Advertisement

Metamaterials pp 183-214 | Cite as

The Dynamical Study of the Metamaterial Systems

  • Xunya Jiang
  • Zheng Liu
  • Zixian Liang
  • Peijun Yao
  • Xulin Lin
  • Huanyang Chen
Chapter

Abstract

We investigate the dynamical characteristics of metamaterial systems, such as the temporal coherence gain of superlens, the causality limitation on the ideal cloaking systems, the relaxation process and essential elements in the dispersive cloaking systems, and extending the working frequency range of cloaking systems. The point of our study is the physical dispersive properties of meta-materials, which are well known to be intrinsically strongly dispersive. With physical dispersion, new physical pictures could be obtained for the waves propagating inside metamaterial, such as the “group retarded time” for waves inside superlens and cloak, the causality limitation on real metamaterial systems, and the essential elements for design optimization. So we believe the dynamical study of meta-materials will be an important direction for further research. All theoretical derivations and conclusions are demonstrated by powerful finite-difference time-domain simulations.

Key words

Dynamical study metamaterial left-handed material coherence cloaking dispersion group velocity transformation optics causality absorption working frequency range pulse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Optical cloaking with metamaterials. Nat. Photonics 1, 224 (2007)CrossRefGoogle Scholar
  2. 2.
    Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 91, 111105 (2007)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Chan, C.T.: The brief report for the detail of the causality constraint.Google Scholar
  4. 4.
    Chen, H., Chan, C.T.: Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. 90, 241105 (2007)CrossRefGoogle Scholar
  5. 5.
    Chen, H., Jiang, X., Chan, C.T.: Extending the bandwidth of electromagnetic cloaks. Phys. Rev. B 76, 241104 (2007)CrossRefGoogle Scholar
  6. 6.
    Chen, H., Liang, Z., Yao, P., Jiang, X., Ma, H., Chan, C.T.: Extending the bandwidth of electromagnetic cloaks. Phys. Rev. B 76, 241104 (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, H., Wu, B.-I., Zhang, B., Kong, J.A.: Electromagnetic wave interactions with a metamaterial cloak. Phys. Rev. Lett. 99, 063903 (2007)CrossRefGoogle Scholar
  8. 8.
    Chen, L., He, S., Shen, L.: Finite-size effects of a left-handed material slab on the image quality. Phys. Rev. Lett. 92, 107404 (2004)CrossRefGoogle Scholar
  9. 9.
    Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M.: Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 91, 207401 (2003); Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M.: Electromagnetic waves: Negative refraction by photonic crystals. Nature 423, 604 (2003)CrossRefGoogle Scholar
  10. 10.
    Cummer, S.A.: Dynamics of causal beam refraction in negative refractive index materials. Appl. Phys. Lett. 82, 2008 (2003)CrossRefGoogle Scholar
  11. 11.
    Cummer, S.A.: Simulated causal subwavelength focusing by a negative refractive index slab. Appl. Phys. Lett. 82, 1503 (2003)CrossRefGoogle Scholar
  12. 12.
    Cummer, S.A., Popa, B.-I., Schurig, D., Smith, D.R.: Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74, 036621 (2006)CrossRefGoogle Scholar
  13. 13.
    Engheta, N.: An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability. IEEE Antenn. Wireless Propag. Lett. 1, 10, (2002)CrossRefGoogle Scholar
  14. 14.
    Fante, R.L., McCormack, M.T.: Reflection properties of the Salisbury screen. IEEE Trans. Antenn. Propag. 36, 1443 (1988)CrossRefGoogle Scholar
  15. 15.
    Feise, M.W., Kivshar, Y.S.: Sub-wavelength imaging with a left-handed material flat lens. Phys. Lett. A 334, 326 (2005)MATHCrossRefGoogle Scholar
  16. 16.
    Foteinopoulou, S., Economou, E.N., Soukoulis, C.M.: Refraction in media with a negative refractive index. Phys. Rev. Lett. 90, 107402 (2003); Pendry, J.B., Smith, D.R.: Comment on “Wave refraction in negative-index media: Always positive and very inhomogeneous”. Phys. Rev. Lett. 90, 029703 (2003)CrossRefGoogle Scholar
  17. 17.
    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett. 99, 183901 (2007)CrossRefGoogle Scholar
  18. 18.
    Gomez-Santos, G.: Universal features of the time evolution of evanescent modes in a lefthanded perfect lens. Phys. Rev. Lett. 90, 077401 (2003)CrossRefGoogle Scholar
  19. 19.
    Jiang, X., et al.: unpublished.Google Scholar
  20. 20.
    Jiang, X., Han, W., Yao, P., Li, W.: Temporal-coherence gain of superlens image with quasimonochromatic source. Appl. Phys. Lett. 89, 221102 (2006)CrossRefGoogle Scholar
  21. 21.
    Jiang, X., Soukoulis, C.M.: Time dependent theory for random lasers. Phys. Rev. Lett. 85, 70 (2000)CrossRefGoogle Scholar
  22. 22.
    Kerker, M.: Invisible bodies. J. Opt. Soc. Am. 65, 376 (1975)CrossRefGoogle Scholar
  23. 23.
    Koschny, T., Kafesaki, M., Economou, E.N., Soukoulis, C.M.: Effective medium theory of left-handed materials. Phys. Rev. Lett. 93, 107402 (2004)CrossRefGoogle Scholar
  24. 24.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford, Ch. 11, pp. 315–321 (1975)Google Scholar
  25. 25.
    Leonhardt, U.: Optical conformal mapping. Science 312, 1777 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Leonhardt, U.: Notes on conformal invisibility devices. New J. Phys. 8, 118 (2006)CrossRefGoogle Scholar
  27. 27.
    Leonhardt, U., Philbin, T.G.: General relativity in electrical engineering. New J. Phys. 8, 247 (2006)CrossRefGoogle Scholar
  28. 28.
    Liang, Z., Yao, P., Jiang, X., Sun, X.: unpublished.Google Scholar
  29. 29.
    Loschialpo, P.F., Smith, D.L., Forester, D.W., Rachford, F.J., Schelleng, J.: Electromagnetic waves focused by a negative-index planar lens. Phys. Rev. E 67, 025602(R) (2003)CrossRefGoogle Scholar
  30. 30.
    Luo, C., Johnson, S.G., Joannopoulos, J.D., Pendry, J.B.: Subwavelength imaging in photonic crystals. Phys. Rev. B 68, 045115 (2003)CrossRefGoogle Scholar
  31. 31.
    Luo, H., Hu, W., Shu, W., Li, F., Ren, Z.: Superluminal group velocity in an anisotropic metamaterial. Europhys. Lett. 74 1081 (2006)CrossRefGoogle Scholar
  32. 32.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University, Cambridge (1995); Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)Google Scholar
  33. 33.
    Markos, P., Soukoulis, C.M.: Transmission studies of left-handed materials. Phys. Rev. B 65, 033401 (2001); Markos, P., Soukoulis, C.M.: Numerical studies of left-handed materials and arrays of split ring resonators. Phys. Rev. E 65, 036622 (2002)CrossRefGoogle Scholar
  34. 34.
    Merlin, R.: Analytical solution of the almost-perfect-lens problem. Appl. Phys. Lett. 84, 1290 (2004)CrossRefGoogle Scholar
  35. 35.
    Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)CrossRefGoogle Scholar
  36. 36.
    Pendry, J.B.: Comment on “Left-handed materials do not make a perfect lens”. Phys. Rev. Lett. 91, 099701 (2003); Smith, D.R., Schurig, D., Rosenbluth, M., Schultz, S., Ramakrishna, S.A., Pendry, J.B.: Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506 (2003)CrossRefGoogle Scholar
  37. 37.
    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Micro. Theo Tech. 47, 2075 (1999); Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)CrossRefGoogle Scholar
  38. 38.
    Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780 (2006)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Pendry, J.B., Smith, D.R.: Comment on “Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous” Phys. Rev. Lett. 90, 029703 (2003)Google Scholar
  40. 40.
    Rao, X.S., Ong, C.K.: Amplification of evanescent waves in a lossy left-handed material slab. Phys. Rev. B 68, 113103 (2003); Rao, X.S., Ong, C.K.: Subwavelength imaging by a lefthanded material superlens. Phys. Rev. E 68, 067601 (2003)CrossRefGoogle Scholar
  41. 41.
    Ruan, Z., Yan, M., Neff, C.W., Qiu, M.: Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. Phys. Rev. Lett. 99, 113903 (2007)CrossRefGoogle Scholar
  42. 42.
    Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. John Wiley & Sons, New York (1991)CrossRefGoogle Scholar
  43. 43.
    Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)CrossRefGoogle Scholar
  44. 44.
    Schurig, D., Pendry, J.B., Smith, D.R.: Calculation of material properties and ray tracing in transformation media. Opt. Express 14, 9794 (2006)CrossRefGoogle Scholar
  45. 45.
    Shadrivov, I.V., Sukhorukov, A.A., Kivshar, Y.S.: Guided modes in negative-refractive-index waveguides. Phys. Rev. E 67, 057602 (2003); Peacock, A.C., Broderick, N.G.R.: Guided modes in channel waveguides with a negative index of refraction. Opt. Express 11, 2502 (2003)CrossRefGoogle Scholar
  46. 46.
    Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S.: Microwave transmission through a two-dimensional, isotropic left-handed metamaterial. Appl. Phys. Lett. 78, 489 (2001)CrossRefGoogle Scholar
  47. 47.
    Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77 (2001)CrossRefGoogle Scholar
  48. 48.
    Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)CrossRefGoogle Scholar
  49. 49.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. Artech House, Boston (2000)MATHGoogle Scholar
  50. 50.
    Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ϕ and μ. Sov. Phys. Usp. 10, 509 (1968)CrossRefGoogle Scholar
  51. 51.
    Yao, P., Li, W., Feng, S., Jiang, X.: The temporal coherence improvement of the twodimensional negative-index slab image. Opt. Express 14, 12295 (2006)CrossRefGoogle Scholar
  52. 52.
    Yao, P., Liang, Z., Jiang, X.: Limitation of the electromagnetic cloak with dispersive material. Appl. Phys. Lett. 92, 031111 (2008)CrossRefGoogle Scholar
  53. 53.
    Zhou, L., Chan, C.T.: Vortex-like surface wave and its role in the transient phenomena of meta-material focusing. Appl. Phys. Lett. 86, 101104 (2005); Zhang, Y., Grzegorczyk, T.M., Kong, J.A.: Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability. PIER 35, 271 (2002)CrossRefGoogle Scholar
  54. 54.
    Ziolkowski, R.W., Heyman, E.: Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 056625 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xunya Jiang
    • 1
  • Zheng Liu
    • 1
  • Zixian Liang
    • 1
  • Peijun Yao
    • 1
  • Xulin Lin
    • 1
  • Huanyang Chen
    • 2
    • 3
  1. 1.National Key-Lab of the Functional MaterialInstitute of Microsystem and Information Technology, CASShanghaiPeople’s Republic of China
  2. 2.Department of PhysicsHong Kong University of Science and TechnologyHong KongChina
  3. 3.Department of PhysicsSuzhou UniversitySuzhouChina

Personalised recommendations