Skip to main content

Status and Potential Therapeutic Importance of n–3 Fatty Acids in Neurodegenerative Disease

  • Chapter
  • First Online:
Book cover Beneficial Effects of Fish Oil on Human Brain
  • 1373 Accesses

Neurodegenerative diseases are a complex heterogeneous group of diseases associated with site-specific premature and slow death of certain neuronal populations in brain and spinal cord tissues (Graeber and Moran, 2002). For example, in Alzheimer disease (AD) neuronal degeneration occurs in the nucleus basalis, whereas in Parkinson disease (PD) neurons in the substantia nigra die. The most severely affected neurons in Huntington disease (HD) are striatal medium spiny neurons. The neuronal population that is lost in neurodegenerative diseases modulates functions such as controlling movements, processing sensory information, and making decisions. The most important risk factors for neurodegenerative diseases are old age, positive family history, unhealthy lifestyle, and exposure to toxic environment. It is suggested that during normal aging, the ability of the brain to modify its own structural organization and functioning becomes week and liable resulting in loss of some cognitive function (Farooqui and Farooqui, 2009), but neurodegenerative diseases are accompanied by dramatic impairment in ability to modulate structural organization and functioning of the brain tissue. Other risk factors such as genetic defects, abnormalities of antioxidant enzymes, excitotoxicity, cytoskeletal abnormalities, autoimmunity, mineral deficiencies, oxidative stress, metabolic toxicity, blood–brain barrier dysfunction, and hypertension may also contribute to the pathogenesis of neurodegenerative diseases (Rao and Balachandran, 2002; Farooqui, 2009)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar, M., and Kim, H.Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J. Neurochem. 82:655–665.

    Article  PubMed  CAS  Google Scholar 

  • Almer G., Guegan C., Teismann P., Naini A., Rosoklija G., Hays A.P., Chen C.P., and Przedborski S. (2001). Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann. Neurol. 49:176–185.

    Article  PubMed  CAS  Google Scholar 

  • Andersen J.K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nature Rev. Neurosci. 10(Suppl):S18–S25.

    Google Scholar 

  • Anisimov V.N. (2003). Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Exp. Gerontol. 38:1041–1049.

    Article  PubMed  CAS  Google Scholar 

  • Baptista M., Cookson M.R., and Miller D.W. (2004). Parkin and α-synuclein: opponent actions in the pathogenesis of Parkinson's disease. Neuroscientist 10:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Barcelo-Coblijn G., Golovko M.Y., Weinhofer I., Berger J., and Murphy E.J. (2007). Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice. J. Neurochem. 101:132–141.

    Article  PubMed  CAS  Google Scholar 

  • Bartke A., Chandrashekar V., Dominici F., Turyn D., Kinney B., Steger R., and Kopchick J.J. (2003). Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology 4:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Bartke A., Bonkowski M., and Masternak M. (2008). Thow diet interacts with longevity genes. Hormones 7:17–23.

    PubMed  Google Scholar 

  • Bazan N.G. (2005). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N.G. (2006). The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell. Molec. Neurobiol. 26:901–913.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N.G. (2007). Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care 10:136–141.

    Article  PubMed  CAS  Google Scholar 

  • Beal M.F. (1998). Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta. 1366:211–223.

    Article  PubMed  CAS  Google Scholar 

  • Bi H., and Sze C.I. (2002). N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer's disease. J. Neurol. Sci. 200:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Block M.L., and Hong J.-S. (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76:77–98.

    Article  PubMed  CAS  Google Scholar 

  • Bonifati D.M., and Kishore U. (2007). Role of complement in neurodegeneration and neuroinflammation. Mol. Immunol. 44:999–1010.

    Article  PubMed  CAS  Google Scholar 

  • Bonilla E. (2000). Huntington disease. A review Invest. Clin. 41:117–141.

    CAS  Google Scholar 

  • Bousquet M., Saint-Pierre M., Julien C., Salem N. Jr., Cicchetti F., and Calon F. (2008). Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson's disease. FASEB J. 22:1213–1225.

    Article  PubMed  CAS  Google Scholar 

  • Brenna J.T. (2002). Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr. Opin. Clin. Nutr. Metab. Care 5:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Burke R.E. (2004). Recent advances in research on Parkinson disease: synuclein and parkin. Neurologist 10:75–81.

    Article  PubMed  Google Scholar 

  • Busiguina S., Fernandes A.M., Barrios V., Clark R., Tolbert D.L. Berciano J., and Torres-Aleman I. (2000). Neurodegeneration is associated to changes in serum insulin-like growth factors Neurobiol. Dis. 7:657–665.

    CAS  Google Scholar 

  • Calabrese V., Boyd-Kimball D., Scapagnini G., and Butterfield D.A. (2004). Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo 18:245–267.

    PubMed  CAS  Google Scholar 

  • Calon F., Lim G.P., Yang F.S., Morihara T., Teter B., Ubeda O., Rostaing P., Triller A., Salem N.J., Ashe K.H., Frautschy S.A., and Cole G.M. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron 43:633–645.

    Article  PubMed  CAS  Google Scholar 

  • Calon F., Lim G.P., Morihara T., Yang F., Ubeda O., Salem N. Jr., Frantschy S.A., and Cole G.M. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease. Eur. J. Neurosci. 22:617–626.

    Article  PubMed  Google Scholar 

  • Calon F., and Cole G. (2007). Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot. Essent. Fatty Acids. 77:287–293.

    Article  PubMed  CAS  Google Scholar 

  • Cansey M., Ulus I.H., Wang L., Maher T.J., and Wurtman R.J. (2008). Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson's disease. Neurosci. Res. 62:206–209.

    Article  CAS  Google Scholar 

  • Carro E., Trejo J.L., Busiguina S., and Torres-Aleman I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise. J. Neurosci. 21:5678–5684.

    PubMed  CAS  Google Scholar 

  • Cedazo-Minguez A., Popescu B.O., Ankarcrona M., Nishimura T., and Cowburn R.F. (2002). The presenilin 1 deltaE9 mutation gives enhanced basal phospholipase C activity and a resultant increase in intracellular calcium concentrations. J. Biol. Chem. 277:36646–36655.

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C., Ariano M.A., Calvert C.R., Flores-Hernandez J., Chandler S.H., Leavitt B.R., Hayden M.R., and Levine M.S. (2001). NMDA receptor function in mouse models of Huntington disease. J. Neurosci. Res. 66:525–539.

    Article  PubMed  CAS  Google Scholar 

  • Chen K.M. (1995). Disappearance of ALS from Guam: implications for exogenous causes. Rinsho Shinkeigaku 35:1549–1553.

    PubMed  CAS  Google Scholar 

  • Chen Y.G. (2005). Specific tau phosphorylation sites in hippocampus correlate with impairment of step-down inhibitory avoidance task in rats. Behav. Brain Res. 158:277–284.

    Article  PubMed  CAS  Google Scholar 

  • Chu C.T., Plowey E.D., Wang Y., Patel V., and Jordan-Sciutto K.L. (2007). Location, location, location: altered transcription factor trafficking in neurodegeneration. J. Neuropatho. Exp. Neurol. 66:873–883.

    Article  CAS  Google Scholar 

  • Cole G.M., and Frautschy S.A. (2006). Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer's disease mouse model. Nutr. Health. 18:249–259.

    Article  PubMed  CAS  Google Scholar 

  • Conquer J.A., Tierney M.C., Zecevic J., Bettger W.J., and Fisher R.H. (2000). Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment. Lipids 35:1305–1312.

    Article  PubMed  CAS  Google Scholar 

  • Cookson M.R. (2003). Parkin's substrates and the pathways leading to neuronal damage. Neuromolecular Med. 3:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Cooper J.L. (2003). Dietary lipids in the aetiology of Alzheimer's disease: implications for therapy. Drugs Aging 20:399–418.

    Article  PubMed  CAS  Google Scholar 

  • Coppede F., Mancuso M., Siciliano G., Migliore L., and Murri L. (2006). Genes and the environment in neurodegeneration. Biosci. Rep. 26:341–367.

    Article  PubMed  CAS  Google Scholar 

  • Corcoran J., So P.L., and Maden M. (2002). Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients. J. Cell Sci.115:4735–4741.

    Article  PubMed  CAS  Google Scholar 

  • Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O'Keefe J.H., and Brand-Miller J. (2005). Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81:341–354.

    PubMed  CAS  Google Scholar 

  • Das V.N., and Vaddadi K.S. (2004). Essential fatty acids in Huntington's disease. Nutrition 20:942–947.

    Article  PubMed  CAS  Google Scholar 

  • de Lau L.M.L., Bornebroek M., Witteman J.C.M., Hofman A., Koudstaal P.J., and Breteler M.M.B. (2005). Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64:2040–2045

    Article  PubMed  CAS  Google Scholar 

  • De Vries H.E., Witte M., Hondius D., Rozemuller A.J.M., Drukarch B., Hoozemans J., and van Horssen J. (2008). Nrf2-induced antioxidant protection: A promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Rad. Biol. Med. 45:1375–1383.

    Google Scholar 

  • de Wilde, M.C., Leenders, I., Broersen, L.M., Kuipers, A.A.M., van der Beek, E.M., and Kiliaan, A.J. (2003). The omega-3 fatty acid docosahexaenoic acid (DHA) inhibits the formation of β-amyloid in CHO7PA2 cells. 2003 Abstract Viewer/Itinerary Planner, Program No. 730.11.

    Google Scholar 

  • Diab A., Hussain R.Z., Love-Racke A.E., Chavis J.A., Drew P.D., and Racke M.K. (2004). Ligands for the peroxisome proliferator-activated receptor-gamma and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148:116–126.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich M.O., Muller A., Bolos M., Carro E., Perry M.L., Portela L.V., Souza D.O., and Torres-Aleman I (2007). Western style diet impairs entrance of blood-borne insulin-like growth factor-1 into the brain. Neuromolecular Med. 9:324–330.

    Article  PubMed  CAS  Google Scholar 

  • Ding O., Vaynman S., Akhavan M., Ying Z., and Gomez-Pinilla F. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140:823–833.

    Article  PubMed  CAS  Google Scholar 

  • Dishman R.K., Berthoud H.R., Booth F.W., Cotman C.W., Edgerton V.R., Fleshner M.R., Gandevia S.C., Gomez-Pinilla F., Greenwood B.N., Hillman C.H., Kramer A.F., Levin B.E., Moran T.H., Russo-Neustadt A.A., Salamone J.D., Van Hoomissen J.D., Wade C.E., York D.A., and Zigmond M.J. (2006). Neurobiology of exercise. Obesity (Silver Spring) 14:345–356.

    Article  CAS  Google Scholar 

  • Drachman D.B., Frank K., Dykes-Hoberg M., Teismann P., Almer G., Przedborski S., and Rothstein J.D. (2002). Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann. Neurol. 52:771–778.

    Article  PubMed  CAS  Google Scholar 

  • Drachman D.B., and Rothstein J.D. (2000). Inhibition of cyclooxygenase-2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis. Ann. Neurol. 48:792–795.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer B.E., Takeda A., Zhu X.W., Perry G., and Smith M.A. (2005). Ferric cycle activity and Alzheimer disease. Curr. Neurovasc. Res. 2:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Facheris M., Beretta S., and Ferrarese C. (2004). Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: tools for diagnosis and therapy? J. Alzheimers Dis. 6:177–184.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (1994). Excitotoxicity and neurological disorders: Involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (1998). Lipid peroxides in the free radical pathophysiology of brain diseases. Cell Mol. Neurobiol. 18:599–608.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2003a). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B., and van Nieuwenhuyzen W. (eds.), Nutrition and Biochemistry of Phospholipids, pp. 14–29. AOCS Press, Champaign.

    Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2003b). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes, pp. 335–354. Kluwer Academic/Plenum Publishers, London.

    Chapter  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2004a). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Antony P., Ong W.Y., Horrocks L.A., and Fresyz L. (2004b). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Brain Res. Rev. 45:179–195.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2007). Glycerophospholipids in the Brain: Phospholipases A2 in Neurological Disorders, pp. 1–394. Springer, New York.

    Google Scholar 

  • Farooqui A.A., Horrocks L.A., and Farooqui T. (2007a). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., Horrocks L.A., Chen P., and Farooqui T. (2007b). Comparison of biochemical effects of statins and fish oil in brain: The battle of the titans. Brain Res. Rev. 56:443–471.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2008). Neurochemical Aspects of Excitotoxicity. Springer, New York.

    Google Scholar 

  • Farooqui T., and Farooqui A.A. (2009). Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mechanism Aging Dev. 130:203–215.

    Google Scholar 

  • Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer, New York.

    Book  Google Scholar 

  • Fernandez A.M., De La Vega A.G., Planas B., and Torres-Aleman I. (1999). Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur. J. Neurosci. 11:2019–2030.

    Article  PubMed  CAS  Google Scholar 

  • Florent, S., Malaplate-Armand, C., Youssef, I., Kriem, B., Koziel, V., Eseanye, M.C., Fifre, A., Sponne, I., Leininger-Muller, B., Olivier, J.L., Pillot, T., and Oster, T. (2006). Docosahexaenoic acid prevents neuronal apoptosis induced by soluble amyloid-β oligomers. J. Neurochem. 96:385–395.

    Article  PubMed  CAS  Google Scholar 

  • Fontan-Lozano A., Lopez-lluch G., Delgado-Garcia J.M., Navas P., and Carrion A.M. (2008). Molecular bases of caloric restriction regulation of neuronal synaptic plasticity. Mol. Neurobiol. 38:167–177.

    Article  PubMed  CAS  Google Scholar 

  • Forman M.S., Trojanowski J.Q., and Lee V.M. (2004). Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 10:1055–1063.

    Article  PubMed  CAS  Google Scholar 

  • Francis P.T. (2003). Glutamatergic systems in Alzheimer's disease. Int. J. Geriatr. Psychiatry. 18(Suppl 1):S15–S21.

    Article  PubMed  Google Scholar 

  • Freund-Levi Y., Eriksdotter-Jonhagen M., Cederholm T., Basun H., Faxen-Irving G., Garlind A., Vedin I., Vessby B., Wahlund L.O., and Palmblad J. (2006). Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch. Neurol. 63:1402–1408.

    Article  PubMed  Google Scholar 

  • Gao H.M., Kotzbauer P.T., Uryu K., Leight S., Trojanoski J.O., and Lee V.M. (2008). Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration. Neuroscience 28:7687–7698.

    Article  PubMed  CAS  Google Scholar 

  • Geddes J.W., Ulas J., Brunner L.C., Choe W., and Cotman C.W. (1992). Hippocampal excitatory amino acid receptors in elderly, normal individuals and those with Alzheimer's disease: non-N-methyl-D-aspartate receptors. Neuroscience 50:23–34.

    Article  PubMed  CAS  Google Scholar 

  • Gerster H. (1998). Can adults adequately convert α-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 68:159–173.

    PubMed  CAS  Google Scholar 

  • Ghosh S., Novak E.M., and Innis S.M. (2007). Cardiac proinflammatory pathways are altered with different dietary n-6 linoleic to n-3 α-linolenic acid ratios in normal, fat-fed pigs. Am. J. Physiol. Heart Circ. Physiol. 293:H2919–H2927.

    Article  PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y., Melamed E., and Offen D. (2006). Anti-inflammatory drugs in the treatment of neurodegenerative diseases: Current state. Curr. Pharmaceut. Design 12:3509–3519.

    Article  CAS  Google Scholar 

  • Golovko M.Y., Rosenberger T.A., Faergeman N.J., Feddersen S., Cole N.B., Pribill I., Berger J., Nussbaum R.L., and Murphy E.J. (2006). Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry 45:6956–6966.

    Article  PubMed  CAS  Google Scholar 

  • Golovko M.Y., Barceló-Coblijn G., Castagnet P.I., Austin S., Combs C.K., and Murphy E.J. (2008). The role of alpha-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Mol. Cell Biochem. 2008 Dec 31 [Epub ahead of print].

    Google Scholar 

  • Goyens P.L.L., Spilker M.E., and Zock P.L., (2006). Conversion of a-linolenic acid in humans is influenced by the absolute amounts of a-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr. 84:44–53.

    PubMed  CAS  Google Scholar 

  • Graeber M.B., and Moran L.B. (2002). Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 12:385–390.

    Article  PubMed  Google Scholar 

  • Gralle M., and Ferreira S.T. (2007). Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog. Neurobiol. 82:11–32.

    Article  PubMed  CAS  Google Scholar 

  • Green, K.N., Martinez-Coria, H., Khashwii, H., Hall, E.B., Yurki-Mauro, K.A., Ellis, L., and LaFerla, F.M. (2007). Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J. Neurosci. 27:4385–4395.

    Article  PubMed  CAS  Google Scholar 

  • Griffin M.., Sanders T.A.B., Davies I.G., Morgan L.M., Milliward D.J., Lewis F., Slaughter S., Cooper J.A., Miller G.J., and Griffin B.A. (2006). Effects of the ratio of dietary n-3 to n-3 fatty acids on insulin sensitivity, lipoprotein size, and postprandial lipemia in men and postmenopausal women aged 45–70 y: the OPTILIP Study. Am. J. Clin. Nutr. 84:1290–1298.

    PubMed  CAS  Google Scholar 

  • Griffin M.D. (2008). How relevant is the ratio of dietary n-6 to n-3 polyunsaturated fatty acids to cardiovascular disease risk? Evidence from the OPTILIP study. Curr. Opin. Lipidol. 19:57–62.

    Article  PubMed  CAS  Google Scholar 

  • Guan Z.Z., Wang Y.A., Cairns N.J., Lantos P.L., Dallner G., and Sindelar P.J. (1999). Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:740–747.

    Article  PubMed  CAS  Google Scholar 

  • Han X.L., Holtzman D.M., and McKeel D.W. Jr. (2001). Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 77:1168–1180.

    Article  PubMed  CAS  Google Scholar 

  • Harris W.S. (2007). Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol. Res. 55:217–223.

    Article  PubMed  CAS  Google Scholar 

  • Harris W.S. (2008). The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 87:1997S–2002S.

    PubMed  CAS  Google Scholar 

  • Hashimoto M., Hossain S., Agdul H., and Shido O. (2005). Docosahexaenoic acid-induced amelioration on impairment of memory learning in amyloid beta-infused rats relates to the decreases of amyloid beta and cholesterol levels in detergent-insoluble membrane fractions. Biochim. Biophys. Acta. 1738:91–98.

    PubMed  CAS  Google Scholar 

  • Hashimoto M., Hossain S., Shimada T., and Shido O. (2006). Docosahexaenoic acid-induced protective effect against impaired learning in amyloid β-infused rats is associated with increased synaptosomal membrane fluidity. Clin. Exp. Pharmacol. Physiol. 33:934–939.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Shahdat HM, Yamashita S, Katakura M, Tanabe Y, Fujiwara H, Gamoh S, Miyazawa T, Arai H, Shimada T, and Shido O. (2008). Docosahexaenoic acid disrupts in vitro amyloid beta fibrillation and concomitantly inhibits amyloid levels in cerebral cortex of Alzheimer's disease model rats. J. Neurochem.107:1634–1646.

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto A., Nitta A, Furukawa S., Ohishi M., Nakamura A., Fujii Y., Okuyama H. (2000). Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neurosci. Lett. 285:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Ilieva E.V., Avala V., Jove M., Dalfo E., Cacabelos D., Povedano M., Bellmunt M.J., Ferrer I., Pamplona R., and Portero-Otin M. (2007). Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123.

    Article  PubMed  Google Scholar 

  • Jaeger S., and Pietrzik C.U. (2008). Functional role of lipoprotein receptors in Alzheimer's disease. Curr. Alzheimer Res. 5:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K.A. (2001). Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med. 5:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Jenner P., and Olanow C.W. (2006). The pathogenesis of cell death in Parkinson's disease. Neurology 66(10 Suppl 4):S24–S36.

    PubMed  Google Scholar 

  • Jokic N., Ling Y.T., Ward R.F., Michael-Titus A.T., Priestley J.V., Malaspina A. (2007). Retinoid receptors in chronic degeneration of the spinal cord: observations in a rat model of amyotrophic lateral sclerosis. J. Neurochem. 103:1821–1833.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, J.A., Shukitt-Hale B., and Lau F.C. (2007). Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann. N.Y. Acad. Sci. 1100:470–485.

    Article  PubMed  CAS  Google Scholar 

  • Julien C., Berthiaume L., Hadi-Tahar A., Rajput A.H., Bedard P.J., Di Paolot T., Julian P., and Calon F. (2006).Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem. Int. 48:404–414.

    Article  PubMed  CAS  Google Scholar 

  • Juranek I., and Bezek S. (2005). Controversy of free radical hypothesis: reactive oxygen species – cause or consequence of tissue injury? Gen. Physiol. Biophys. 24:263–278.

    PubMed  CAS  Google Scholar 

  • Kalmijn S., van Boxtel M.P.J., Ocke M., Verschuren W.M.M., Kromhout D., and Launer L.J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280.

    PubMed  CAS  Google Scholar 

  • Kang J.X., and Weylandt K.H. (2008). Modulation of inflammatory cytokines by omega-3 Fatty acids. Subcell. Biochem. 49:133–143.

    Article  PubMed  Google Scholar 

  • Kidd P.M. (2005). Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern. Med. Rev. 10:268–293.

    PubMed  Google Scholar 

  • Kim J.J., and Yoon K.S. (1998). Stress: metaplastic effects in the hippocampus. Trends Neurosci. 21:505–509.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y., and Shimizu N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392:605–608.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T., Asakawa S., Minoshima S., Mizuno Y., and Shimizu N. (2000). Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mamm. Genome. 11:417–421.

    Article  PubMed  CAS  Google Scholar 

  • Kriem B., Sponne I., Fifre A., Malaplate-Armand C., Lozac’h-Pillot K., Koziel V., Yen-Potin F.T., Bihain B., Oster T., Olivier J.L., and Pillot T. (2005). Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-β peptide. FASEB J. 19:85–87.

    PubMed  CAS  Google Scholar 

  • Kumar B., Nahreini P., Hanson A.J., Andreatta C., Prasad J.E., and Prasad K.N. (2005). Selenomethionine prevents degeneration induced by overexpression of wild-type human alpha-synuclein during differentiation of neuroblastoma cells. J. Am. Coll. Nutr. 24:516–523.

    PubMed  CAS  Google Scholar 

  • Lau F.C., Shukitt-Hale B., and Joseph J.A. (2007). Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell. Biochem. 42:299–318.

    Article  PubMed  Google Scholar 

  • Lee J., Duan W., Long J.M., Ingram D.K., and Mattson M.P. (2000). Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J. Mol. Neurosci. 15:99–108.

    Article  PubMed  CAS  Google Scholar 

  • Lee H., Ogewa O., Zhu X.W., O’Neill M.J., Petersen R.B., Castellani R.J., Ghanbari H., Perry G., and Smith M.A. (2004). Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer's disease. Acta Neuropathol. 107:365–371.

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad E., Tsuang D., and Bird T.D. (1998). Recent advances in the genetics of Alzheimer's disease. J. Geriatr. Psychitry Neurol. 11:42–54.

    CAS  Google Scholar 

  • Liu R., Li B., Flanagan S.W., Oberley L.W., Gozal D., and Oiu M. (2002). Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. J. Neurochem. 80:488–500.

    Article  PubMed  CAS  Google Scholar 

  • Lim, G.P., Calon F., Morihara T., Yang F., Teter B., Ubeda O., Salem N. Jr., Frautschy S.A., and Cole G.M. (2005). A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci. 25:3032–3040.

    Article  PubMed  CAS  Google Scholar 

  • Liu L., Wang Y., Lam K.S., and Xu A. (2008). Moderate wine consumption in the prevention of metabolic syndrome and its related medical complications. Edocr. Metab. Immune Disord. Drug Targets 8:89–98.

    Article  Google Scholar 

  • Logroscino G. (2005). The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environ. Health Perspect. 113:1234–1238.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Miranda J., Delgado-Lista J., Perez-Martinez P., Jimenez-Gómez Y., Fuentes F., Ruano J., and Marin C. (2007). Olive oil and the haemostatic system. Mol. Nutr. Food Res. 51:1249–1259.

    PubMed  CAS  Google Scholar 

  • Lukiw W.J., Cui J.G., Marcheselli V.L., Bodker M., Botkjaer A., Gotlinger K., Serhan C.N., and Bazan N.G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 115:2774–2783.

    Article  PubMed  CAS  Google Scholar 

  • Lukiw W.J., and Bazan N.G. (2008). Docosahexaenoic acid and the aging brain. J. Nutr. 138:2510–2514.

    Article  PubMed  CAS  Google Scholar 

  • Lynch D., Wanglund C., Spathis R., Chan C.W., Reiff D.M., Lum J.K., and Garruto R.M. (2008). The contribution of mitochondrial dysfunction to a gene-environment model of Guamanian ALS and PD. Mitochondrion 8:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Ma O.L., Teter B., Ubeda O.J., Morihara T., Dhoot D., Nyby M.D., Tick M., Frautschy S.A., and Cole G.M. (2007a). Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention. J. Neurosci. 27:14299–14307.

    Article  PubMed  CAS  Google Scholar 

  • Ma O.L., Harris-White M.E., Ubeda O.J., Simmons M., Beech W., Lim G.P., Teter B., Frauchy S.A., and Cole G.M. (2007b). Evidence of Aβ- and transgene-dependent defects in ERK-CREB signaling in Alzheimer's models. J. Neurochem. 103:1594–1607.

    Article  PubMed  CAS  Google Scholar 

  • Maccioni R.S., Minoz J.P., and Barbeito L., (2001). The molecular bases of Alzheimer's disease and other neurodegenerative disorders. Arch. Med. Res. 32:367–381.

    Article  PubMed  CAS  Google Scholar 

  • Maclean C.H., Issa A.M., Newberry S.J., Mojica W.A., Morton S.C., Garland R.H., Hilton L.G., Traina S.B., and Shekelle P.G. (2005). Effects of omega-3 fatty acids on cognitive function with aging, dementia, and neurological diseases. Evid. Rep. Technol. Assess. (Summer) 114:1–3.

    Google Scholar 

  • Malaspina A., and de Belleroche J. (2004). Spinal cord molecular profiling provides a better understanding of amyotrophic lateral sclerosis pathogenesis. Brain Res. Brain Res. Rev. 45:213–229.

    Article  PubMed  CAS  Google Scholar 

  • Malaspina A., and Turkheimer F. (2007). A review of the functional role and of the expression profile of retinoid signaling and of nuclear receptors in human spinal cord. Brain Res. Bull. 71:437–446.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M.P. (2002). Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer's disease. J. Neurovirol. 8:539–550.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M.P. (2008). Awareness of hormesis will enhance future research in basic and applied neuroscience. Crit. Rev. Toxicol. 38:633–639.

    Article  PubMed  CAS  Google Scholar 

  • Ménard C., Patenaude C., Gagné A.M., and Massicotte G. (2008). AMPA receptor-mediated cell death is reduced by docosahexaenoic acid but not by eicosapentaenoic acid in area CA1 of hippocampal slice cultures. J. Neurosci. Res. 2008 Oct 24 [Epub ahead of print].

    Google Scholar 

  • Migliore L., Fontana I., Colognato R., Coppede F., Siciliano G., and Murri L. (2005). Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer's disease and in other neurodegenerative diseases. Neurobiol. Aging 26:587–595.

    Article  PubMed  CAS  Google Scholar 

  • Miller D.B., and O’Callaghan J.P. (2008). Do early-life insults contribute to the late-life development of Parkinson and Alzheimer diseases? Metabolism 57(Suppl. 2):S44–S49.

    Article  PubMed  CAS  Google Scholar 

  • Moore D.J., West A.B., Dawson V.L., and Dawson T.M. (2005). Molecular pathophysiology of Parkinson's disease. Ann. Rev. Neurosci. 28:57–87.

    Article  PubMed  CAS  Google Scholar 

  • Morris M.C., Evans D.A., Bienias J.L., Tangney C.C., Bennett D.A., Wilson R.S., Aggarwal N., and Schneider J. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol. 60:940–946.

    Article  PubMed  Google Scholar 

  • Moyad M.A. (2005). An introduction to dietary/supplemental omega-3 fatty acids for general health and prevention: part I. Urol. Oncol. 23:28–35.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P.K., Chawla A., Loayza M.S., and Bazan N.G. (2007). Docosanoids are multifunctional regulators of neural cell integrity and fate: significance in aging and disease. Protaglandin Leukot. Essent. Fatty Acids 77:233–238.

    Article  CAS  Google Scholar 

  • Murck H., and Manku M. (2007). Ethyl-EPA in Huntington disease: potentially relevant mechanism of action. Brain Res Bull. 72:159–164.

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A., Moreira P.I., Lee H.G., Zhu X., Castellani R.J., Smith M.A., and Perry G. (2007). Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol. Disord. Drug Targets. 6:411–423.

    Article  PubMed  CAS  Google Scholar 

  • Octave J.N. (2005). Alzheimer disease: cellular and molecular aspects. Bull. Mem. Acad. R. Med. Belg. 160:445–449.

    PubMed  CAS  Google Scholar 

  • Okajima K., and Harada N. (2008). Promotion of insulin-like growth factor-I production by sensory neuron stimulation; molecular mechanism(s) and therapeutic implications. Curr. Med. Chem.15:3095–3112.

    Article  PubMed  CAS  Google Scholar 

  • Oksman M., Iivonen H., Hogyes E., Amtul Z., Penke B., Leeders I., Broersen L., Lutjohann D., Hartmann T., and Tanila H. (2006). Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol. Dis. 23:563–572.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos D., Ewans L., Pham-Dinh D., Knott J., and Reynolds R. (2006). Upregulation of α-synuclein in neurons and glia in inflammatory demyelinating disease. Mol. Cell. Neurosci. 31:597–612.

    Article  PubMed  CAS  Google Scholar 

  • Pelleymounter M.A., Cullen M.J., Baker M.B., Gollub M., and Wellman C. (1996). The effects of intrahippocampal BDNF and NGF on spatial learning in aged Long Evans rats. Mol Chem. Neuropathol. 29:211–226.

    Article  PubMed  CAS  Google Scholar 

  • Petot G.J., and Friedland R.P. (2004). Lipids, diet and Alzheimer disease: an extended summary. J. Neurol. Sci. 226:31–33.

    Article  PubMed  CAS  Google Scholar 

  • Plourde M., Fortier M., Vandal M., Tremblay-Mercier J., Freemantle E., Bégin M., Pifferi F., and Cunnane S.C. (2007). Unresolved issues in the link between docosahexaenoic acid and Alzheimer's disease. Prostaglandins Leukot Essent Fatty Acids 77:301–308.

    Article  PubMed  CAS  Google Scholar 

  • Popescu B.O., Cedazo-Minguez A., Benedikz E., Nishimura T., Winblad B., Ankarcrona M., and Cowburn R.F. (2004). Gamma-secretase activity of presenilin 1 regulates acetylcholine muscarinic receptor-mediated signal transduction. J. Biol. Chem. 279:6455–6464.

    Article  PubMed  CAS  Google Scholar 

  • Priller C., Dewachter I., Vassallo N., Paluch S., Pace C., Kretzschmar H.A., van Leuven F., and Herms J. (2007). Mutant presenilin 1 alters synaptic transmission in cultured hippocampal neurons. J. Biol. Chem. 282:1119–1127.

    Article  PubMed  CAS  Google Scholar 

  • Puri B.K. (2005). Treatment of Huntington's disease with eicosapentaenoic acid. In: Yehuda S., and Mostofsky D.I. (eds.), Nutrients, Stress and Medical Disorders. Nutrition and Health (Series), pp. 279–286, Humana Press Inc, Totowa.

    Google Scholar 

  • Puskas L.G., Kitajka K., Nyakas C., Barcelo-Coblijn G., and Farkas T. (2003). Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl. Acad. Sci. USA 100:1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey C.P., Glass C.A., Montgomery M.B., Lindl K.A., Ritson G.P., Chia L.A., Hamilton R.L., Chu C.T., and Jordan-Sciutto K.L. (2007). J. Neuropath. Exp. Neurol. 66:75–85.

    Article  PubMed  CAS  Google Scholar 

  • Rao A.V., and Balachandran B. (2002). Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci. 5:291–309.

    Article  PubMed  CAS  Google Scholar 

  • Rao S.D., and Weiss J.H. (2004). Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci. 27:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Roberts C.K., Barnard R.J., Sindhu R.K., Jurczak M., Ehdaie A., and Vaziri N.D. (2006). Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 55:928–934.

    Article  PubMed  CAS  Google Scholar 

  • Robson L.G., Dyalls S., Sidloff D., and Michael-Titus A.T. (2008). Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals. Neurobiol. Aging 2008 July 10 [Epub ahead of print].

    Google Scholar 

  • Rogaeva E., Meng Y., Lee J.H., Gu Y., Kawarai T., Zou F., Katayama T., Baldwin C.T., Cheng R., Hasegawa H., Chen F., Shibata N., Lunetta K.L., Pardossi-Piquard R., Bohm C., Wakutani Y., Cupples L.A., Cuenco K.T., Green R.C., Pinessi L., Rainero I., Sorbi S., Bruni A., Duara R., Friedland R.P., Inzelberg R., Hampe W., Bujo H., Song Y.Q., Andersen O.M., Willnow T.E., Graff-Radford N., Petersen R.C., Dickson D., Der S.D., Fraser P.E., Schmitt-Ulms G., Younkin S., Mayeux R., Farrer L.A., and St. George-Hyslop P. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 39:168–177.

    Article  PubMed  CAS  Google Scholar 

  • Russo C., Venezia V., Repetto E., Nizzari M., Violani E., Carlo P., and Schettini G. (2005). The amyloid precursor protein and its network of interacting proteins: physiological and pathological implications. Brain Res. Brain Res. Rev. 48:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Samadi P., Gregoire L., Rouillard C., Bedard P.J., Di Paolo T., and Levesque D. (2006). Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann. Neurol. 59:282–288.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer E.J., Bongard V., Beiser A.S., Lamon-Fava S., Robins S.J., Au R., Tucker K.L., Kyle D.J., Wilson P.W.F., and Wolf P.A. (2006). Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol. 63:1545–1550.

    Article  PubMed  Google Scholar 

  • Scherzinger E., Lurz R., Turmaine M., Mangiarini L., Hollenbach B., Hasenbank R., Bates G.P., Davies S.W., Lehrach H., and Wanker E.E. (1997). Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558.

    Article  PubMed  CAS  Google Scholar 

  • Schneider J.C., Gonczi H., and Decamp E. (2003). Development of levodopa-induced dyskinesias in parkinsonian monkeys may depend upon rate of symptom onset and/or duration of symptoms. Brain Res. 990:38–44.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D.J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81:741–766.

    PubMed  CAS  Google Scholar 

  • Serhan C.N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    Article  PubMed  CAS  Google Scholar 

  • Shaw P.J., and Ince P.G. (1997). Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J. Neurol. 244(Suppl 2):S3–S14.

    Article  PubMed  Google Scholar 

  • Shen W.H., Zhang C.Y., and Zhang G.Y. (2003). Antioxidants attenuate reperfusion injury after global brain ischemia through inhibiting nuclear factor-kappa B activity in rats. Acta Pharmacol. Sin. 24:1125–1130.

    PubMed  CAS  Google Scholar 

  • Shibata N., and Kobayashi M. (2008). The role for oxidative stress in neurodegenerative diseases. Brain Nerve 60:157–170.

    PubMed  CAS  Google Scholar 

  • Shie F.S., and Ling, Z.D. (2007). Therapeutic strategy at the crossroad of neuroinflammation and oxidative stress in age-related neurodegenerative diseases. Expert. Opin. Ther. Patents 17:419–428.

    Article  CAS  Google Scholar 

  • Shimohama S., Ninomiya H., Saitoh T., Terry R.D., Fukunaga R., Taniguchi T., Fujiwara M., Kimura J., and Kameyama (1990). Changes in signal transduction in Alzheimer's disease. J. Neural Transm. Suppl. 30:69–78.

    PubMed  CAS  Google Scholar 

  • Siman R., and Salidas S. (2004). γ-secretase subunit composition and distribution in the presenilin wild-type and mutant mouse brain. Neuroscience 129:615–628.

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos A.P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos A.P. (2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 37 263–277.

    Article  PubMed  Google Scholar 

  • Simopoulos A.P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60:502–507.

    Article  PubMed  CAS  Google Scholar 

  • Singer P., Shapiro H., Theilla M., Anbar R., Singer J., and Cohen J. (2008). Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective. Intensive. Care Med. 34:1580–1592.

    Article  PubMed  CAS  Google Scholar 

  • Söderberg M., Edlund C., Kristensson K., and Dallner G. (1991). Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids 26:421–425.

    Article  PubMed  Google Scholar 

  • Söderberg M., Edlund C., Kristensson K., and Dallner G. (1990). Lipid compositions of different regions of the human brain during aging. J. Neurochem. 54:415–423.

    Article  PubMed  Google Scholar 

  • Sofi F., Cesari F., Abbate R., Gensini G.F., and Casini A. (2008). Adherence to Mediterranean diet and health status: meta-analysis. Br. Med. J. 337:a1334.

    Google Scholar 

  • Son T.G., Camandola S., and Mattson M. (2008). Hormetic Dietary Phytochemicals. NeuroMol. Med. 2008 June 10 [Epub ahead of print].

    Google Scholar 

  • Spoelgen R., von Arnim C.A., Thomas A.V., Peltan I.D., Koker M., Deng A., Irizarry M.C., Andersen O.M., Willnow T.E., and Hyman B.T. (2006). Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme. J. Neurosci. 26:418–428.

    Article  PubMed  CAS  Google Scholar 

  • Steen E., Terry B.M., Rivera E.J., Cannon J.L., Neely T.R., Tavares R., Xu X.J., Wands J.R., and de la Monte S.M. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease – is this type 3 diabetes? J. Alzheimers Dis. 7:63–80.

    PubMed  CAS  Google Scholar 

  • Sun L., Liu S.Y., Zhou X.W., Wang X.C., Liu R., Wang Q., and Wang J.Z. (2003). Inhibition of protein phosphatase 2A- and protein phosphatase 1-induced tau hyperphosphorylation and impairment of spatial memory retention in rats. Neuroscience 118:1175–1182.

    Article  PubMed  CAS  Google Scholar 

  • Sun G.Y., Horrocks L.A., and Farooqui A.A. (2007). The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. 103:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H., Morikawa Y., and Takahashi H. (2001). Effect of DHA oil supplementation on intelligence and visual acuity in the elderly. World Rev. Nut. Diet. 88:68–71.

    Article  CAS  Google Scholar 

  • Tan D.X., Manchester L.C., Sainz R., Mayo J.C., Alvares F.L., and Reiter R.J. (2003). Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin. Ther. Patents 13:1513–1543.

    Article  CAS  Google Scholar 

  • Tehranian R., Montoya S.E., Van Laar A.D., Hastings T.G., and Perez R.G. (2006). Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. J. Neurochem. 99:1188–1196.

    Article  PubMed  CAS  Google Scholar 

  • Teismann P., Vila M., Choi D.K., Tieu K., Wu D.C., Jackson-Lewis V., and Przedborski S. (2003). COX-2 and neurodegeneration in Parkinson's disease. Ann. N.Y. Acad. Sci. 991:272–277.

    Article  PubMed  CAS  Google Scholar 

  • Trejo J.L., Carro E., Nunez A., and Torres-Aleman I (2002). Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I. Rev. Neurosci. 13:365–374.

    Article  PubMed  CAS  Google Scholar 

  • Tully A.M., Roche H.M., Doyle R., Fallon C., Bruce I., Lawlor B., Coakley D., and Gibney M.J. (2003). Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer's disease: a case-control study. Br. J. Nutr. 89:483–489.

    Article  PubMed  CAS  Google Scholar 

  • Turner P.R., O’connor K., Tate W.P., and Abraham W.C. (2003). Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70:1–32.

    Article  PubMed  CAS  Google Scholar 

  • Urano Y., Hayashi I., Isoo N., Reid P.C., Shibasaki Y., Noguchi N., Tomita T., Iwatsubo T., Hamakubo T., and Kodama T. (2005). Association of active γ-secretase complex with lipid rafts. J. Lipid Res. 46:904–912.

    Article  PubMed  CAS  Google Scholar 

  • Varela-Nieto I., de la Rosa E.J., Valenciano A.I., and Leon Y. (2003). Cell death in the nervous system: lessons from insulin and insulin-like growth factors. Mol. Neurobiol. 28:23–50.

    Article  PubMed  CAS  Google Scholar 

  • Vaynman S., Ying Z., and Gomez-Pinilla F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20:2580–2590.

    Article  PubMed  Google Scholar 

  • Vaynman S., and Gomez-Pinilla F. (2006). Revenge of the "sit": how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J. Neurosci. Res. 84:699–715.

    Article  PubMed  CAS  Google Scholar 

  • Vaynman S., Ying Z., Wu A., and Gomez-Pinilla F. (2006). Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 139:1221–1234.

    Article  PubMed  CAS  Google Scholar 

  • Vedin I., Cederholm T., Freund Levi Y., Basun H., Garlind A., Faxen Irving G., Jonhagen M.E., Vessby B., Wahlund L., and Palmblad J. (2008). Effects of docosahexaenoic acid-rich n-3 fatty acid supplementation on cytokine release from blood mononuclear leukocytes: the OmegAD study. Am. J. Clin. Nutr. 87:1616–1622.

    PubMed  CAS  Google Scholar 

  • Venezia V., Russo C., Repetto E., Salis S., Dolcini V., Genova F., Nizzari M., Mueller U., and Schettini G. (2004). Apoptotic cell death influences the signaling activity of the amyloid precursor protein through ShcA and Grb2 adaptor proteins in neuroblastoma SH-SY5Y cells. J. Neurochem. 90:1359–1370.

    Article  PubMed  CAS  Google Scholar 

  • Wang J.Y., Wen L.L., Huang Y.N., Chen Y.T., and Ku M.C. (2006). Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharmaceut. Design 12:3521–3533.

    Article  CAS  Google Scholar 

  • Wells K., Farooqui A.A., Liss L., and Horrocks L.A. (1995). Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20:1329–1333.

    Article  PubMed  CAS  Google Scholar 

  • Wenk G.L., Parsons C.G., and Danysz W. (2006). Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav. Pharmacol. 17:411–424.

    Article  PubMed  CAS  Google Scholar 

  • Wilde G.J.C., Pringle A.K., Wright P., and Iannotti F. (1997). Differential vulnerability of the CA1 and CA3 subfields of the hippocampus to superoxide and hydroxyl radicals in vitro. J. Neurochem. 69:883–886.

    Article  PubMed  CAS  Google Scholar 

  • Wishart T.M., Parson S.H., and Gillingwater T.H. (2006). Synaptic vulnerability in neurodegenerative disease. J. Neuropathol. Exp. Neurol. 65:733–739.

    Article  PubMed  CAS  Google Scholar 

  • Yamato M., Shiba T., Yoshida M., Ide T., Seri N., Kudou W., Kinugawa S., and Tsutsui H. (2007). Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin. FEBS J. 274:3855–3863.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga N., Yasuda Y., Murayama T., and Nomura Y. (2000). Possible involvement of cytosolic phospholipase A2 in cell death induced by 1-methyl-4-phenylpyridinium ion, a dopaminergic neurotoxin, in GH3 cells. Brain Res. 855:244–251.

    Article  PubMed  CAS  Google Scholar 

  • Yasojima K., Tourtellotte W.W., McGeer E.G., and McGeer P.L. (2001). Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology 57:952–956.

    PubMed  CAS  Google Scholar 

  • Zhu M., Qin Z., Hu D., Munishkina L.A., and Fink A. L (2006). α-Synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. J. Mol. Biol. 45:8135–8142.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2009). Status and Potential Therapeutic Importance of n–3 Fatty Acids in Neurodegenerative Disease. In: Beneficial Effects of Fish Oil on Human Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0543-7_7

Download citation

Publish with us

Policies and ethics