Skip to main content

Status of Docosahexaenoic Acid Levels in Aging and Consequences of Docosahexaenoic Acid Deficiency in Normal Brain

  • Chapter
  • First Online:
Beneficial Effects of Fish Oil on Human Brain
  • 1346 Accesses

Agingis defined as a time-dependent progressive functional impairment process that leads to mortality. The most prominent characteristics of aging include the progressive loss of physiological capability, decrease in ability to respond adaptively to environmental stimuli, increased susceptibility to diseases, and increased mortality. These changes are translated into decrements in neuronal functioning accompanied by behavioral declines, such as decreases in motor and cognitive performance, in both humans and animals (Joseph et al., 2005). Thus, biological aging is a progressive, endogenous, irreversible, and deleterious and highly conserved process that can be modulated by diet, environment, and genes (Spindler 2005; Spindler and Dhahbi, 2007). Many theories have been advanced to explain aging, but the biological mechanisms that underlie aging are still unknown. Major theories of aging include increase in free radical-mediated oxidative stress and changes in gene expression (Harman, 1981; Helfand and Rogina, 2000; Hulbert et al., 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A., Moriguchi T., and Salem N. (2002a). Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr. Neurol. 26:210–218.

    Article  PubMed  Google Scholar 

  • Ahmad A., Murthy M., Greiner R.S., Moriguchi T., and Salem N. (2002b). A decrease in cell size accompanies a loss of docosahexaenoate in the rat hippocampus. Nutr. Neurosci. 5:103–113.

    Article  PubMed  CAS  Google Scholar 

  • Aids S., Vancassel S., Poumes-Ballihaut C., Chalon S., Guesnet P., and Lavialle (2003). Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. J. Lipid Res. 44:1545–1551.

    Article  CAS  Google Scholar 

  • Aids S., Vancassel S., Linard A., Lavialle M., and Guesnet P. (2005). Dietary docosahexaenoic acid [22:6(n-3)] as a phospholipid or a triglyceride enhances the potassium choloride-evoked release of acetylcholine in rat hippocampus. J. Nutr. 135:1008–1013.

    Google Scholar 

  • Akbar M., Calderon F., Wen Z., and Kim H.Y. (2005). Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc. Natl. Acad. Sci. USA 102:10858–10863.

    Article  PubMed  CAS  Google Scholar 

  • An X., Guo X., Gratzer W., and Mohandas N. (2004). Phospholipid binding by proteins of the spectrin family: a comparative study. Biochem. Biophys. Res. Commun. 327:794–800.

    Article  CAS  Google Scholar 

  • An X., Guo X., Sum H., Morrow J., Gratzer W., and Mohandas N. (2005). Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 43:310–315.

    Article  CAS  Google Scholar 

  • André A., Juanéda P., Sébédio J.L., and Chardigny J.M. (2005). Effects of aging and dietary n-3 fatty acids on rat brain phospholipids: focus on plasmalogens. Lipids 40:799–806.

    Article  PubMed  Google Scholar 

  • André A., Juanéda P., Sébédio J.L., and Chardigny J.M. (2006a). Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie 88:103–111.

    Article  PubMed  CAS  Google Scholar 

  • André A., Chanseaume E., Dumucois C., Cabaret S., Berdeaux O., and Chardigny J.M. (2006b). Cerebral plasmalogens and aldehydes in senescence-accelerated mice P8 and R1: a comparison between weaned, adult and aged mice. Brain Res. 1085:28–32.

    Article  PubMed  CAS  Google Scholar 

  • Armitage J.A., Pearce A.D., Sinclair A.J., Vingrys A.J., Weisinger R.S., Weisinger H.S. (2003). Increased blood pressure later in life may be associated with perinatal n-3 fatty deficiency. Lipids 38:459–464.

    Article  PubMed  CAS  Google Scholar 

  • Auestad N., and Innis S.M. (2000). Dietary n-3 fatty acid restriction during gestation in rats: neuronal cell body and growth-cone fatty acids. Am. J. Clin. Nutr. 71(1 Suppl):312S–314S.

    PubMed  CAS  Google Scholar 

  • Balasubramanian K., and Schroit A.J. (2003). Aminophospholipid asymmetry: a matter of life and death. Annu. Rev. Physiol. 65:701–734.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N.G., Reddy T.S., Bazan, H.E.P., and Birkle D.L. (1986). Metabolism of arachidonic and docosahexaenoic acids in the retina. Prog. Lipid Res. 25:595–606.

    Article  PubMed  CAS  Google Scholar 

  • Berry C.B., Hayes D., Murphy A., Wiessner M., Rayen T., and Mcbean G.J. (2005). Differential modulation of the glutamate transporters GLT1, GLAST and EAAC1 by docosahexaenoic acid. Brain Res. 1037:123–133.

    Article  PubMed  CAS  Google Scholar 

  • Buratta S., Mambrini R., Miniaci M.C., Tempia F., and Mozzi R. (2004). Group I metabotropic glutamate receptors mediate the inhibition of phosphatidylserine synthesis in rat cerebellar slices: a possible role in physiology and pathology. J. Neurochem. 89:730–738.

    Article  PubMed  CAS  Google Scholar 

  • Calon F., Lim G.P., Morihara T., Yang F.S., Ubeda O., Salem N.J., Frautschy S.A., and Cole G.M. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease. Eur. J. Neurosci. 22:617–626.

    Article  PubMed  Google Scholar 

  • Casamenti F., Csali C., and Pepeu G. (1991). Phosphatidylserine reverses the age-dependent decrease in cortical acetylcholine release: a microdialysis study. Eur. J. Pharmacol. 194:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Chalon S. (2006). Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot. Essent. Fatty Acids 75:259–269.

    Article  CAS  Google Scholar 

  • Chung W.L., Chen J.J., and Su H.M. (2008). Fish oil supplementation of control and n-3 fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J. Nutr. 138:1165–1171.

    PubMed  CAS  Google Scholar 

  • Church M.W., Jen K.L., Dowhan L.M., Adams B.R., and Hotra J.W. (2008). Excess and deficient omega-3 fatty acid during pregnancy and lactation cause impaired neural transmission in rat pups. Neurotoxicol. Teratol. 30:107–117.

    CAS  Google Scholar 

  • Church M.W., Jen K.L., Jackson D.A., Adams B.R., and Hotra J.W. (2009). Abnormal neurological responses in young adult offspring caused by excess omega-3 fatty acid (fish oil) consumption by the mother during pregnancy and lactation. Neurotoxicol. Teratol. 31:26–33.

    Article  PubMed  CAS  Google Scholar 

  • Clandinin M.T., Chappell J.E., Leong S., Heim T., Swyer P.R., and Chance G.W. (1980). Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum. Dev. 4:121–129.

    Article  PubMed  CAS  Google Scholar 

  • Clandinin M.T. (1995). Infant nutrition: effects of lipid on later life. Curr. Opin. Lipidol. 6:28–31

    Article  PubMed  CAS  Google Scholar 

  • Cohen A.A., and Muller W.E. (1992). Age-related alterations of NMDA-receptor properties in the mouse forebrain: partial restoration by chronic phosphatidylserine treatment. Brain Res. 584:174–180.

    Article  PubMed  CAS  Google Scholar 

  • Conde, J.R., and Streit, W.J., 2006. Microglia in the aging brain. J. Neuropathol. Exp. Neurol. 65:199–203.

    PubMed  Google Scholar 

  • Cui, L., Hofer, T., Rani, A., Leeuwenburgh, C., and Foster, T.C. (2007). Comparison of lifelong and late life exercise on oxidative stress in the cerebellum. Neurobiol. Aging. 30:903–909.

    Google Scholar 

  • De Simone R., Ajmone-Cat M.A., and Minghetti L. (2004). Atypical antiinflammatory activation of microglia induced by apoptotic neurons: possible role of phosphatidylserine-phosphatidylserine receptor interaction. Mol. Neurobiol. 29:197–212.

    Article  PubMed  Google Scholar 

  • de Urquiza A.M., Liu S., Sjöberg M., Zetterström R.H., Griffiths W., Sjövall J., and Perlmann T. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144.

    Article  PubMed  Google Scholar 

  • Dyall B.C., Michael G.J., Whelpton R., Scott A.G., and Michael-Titus A.T. (2007). Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain. Neurobiol. Aging 28:424–439.

    Article  PubMed  CAS  Google Scholar 

  • Engler M.B., and Engler M.M. (2000). Docosahexaenoic acid – induced vasorelaxation in hypertensive rats: mechanisms of action. Biol. Res. Nurs. 2:85–95.

    Article  PubMed  CAS  Google Scholar 

  • Fadok V.A., Voelker D.R., Campbell P.A., Cohen J.J., Bratton D.L., and Henson P.M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148:2207–2216.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Antony P., Ong W.Y., Horrocks L.A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Brain Res. Rev. 45:179–195.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., and Horrocks L.A. (2007). Glycerophospholipids in Brain. Springer, New York.

    Book  Google Scholar 

  • Farooqui A.A., Farooqui T., and Horrocks L.A. (2008). Metabolism and functions of bioactive ether lipids in brain. Springer, New York.

    Book  Google Scholar 

  • Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer, New York.

    Book  Google Scholar 

  • Farooqui T., and Farooqui A.A. (2009). Aging: An important factor for the pathogenesis of neurodegenerative Diseases. Mechanism Aging Dev. 130:203–215.

    Google Scholar 

  • Favrelière S., Stadelmann-Ingrand S., Huguet F., De Javel D., Piriou A., Tallineau C., and Durand G. (2000). Age-related changes in ethanolamine glycerophospholipid fatty acid levels in rat frontal cortex and hippocampus. Neurobiol. Aging 21:653–660.

    Article  Google Scholar 

  • Finch C.E., and Cohen D.M. (1997). Aging, metabolism, and Alzheimer disease: review and hypotheses. Exp. Neurol. 143:82–102.

    Article  PubMed  CAS  Google Scholar 

  • Gagne J., Giguere C., Tocco G., Ohayon M., Thompson R.F., Baudry M., and Massicotte G. (1996). Effect of phosphatidylserine on the binding properties of glutamate receptors in brain sections from adult and neonatal rats. Brain Res. 740:337–345.

    Article  PubMed  CAS  Google Scholar 

  • Garcia M.C., and Kim H.Y. (1997). Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res. 768:43–48.

    Article  PubMed  CAS  Google Scholar 

  • Garcia M.C. Ward G., Ma Y.C., Salem N. Jr., and Kim H.Y. (1998). Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain in microsomes and C6 glioma cells. J. Neurochem. 70:24–30.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S., Strum J.C., Sciorra V.A., Danial L., and Bell R.M. (1996). Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J. Biol. Chem. 271:8472–8480.

    Article  PubMed  CAS  Google Scholar 

  • Giusto, N.M., Roque, M.E., and Ilincheta de Boschero, M.G. (1992). Effects of aging on the content, composition and synthesis of sphingomyelin in the central nervous system. Lipids 27:835–839.

    Article  PubMed  CAS  Google Scholar 

  • Giusto N.M., Salvador G.A., Castagnet P.I., Pasquare S.J., and Ilincheta de Boschero M.G. (2002). Age-associated changes in central nervous system glycerolipid composition and metabolism. Neurochem Res. 27:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  • Green P., and Yavin P. (1995). Modulation of fetal rat brain and liver phospholipid content by intraamniotic ethyl docosahexaenoate administration. J. Neurochem. 65:2555–2560.

    Article  PubMed  CAS  Google Scholar 

  • Green P., and Yavin P. (1996). Fatty acid composition of late embryonic and early postnatal rat brain. Lipids. 31:859–865.

    Article  PubMed  CAS  Google Scholar 

  • Green P., and Yavin P. (1998). Mechanisms of docosahexaenoic acid accretion in the fetal brain. J. Neurosci. Res. 52:129–136.

    Article  PubMed  CAS  Google Scholar 

  • Greiner R.S., Moriguchi T., Hutton A., Slotnick B.M., and Salem N. Jr. (1999). Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids 34(Suppl):S239–S243.

    Google Scholar 

  • Guizy M., David M., Arias C., Zhang L., Cofan M., Ruiz-Gutierrez V., Ros E., Lillo M.P., Martens J.R., and Valenzuela C. (2008). Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acid, α-linolenic acid. J. Mol. Cell. Cardiol. 44:323–335.

    Article  PubMed  CAS  Google Scholar 

  • Guo, M., and Stockert, L., Akbar, M., and Kim, H.Y. (2007). Neuronal specific increase of phosphatidylserine by docosahexaenoic acid. J. Mol. Neurosci. 33: 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Gustincich S., Vatta P., Goruppi S., Wolf M., Saccone S., Della Valle G., Baggiilini M., and Schneider C. (1999). The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics 57:120–129.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton L., Greiner R., Salem N. Jr., and Kim H.Y. (2000). n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 35:863–869.

    Article  PubMed  CAS  Google Scholar 

  • Harman D. (1981). The aging process. Proc. Natl. Acad. Sci. USA 78:7124–7128.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M., Hossain S., and Shido O. (2006). Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol. Cell. Biochem. 293:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Helfand S.L., and Rogina B., (2000). Regulation of gene expression during aging. In: Hekimi, S. (ed.), The Molecular Genetics of Aging, vol. 29, pp. 67–80. Springer-Verlag, Berlin.

    Google Scholar 

  • Hofmann K., Tomiuk S., Wolff G., and Stoffel W. (2000). Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc. Natl. Acad. Sc. USA 97:5895–5900.

    Article  CAS  Google Scholar 

  • Hichami A., Datiche F., Ullah S., Lienard F., Chardigny J.M., Cattarelli M., and Khan N.A. (2007). Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats. Behav. Brain Res. 184:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Hinman J.D., Chen C.D., Oh S.Y., Hollander W., and Abraham C.R. (2008). Age dependent accumulation of ubiquitinated 2',3'-cyclic nucleotide 3'-phosphodiesterase in myelin lipid rafts. Glia 56:118–133.

    Article  PubMed  Google Scholar 

  • Horrocks L.A., VanRollins M., and Yates A.J. (1981). Lipid changes in the ageing brain. In: Davison A.N., and Thompson R.H.S. (eds.), The Molecular Basis of Neuropathology, pp. 601–630. Edward Arnold Ltd., London.

    Google Scholar 

  • Horrocks L.A., and Farooqui A.A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.

    Article  PubMed  CAS  Google Scholar 

  • Hulbert A.J. (2005). On the importance of fatty acid composition of membranes for aging. J. Theor. Biol. 234:277–288.

    Article  PubMed  CAS  Google Scholar 

  • Hulbert A.J., Pamplona R., Buffenstein R., and Buttemer W.A. (2007). Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87:1175–1213.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi M., Ma K., Chang L., Bell J.M., and Rapoport S.I., (2007). Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain. J. Lipid Res. 48:2463–2470.

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto A., Kobayashi T., Emoto K., Umeda M., Watanabe S., and Okuyama H. (1999). Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch. Biochem. Biophys. 364:67–74.

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto A., Nitta A., Furukawa S., Ohishi M., Nakamura A., Fujii Y., and Okuyama H. (2000). Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neurosci. Lett. 285:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Ilincheta de Boschero M.G., Rogue M.E., Salvador G.A., Giusto N.M. (2000). Alternative pathways for phospholipid synthesis in different brain areas during aging. Exp. Gerontol. 35:653–668.

    Article  Google Scholar 

  • Innis S.M. (2000). The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev. Neurosci. 22:474–480.

    Article  PubMed  CAS  Google Scholar 

  • Innis S.M. (2008). Dietary omega-3 fatty acids and the developing brain. Brain Res. 1237:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Isbilen B., Fraser S.P., and Diamgoz M.B. (2006). Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells. Int. J. Biochem. Cell Biol. 38:2173–2182.

    Article  PubMed  CAS  Google Scholar 

  • Joseph J.A., Shukitt-Hale B., Casadesus G., and Fisher D. (2005). Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem. Res. 30:927–935.

    Article  PubMed  CAS  Google Scholar 

  • Kim H.Y., and Hamilton J. (2000). Accumulation of docosahexaenoic acid in phosphatidylserine is selectively inhibited by chronic ethanol exposure in C-6 glioma cells. Lipids 35:187–195.

    Article  PubMed  CAS  Google Scholar 

  • Kim H.Y., Akbar M., and Oau A. (2003). Effects of docosapentaenoic acid on neuronal apoptosis. Lipids 38:453–457.

    Article  PubMed  CAS  Google Scholar 

  • Kodas E., Galineau L., Bodard S., Vancassel S., Guilloteau D., Besnard J.C., and Chalon S. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. J. Neurochem. 89:695–702.

    Article  PubMed  CAS  Google Scholar 

  • Knight, J.A. (2000). The biochemistry of aging. Adv. Clin. Chem. 35:1–62.

    Article  PubMed  CAS  Google Scholar 

  • Lee T.C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.

    Article  CAS  Google Scholar 

  • Lengqvist J., Mata De Urquiza A., Bergman A.C., Willson T.M., Sjövall J., Perlmann T., and Griffiths W.J. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol. Cell. Proteomics 3:692–703.

    Article  PubMed  CAS  Google Scholar 

  • Kuperstein F., Yakubov E., Dinerman P., Gil S., Eylam R., Salem N. Jr., Yavin E. (2005). Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 fatty acid dietary deficiency. J. Neurochem. 95:1550–1562.

    Article  PubMed  CAS  Google Scholar 

  • Kuperstein F., Eilam R., and Yavin E. (2008). Altered expression of key dopaminergic regulatory proteins in the postnatal brain following perinatal n-3 fatty acid dietary deficiency. J. Neurochem. 106:662–671.

    Article  PubMed  CAS  Google Scholar 

  • Leaf A. (2001). The electrophysiologic basis for the antiarrhythmic and anticonvulsant effects of n-3 polyunsaturated fatty acids: heart and brain. Lipids 36(Suppl):S107–S110.

    Google Scholar 

  • Leaf A., Xiao Y.F., Kang J.X., and Billman G.E. (2003). Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids. Pharmacol. Ther. 98:355–377.

    Article  PubMed  CAS  Google Scholar 

  • Lentz B.R. (2003). Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res. 42:423–438.

    Article  PubMed  CAS  Google Scholar 

  • Levi deStein M., Medina J.H., and DeRobertis E.D. (1989). In vivo and in vitro modulation of central type benzodiazepine receptors by phosphatidylserine. Brain Res. Mol. Brain Res. 5:9–15.

    CAS  Google Scholar 

  • Little S.J., Lynon M.A., Manku M., and Nicolaou A. (2007). Docosahexaenoic acid-induced changes in phospholipids in cortex of young and aged rats: a lipidomic analysis. Prostaglandins Leukot Essent Fatty Acids. 77:155–162.

    Article  PubMed  CAS  Google Scholar 

  • Luikart B.W., Zhang W., Wayman G.A., Kwon C.H., Westbrook G.L., and Parada L.F. (2008). Neurotrophin-dependent dendritic filopodial motility: a convergence on PI3K signaling. J. Neurosci. 28:7006–7012.

    Article  PubMed  CAS  Google Scholar 

  • Madani S., Hichami A., Charkaoui-Malki M., and Khan N.A. (2004). Diacylglycerols containing Omega 3 and Omega 6 fatty acids bind to RasGRP and modulate MAP kinase activation. J. Biol. Chem. 279:1176–1183.

    Article  PubMed  CAS  Google Scholar 

  • Mandel H., Sharf R., Berant M., Wanders R.J.A., Vreken P., and Aviram M. (1998). Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: Insights from investigations with plasmalogen-deficient cells. Biochem. Biophys. Res. Commun. 250:369–373.

    Article  PubMed  CAS  Google Scholar 

  • Martin R.E., and Bazan N.G. (1992). Changing fatty acid content of growth cone lipids prior to synaptogenesis. J. Neurochem. 59:318–325.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M.P. (2002). Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer's disease. J. Neurovirol. 8:539–550.

    Article  PubMed  CAS  Google Scholar 

  • May M.J., and Ghosh S. (1998). Signal transduction through NF-kappa B. Immunol. Today 19:80–88.

    Article  PubMed  CAS  Google Scholar 

  • McNamara R.K., Sullivan J., Richtand N.M., Jandacek R., Rider T., Tso P., Campbell N., and Lipton J. (2006). Omega-3 fatty acid deficiency augments amphetamine-induced behavioral sensitization in adult DBA/2 J mice: relationship with ventral striatum dopamine concentrations. Synapse 62:725–735.

    Article  CAS  Google Scholar 

  • McNamara R.K., Able J., Jandacek R., Rider T., Tso P., and Lindquist D.M. (2009). Perinatal omega-3 fatty acid deficiency selectively reduces myo-inositol levels in the adult rat prefrontal cortex: an in vivo proton magnetic resonance spectroscopy study. J Lipid Res. 50:405–411.

    Google Scholar 

  • Mocchegiani E., Costarelli L., Giacconi R., Cipriano C., Muti E., Tesei S., Malavolta M. (2006). Nutrient-gene interaction in ageing and successful ageing A single nutrient (zinc) and some target genes related to inflammatory/immune response. Mec. Ageing Dev. 127:517–525.

    Article  CAS  Google Scholar 

  • Morgan, T.E., Xie, Z., Goldsmith, S., Yoshida, T., Lanzrein, A.S., Stone, D., Rozovsky, I., Perry G., Smith M.A., and Finch C.E. (1999). The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89:687–699.

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi T., Greiner R.S., and Salem N. Jr. (2000). Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 75:2563–2573.

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi T., Loewke J., Garrison M., Catalan J.N., and Salem N. Jr. (2001). Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J. Lipid Res. 42:419–427.

    PubMed  CAS  Google Scholar 

  • Murthy M., Hamilton J., Greiner R.S., Moriguchi T., Salem N. Jr., and Kim H.Y. (2002). Differential effects of n-3 fatty acid deficiency on phospholipid molecular species composition in the rat hippocampus. J. Lipid Res. 43:611–617.

    Article  PubMed  CAS  Google Scholar 

  • Nagan N., and Zoeller R.A. (2001). Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40:199–229.

    Article  PubMed  CAS  Google Scholar 

  • Niu S.L., Mitchell D.C., Lim S.Y., Wen Z.M., Kim H.Y., Salem N. Jr., and Litman B.J. (2004). Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J. Biol. Chem. 279:31098–31104.

    Article  PubMed  CAS  Google Scholar 

  • Peters A., (2002). The effects of normal aging on myelin and nerve fibers: a review. J. Neurocytol. 31:581–593.

    Article  PubMed  Google Scholar 

  • Petursdottir A.L., Farr S.A., Morley J.E., Bank W.A., and Akuladottir G.V. (2007). Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM). Neurobiol Aging. 28:1170–1178.

    Article  PubMed  CAS  Google Scholar 

  • Petursdottir A.L., Farr S.A., Morley J.E., Banks W.A., and kuladottir G.V. (2008). Effect of dietary n-3 polyunsaturated fatty acids on brain lipid fatty acid composition, learning ability, and memory of senescence-accelerated mouse. J. Gerontol.A Biol. Sci. Med. Sci. 63:1153–1160.

    Article  PubMed  Google Scholar 

  • Pifferi F., Jouin M., Alessandri J.M., Haedke U., Roux F., Perriere N., Denis I., Lavialle M., and Guesnet P. (2007). n-3 Fatty acids modulate brain glucose transport in endothelial cells of the blood-brain barrier. Prostaglandins Leukot Essent Fatty Acids 77:279–286.

    Article  PubMed  CAS  Google Scholar 

  • Porcellati G. (1983). Phospholipid metabolism in neural membranes. In: Sun G.Y., Bazan N., Wu J.Y., Porcellati G., and Sun A.Y. (eds.), Neural Membranes, pp. 3–35. Humana Press, New York.

    Google Scholar 

  • Rao J.S., Ertley R.N., Lee H.T., DeMar J.C. Jr., Arnold J.T., Rapoport S.I., and Bazinet R.P. (2007). n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol. Psychiatry 12:36–46.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S.I., Rao J.S., and Igarashi M. (2007). Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids 77:251–261.

    Article  PubMed  CAS  Google Scholar 

  • Rouser G., and Yamamoto A. (1968). Curvilinear regression course of human brain lipid composition changes with age. Lipids 3:284–287.

    Article  PubMed  CAS  Google Scholar 

  • Rump P., Mensink R.P., Kester A.D., and Hornstra G. (2001). Essential fatty acid composition of plasma phospholipids and birth weight: a study in term neonates. Am. J. Clin. Nutr. 73:797–806.

    PubMed  CAS  Google Scholar 

  • Salem N. Jr., Moriguchi T., Greiner R.S., McBride K., Ahmad A., Catalan J.N., and Slotnick B. (2001). Alterations in brain function after loss of docosahexaenoate due to dietary restriction of n-3 fatty acids. J. Mol. Neurosci. 16:299–307.

    Article  PubMed  CAS  Google Scholar 

  • Salvador G.A., Lopez F.M., and Giusto N.M. (2002). Age-related changes in central nervous system phosphatidylserine decarboxylase activity. J. Neurosci. Res. 70:283–289.

    Article  PubMed  CAS  Google Scholar 

  • Salvati S., Attorri I., Avellino C., Di Biase A., Sanchez M. (2000). Diet, lipids and brain development. Dev. Neurosci. 22:481–487.

    Article  PubMed  CAS  Google Scholar 

  • Sastry P. (1985). Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24:69–176.

    Article  PubMed  CAS  Google Scholar 

  • Scott B.L., and Bazan N.G. (1989). Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86:2903–2907.

    Article  PubMed  CAS  Google Scholar 

  • Sellner P.A. (1993). Retinal FABP principally localizes to neurons and not to glial cells. Mol. Cell. Biochem. 123:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Spindler S.R. (2005). Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech. Ageing Dev. 126:960–966.

    Article  PubMed  CAS  Google Scholar 

  • Spindler S.R., and Dhahbi J.M. (2007). Conserved and tissue-specific genic and physiologic responses to caloric restriction and altered IGFI signaling in mitotic and postmitotic tissues. Annu. Rev. Nutri. 27:193–217.

    Article  CAS  Google Scholar 

  • Stekhoven F.M., Tijmes J., Umeda M., Inoue K., and De Punt J.J. (1994). Monoclonal antibody to phosphatidylserine inhibits Na+/K+-ATPase activity. Biochim. Biophys. Acta 1194:155–165.

    Article  PubMed  CAS  Google Scholar 

  • Stockard J.E., Saste M.D., Benford V.J., Barness L., Auested N., and Carver J.D. (2000). Effect of docosahexaenoic acid content of maternal diet on auditory brainstem conduction times in rat pups. Dev. Neurosci. 22:494–499.

    Article  PubMed  CAS  Google Scholar 

  • Tam O., and Innis S.M. (2006). Dietary polyunsaturated fatty acids in gestation alter fetal cortical phospholipids, fatty acids and phosphatidylserine synthesis. Dev. Neurosci. 28:222–229.

    Article  PubMed  CAS  Google Scholar 

  • Toews A.D., and Horrocks L.A. (1976). Developmental and aging changes in protein concentration and 2', 3'-cyclic nucleosidemonophosphate phosphodiesterase activity (EC 3.1.4.16) in human cerebral white and gray matter and spinal cord. J. Neurochem. 27:545–550.

    Article  PubMed  CAS  Google Scholar 

  • Tvurina Y.Y., Tvurin V.A., Zhao O., Djukic M., Quinn V.A., Pitt B.R., and Kagan V.E. (2004). Oxidation of phosphatidylserine: a mechanism for plasma membrane phospholipid scrambling during apoptosis? Biochem. Biophys. Res. Commun. 324:1059–1064.

    Article  CAS  Google Scholar 

  • Uauy R., and Dangour A.D. (2006). Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev. 64:S24–S33.

    Article  PubMed  Google Scholar 

  • Ward G., Woods J., Reyzer M., and Salem N. Jr. (1996). Artificial rearing of infant rats on milk deficient in n-3 essential fatty acids: a rapid for the productionof experimental n-3 fatty acid deficiency. Lipids 31:71–77.

    Article  PubMed  CAS  Google Scholar 

  • Wen Z., and Kim H.Y. (2004). Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. J. Neurochem. 89:1368–1377.

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y.F., and Li X.Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y., Wang L., Xu R.J., and Chen Z.Y. (2005a). DHA depletion in rat brain is associated with impairment on spatial learning and memory. Biomed. Environ. Sci. 19:474–480.

    Google Scholar 

  • Xiao Y., Huang Y., and Chen Z.Y. (2005b). Distribution, depletion and recovery of docosahexaenoic acid are region-specific in rat brain. Br. J. Nutr. 94:544–550.

    Article  PubMed  CAS  Google Scholar 

  • Ximenes da Silva A., Lavialle F., Gendrot G., Guesnet P., Alessandri J.M., and Lavialle (2002). Glucose transport and utilization are altered in the brain of rats deficient in n-3 polyunsaturated fatty acids. J. Neurochem. 81:1328–1337.

    Article  Google Scholar 

  • Yamaji-Hasegawa A., and Tsujimoto M. (2006). Asymmetric distribution of phospholipids in biomembranes. Biol. Pharm. Bull. 29:1547–1553.

    Article  PubMed  CAS  Google Scholar 

  • Yavin E., Glozman S., and Green P. (2001). Docosahexaenoic acid accumulation in the prenatal brain: prooxidant and antioxidant features. J. Mol. Neurosci. 16:229–235.

    Article  PubMed  CAS  Google Scholar 

  • Yehuda S., Rabinovitz S., Carasso R.L., and Mostofsky D.I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S., Yasuda A., Kawazato H., Sakai K., Shimada T., Takeshita M., Yuasa S., Kobayashi T., Watanabe S., and Okuyama H. (1997). Synaptic vesicle ultrastructural changes in the rat hippocampus induced by a combination of α-linolenate deficiency and a learning task. J. Neurochem. 68:1261–1268.

    Article  PubMed  CAS  Google Scholar 

  • Yuryev A., and Wennogle L.P. (1998). The RAF family: an expanding network of post-translational controls and protein-protein interactions. Cell Res. 8:81–98.

    PubMed  CAS  Google Scholar 

  • Zhang G., Gurtu V., Kain S.R., and Yan, G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23:525–531.

    PubMed  CAS  Google Scholar 

  • Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J.C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32–40.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2009). Status of Docosahexaenoic Acid Levels in Aging and Consequences of Docosahexaenoic Acid Deficiency in Normal Brain. In: Beneficial Effects of Fish Oil on Human Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0543-7_6

Download citation

Publish with us

Policies and ethics