Advertisement

The Conjoint Origin of Proof and Theoretical Physics

Chapter

Abstract

This paper examines the historical fact that the Greeks invented not only the idea of mathematical proof but also and simultaneously “theoretical physics.” This simultaneity was not accidental; rather, the two events were connected and influenced each other. The link between them was an idea in the Greek philosophy of science called “saving the phenomena.” This paper establishes a connection between this idea and the pre-Euclidean meaning of the term “axiom.” It then demonstrates how this idea continued into modern mathematics as well as maintaining its “traditional” centrality in the sciences. The last part of the paper applies these ideas to the teaching of proof, explaining why and how the relationship between hypotheses and consequences should be made a focus in the teaching of proof.

Keywords

Epistemic Status Mathematical Proof Greek Philosophy Common Notion Retrograde Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aristotle. (1966). Posterior Analytics. English edition by Hugh Tredennick. London/Cambridge: William Heinemann/Harvard University Press.Google Scholar
  2. Ayer, A. J., & O’Grady, J. (1992). A dictionary of philosophical quotations. Oxford: Blackwell Publishers.Google Scholar
  3. Balacheff, N. (1991). The benefits and limits of social interaction: The case of mathematical proof. In A. J. Bishop, E. Mellin-Olsen, & J. van Dormolen (Eds.) Mathematical knowledge: Its growth through teaching (pp. 175–192). Dordrecht: Kluwer.Google Scholar
  4. Bartolini Bussi, M. G. (2009). Experimental mathematics and the teaching and learning of proof. In CERME 6 Proceedings, to appear.Google Scholar
  5. Bartolini Bussi, M. G., Boero, P., Mariotti, M. A., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: from history and epistemology to cognition. In Proceedings of the 21st conference of the international group for the psychology of mathematics education (Lahti) (Vol. 1, pp. 180–195).Google Scholar
  6. Duhem, P. (1994). Sozein ta Phainomena. Essai sur la notion de théorie physique de Platon à Galilée. Paris: Vrin (Original publication 1908).Google Scholar
  7. Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.Google Scholar
  8. Gödel, K. (1944). Russell’s Mathematical Logic. In P. A. Schilpp (Hrsg.) The Philosophy of Bertrand Russell (pp. 125–153). New York: Tudor. Quoted according to: P. Benacerraf, & H. Putnam (Eds.) Philosophy of mathematics, Englewood Cliffs 1964.Google Scholar
  9. Hanna, G. (1989). Proofs that prove and proofs that explain. In Proceedings of the thirteenth conference of the international group for the psychology of mathematics education (Vol. II, pp. 45–51). Paris: PME.Google Scholar
  10. Heath, T. L. (Ed. and Transl.) (1953). The works of Archimedes. New York: Dover.Google Scholar
  11. Heath, T. L. (Ed. and Transl.) (1956). The thirteen books of Euclid’s elements. Second edition revised with additions. New York: Dover.Google Scholar
  12. Jahnke, H. N. (2005). A genetic approach to proof. In M. Bosch (Ed.) Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education, Sant Feliu de Guíxols 2005, 428–437.Google Scholar
  13. Jahnke, H. N. (2007). Proofs and Hypotheses. Zentralblatt für Didaktik der Mathematik (ZDM), 39(2007), 1–2, 79–86.Google Scholar
  14. Kirsch, A. (1979). Beispiele für prämathematische Beweise. In W. Dörfler, & R. Fischer (Eds.) Beweisen im Mathematikunterricht (pp. 261–274). Klagenfurt: Ho¨lder-Pichler-Temspsky.Google Scholar
  15. Lakatos, I. (1978). A renaissance of empiricism in the recent philosophy of mathematics. In I. Lakatos (Ed.) Philosophical papers (Vol. 2, pp. 24–42). Cambridge: Cambridge University Press.Google Scholar
  16. Lloyd, G. E. R. (1991). Saving the appearances. In G. E. R. Lloyd (Ed.), Methods and problems in Greek science (pp. 248–277). Cambridge: Cambridge University Press.Google Scholar
  17. Lloyd, G. E. R. (2000). Der Beweis und die Idee der Wissenschaft. In J. Brunschwig, & G. E. R. Lloyd (Eds.) Das Wissen der Griechen. Eine Enzyklopädie (pp. 238–258). München: Wilhelm Fink.Google Scholar
  18. Mach, E. (1976). Die Mechanik. Historisch-kritisch dargestellt (Unveränderter Nachdruck der 9. Auflage, Leipzig 1933, 1. Auflage 1883). Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  19. Maddy, P. (1990). Realism in mathematics. Oxford: Clarendon Press.Google Scholar
  20. Máté, A. (2006). Árpád Szabó and Imre Lakatos, or the relation between history and philosophy of mathematics. Perspectives on Science, 14(3), 282–301.CrossRefGoogle Scholar
  21. Mittelstrass, J. (1962). Die Rettung der Phänomene. Ursprung und Geschichte eines antiken Forschungsprinzips. Berlin: Walter de Gruyter & Co.Google Scholar
  22. Mancosu, P. (2001). Mathematical Explanation: Problems and Prospects. Topoi, 20, 97–117.CrossRefGoogle Scholar
  23. Natorp, P. (1921). Platos Ideenlehre. Eine Einführung in den Idealismus. Leipzig: Meiner. 19212.Google Scholar
  24. Peirce, C. S. (1935). The essence of mathematics. In C. Hartshorne, P. Weiss (Eds.) Collected Papers of Charles Sanders Peirce (Vol. III, pp. 189–204). Cambridge: Harvard University Press.Google Scholar
  25. Cooper, J. M. (Ed.) (1997). Plato: Complete works. Cambridge/Indianapolis: Hackett Publishing Company.Google Scholar
  26. Proclus (1970). A Commentary on the First Book of Euclid’s Elements. Translated, with Introduction and Notes, by Glenn R. Morrow. Princeton: Princeton University Press.Google Scholar
  27. Pulte, H. (2005). Axiomatik und Empirie. Eine wissenschaftstheoriegeschichtliche Untersuchung zur Mathematischen Naturphilosohie von Newton bis Neumann. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  28. Russell, B. (1924). Logical Atomism. In J. M. Muirhead (Ed.), Contemporary British Philosophy, first series (pp. 357–383). London: George Allen & Unwin.Google Scholar
  29. Szabó, Á. (1960). Anfänge des Euklidischen Axiomensystems. Archive for History of Exact Sciences 1, 38–106. Page numbers refer to the reprint in O. Becker (Ed.) (1965) Zur Geschichte der griechischen Mathematik (pp. 355–461). Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  30. Toomer, G. J. (Ed. and Transl.) (1984). Ptolemy’s Almagest. London: Duckworth.Google Scholar
  31. van der Waerden, B. L. (1988). Science awakening I, Paperback edition. Dordrecht: Kluwer.Google Scholar
  32. Wittmann, E. C., & Müller, G. (1988). Wann ist ein Beweis ein Beweis. In P. Bender (Ed.) Mathematikdidaktik: Theorie und Praxis. Festschrift für Heinrich Winter (pp. 237–257). Berlin: Cornelsen.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.FB MathematikUniversität Duisburg-EssenEssenGermany

Personalised recommendations