different settings: Tool object dialectic in the extension of mathematical ability. In L. Streefland (Ed.), Proceedings of the IX International Conference for the Psychology of Mathematics Education (pp. 33–52). Holland: Noodwijkerhout.

    Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine. Berne: Peter Lang.

    Google Scholar 

  • van Eemeren, F. H., Grootendorst, R., & Snoeck Henkemans, F. (2002). Argumentation: analysis, evaluation, presentation. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Guin, D., & Trouche, L. (2001). Analyser l’usage didactique d’un EIAH en mathématiques: une tâche nécessairement complexe. Sciences et Techniques Educatives, 8(1/2), 61–74.

    Google Scholar 

  • Habermas, J. (1999). Wahrheit und rechtfertigung. Frankfurt: Suhrkamp (French translation: Vérité et justification. Gallimard, Paris, 2001).

    Google Scholar 

  • Hanna, G., & Jahnke, N. (1996). Proof and proving. In A. Bishop, et al. (Eds.), International handbook of mathematics education (pp. 877–908). Dordrecht: Kluwer.

    Google Scholar 

  • Hanna, G. (2000). Proof, explanation and exploration: an overview. Educational Studies in Mathematics, 44, 5–23.

    Article  Google Scholar 

  • Harel, G., & Sowder, L. (1998). Students’ proof schemes: results from exploratory studies. In A. Schonfeld, J. Kaput, & E. Dubinsky (Eds.) Research in collegiate mathematics education III. (Issues in Mathematics Education, Vol. 7, pp. 234–282). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education., 31(4), 396–428.

    Article  Google Scholar 

  • Herbst, P. (2002). Establishing a custom of proving in american school geometry: evolution of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49(3), 283–312.

    Article  Google Scholar 

  • Hillel, J. (1993). Computer algebra systems as cognitive technologies: implication for the practice of mathematics education. In C. Keitel & K. Ruthven (Eds.), Learning through computers: mathematics and educational technology (pp. 18–47). Berlin: Springer.

    Google Scholar 

  • Hubbard, J. (2000). Preface to Tan Lei (Ed.) The Mandelbrot set, theme and variations (pp 1–8). London Mathematical Society Lecture Note Series, 274. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Mariotti, M. A. (1997). Justifying and proving in geometry: the mediation of a microworld. Revised and extended version of the version published in M. Hejny, & J. Novotna (Eds.) Proceedings of the European Conference on Mathematical Education (pp. 21–26). Prague: Prometheus Publishing House.

    Google Scholar 

  • Forman, E. A., Mimick, N., & Stone, A. (1996). Contexts for learning: sociocultural dynamics in children’s development. Oxford: Oxford University Press.

    Google Scholar 

  • Noss, R., & Celia Hoyles, C. (1996). Windows on mathematical meanings: learning cultures and computers. Berlin: Springer.

    Google Scholar 

  • Pedemonte, B. (2002). Etude didactique et cognitive des rapports de l’argumentation et de la démonstration dans l’apprentissage des mathématiques. PhD Thesis, Grenoble: Université Joseph Fourier.

    Google Scholar 

  • Popper, K. (1959). The logic of scientific discovery. London: Routledge.

    Google Scholar 

  • Reichel, H.-C. (2002). Lakatos and aspects of mathematical education. In G. Kampis, L. Kvasz & M. Stöltzner (Eds.), Appraising Lakatos: mathematics, methodology, and the man (pp. 255–260). Berlin: Springer.

    Google Scholar 

  • Stewart, J. (1994). Un système cognitif sans neurones: les capacités d’adaptation, d’apprentissage et de mémoire du système immunitaire. Intellectika, 18, 15–43.

    Google Scholar 

  • Sutherland, R., & Balacheff, N. (1999). Didactical complexity of computational environments for the learning of mathematics. International Journal of Computers for Mathematical Learning, 4, 1–26.

    Article  Google Scholar 

  • Trouche, L. (2003). Construction et conduite des instruments dans les apprentissages mathématiques: nécessité des orchestrations. Mémoire d’habilitation à diriger des recherches. Paris: Université de Paris VII.

    Google Scholar 

  • Usiskin, Z. (2007). What should Not Be in the algebra and geometry curricula of average college-bound students? Mathematics Teacher, 100, 68–77.

    Google Scholar 

  • Vergnaud, G. (1981). Quelques orientations théoriques et méthodologiques des recherches françaises en didactique des mathématiques. Recherches en didactique des mathématiques, 2(2), 215–231.

    Google Scholar 

  • Vergnaud, G. (1991). La théorie des champs conceptuels. Recherches en didactique des mathématiques, 10(2/3), 133–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Balacheff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Balacheff, N. (2010). Bridging Knowing and Proving in Mathematics: A Didactical Perspective. In: Hanna, G., Jahnke, H., Pulte, H. (eds) Explanation and Proof in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0576-5_9

Download citation

Publish with us

Policies and ethics