Skip to main content

Broadband and Low-Loss Non-Resonant Metamaterials

  • Chapter
  • First Online:

Abstract

Loss and bandwidth have been major problems that limit the potential applications on metamaterials for a long time. To bring the ultimate opportunity to metamaterials, we analyze and discuss, in this chapter, another type of metamaterials that perform at low loss and broad bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements, making them essentially reflectionless and lossless. In microwave experiments, we demonstrate the broadband design concepts with a gradient-index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8–12 GHz) frequency spectrum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awai, I.: Artificial dielectric resonators for miniaturized filters. IEEE Micro. Magazine 9, 55–64 (2008)

    Article  Google Scholar 

  2. Awai, I., Kida, S., Mizue, O.: Very thin and flat lens antenna made of artificial dielectrics. 2007 Korea-Japan Microwave Conference, Okinawa, 177–180 (2007)

    Google Scholar 

  3. Awai, I., Kubo, H., Iribe, T., Wakamiya, D., Sanada, A.: An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF. IEEE MTTS 2, 1085–1088 (2003)

    Google Scholar 

  4. Bahl, I., Gupta, K.: A leaky-wave antenna using an artificial dielectric medium. IEEE Trans. Ant. Prop. 22, 119–122 (1974)

    Article  Google Scholar 

  5. Brown, J., Jackson, W.: The relative permittivity of tetragonal arrays of perfectly conducting thin discs. Proc. IEE 102B, 37–42 (1995)

    Google Scholar 

  6. Chen, X., Grzegorczyk, T.M., Wu, B.-I., Pacheco, J., Kong, J.A.: Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608 (2004)

    Article  Google Scholar 

  7. Corkum, R.W.: Isotropic artificial dielectric. Proc. IRE 40, 574 (1952)

    Article  Google Scholar 

  8. Driscoll, T., Basov, D.N., Starr, A.F., Rye, P.M., Nemat-Nasser, S., Schurig, D., Smith, D.R.: Free-space microwave focusing by a negative-index gradient lens. Appl. Phys. Lett. 88, 081101 (2006)

    Article  Google Scholar 

  9. He, S., Ruan, Z., Chen, L., Shen, J.: Focusing properties of a photonic crystal slab with negative refraction. Phys. Rev. B 70, 115113 (2004)

    Article  Google Scholar 

  10. Justice, B.J., Mock, J.J., Guo, L., Degiron, A., Schurig, D., Smith, D.R.: Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials. Opt. Express 14, 8694 (2006)

    Article  Google Scholar 

  11. Kittel, C.: Solid state physics, 6th ed. John Wiley and Sons, New York, 275 (1986)

    Google Scholar 

  12. Kock, W.E.: Metallic delay lenses. Bell Syst. Tech. J. 27, 58 (1948)

    Google Scholar 

  13. Liu, R., Cui, T.J., Huang, D., Zhao, B., Smith, D.R.: Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. Phys. Rev. E 76, 026606 (2007)

    Article  Google Scholar 

  14. Liu, R., Degiron, A., Mock, J.J., Smith, D.R.: Negative index material composed of electric and magnetic resonators. Appl. Phys. Lett. 90, 263504 (2007)

    Article  Google Scholar 

  15. Ma, Y., Rejaei, B., Zhuang, Y.: Artificial dielectric shields for integrated transmission lines. IEEE Micro. Wirel. Comp. Lett. 19, 431–433 (2008)

    Article  Google Scholar 

  16. Mukoh, Y., Nojima, T., Hasebe, N.: A reflector lens antenna consisting of an artificial dielectric. Electron. Commun. Jpn, Part 1 82, 44–52 (1999)

    Article  Google Scholar 

  17. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Micro. Theory Tech. 47, 2075 (1999)

    Article  Google Scholar 

  18. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780 (2006)

    Article  MathSciNet  Google Scholar 

  19. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  Google Scholar 

  20. Shelby, R., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77 (2001)

    Article  Google Scholar 

  21. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  Google Scholar 

  22. Smith, D.R., Rye, P.M., Mock, J.J., Vier, D.C., Starr, A.F.: Enhanced diffraction from a grating on the surface of a negative-index metamaterial. Phys. Rev. Lett. 93, 137405 (2004)

    Article  Google Scholar 

  23. Varadan, V., Sheng, Z., Penumarthy, S., Puligalla, S.: Comparison of measurement and simulation of both amplitude and phase of reflected and transmitted fields in resonant Omega media. Micro. Opt. Tech. Lett. 48, 1549–1553 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, R., Cheng, Q., Cui, T.J., Smith, D.R. (2010). Broadband and Low-Loss Non-Resonant Metamaterials. In: Cui, T., Smith, D., Liu, R. (eds) Metamaterials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0573-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0573-4_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0572-7

  • Online ISBN: 978-1-4419-0573-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics