Perspective and Directions for Future Development on the Effects of Fish Oil Constituents on Brain

Chapter

Interest in n–3 and n–6 fatty acids and their beneficial and harmful effects on brain has increased immensely over the past 25 years. These fatty acids are required in large amounts for normal brain development and growth. Because humans do not have desaturase enzymes that facilitate the insertion of n–3 or n–6 double bonds, both families of fatty acids are obtained from the diet and are regarded as essential fatty acids. DHA status of the newborn and breastfed infant depends on the maternal intake of DHA and varies widely because infants obtain n–3 fatty acids (DHA) directly from mother’s milk and in adult life from dietary fish and fish oil or from its precursor α-linolenic acid (ALA) in liver. Mammalian liver also uses ALA to make another long-chain n–3 fatty acid called EPA, which while beneficial in many ways is not as essential to body functions as is DHA.

Keywords

Permeability Obesity Arthritis Depression Mercury 

References

  1. Adibhatla R.M., Hatcher J.F., and Dempsey R.J. (2006). Lipids and lipidomics in brain injury and diseases. AAPS J. 8:E314–E321.PubMedGoogle Scholar
  2. Afman L., and Müller M. (2006). Nutrigenomics: from molecular nutrition to prevention of disease. J. Am. Diet Assoc. 106:569–576.PubMedCrossRefGoogle Scholar
  3. Akbar M., and Kim H.Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J. Neurochem. 82:655–665.PubMedCrossRefGoogle Scholar
  4. Bazan N.G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol 32:89–103.PubMedCrossRefGoogle Scholar
  5. Bazan N.G. (2005b). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.PubMedCrossRefGoogle Scholar
  6. Bechoua S., Dubois M., Vericel E., Chapuy P., Lagarde M., and Prigent A.F. (2003). Influence of very low dietary intake of marine oil on some functional aspects of immune cells in healthy elderly people. Br. J. Nutr. 89:523–531.PubMedCrossRefGoogle Scholar
  7. Bennett C.F. (1998). Antisense oligonucleotides: is the glass half full or half empty? Biochem. Pharmacol. 55:9–19.PubMedCrossRefGoogle Scholar
  8. Bhattacharya A., Chandrasekar B., Rahman M.M., Banu J., Kang J.X., and Fernandes G. (2006). Inhibition of inflammatory response in transgenic fat-1 mice on a calorie-restricted diet. Biochem. Biophys. Res. Commun. 349:925–930.PubMedCrossRefGoogle Scholar
  9. Bhattacharya A., Sun D., Rahman M., and Fernandes G. (2007). Different ratios of eicosapentaenoic and docosahexaenoic omega-3 fatty acids in commercial fish oils differentially alter pro-inflammatory cytokines in peritoneal macrophages from C57BL/6 female mice. J. Nutr. Biochem. 18:23–30.PubMedCrossRefGoogle Scholar
  10. Bosetti F., Bell J.M., and Manickam P. (2005). Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res. Bull. 65:331–338.PubMedCrossRefGoogle Scholar
  11. Bowers-Gentry R.C., Deems R.A., Harkewicz R., and Dennis E.A. (2006). Eicosanoid lipidomics. In: Feng L., and Prestwich G.D. (eds.), Functional Lipidomics, pp. 79–100. CRC Press-Taylor & Francis Group, Boca Raton.Google Scholar
  12. Calder P.C. (2004). n-3 Fatty acids, inflammation, and immunity – relevance to postsurgical and critically ill patients. Lipids 39:1147–1161.PubMedCrossRefGoogle Scholar
  13. Calder P.C. (2005). Polyunsaturated fatty acids and inflammation. Biochem. Soc. Trans. 33:423–427.PubMedCrossRefGoogle Scholar
  14. Calder P.C. (2008). Joint Nutrition Society and Irish Nutrition and Dietetic Institute Symposium on 'Nutrition and autoimmune disease' PUFA, inflammatory processes and rheumatoid arthritis. Proc. Nutr. Soc. 67:409–418.PubMedCrossRefGoogle Scholar
  15. Caramia G. (2007). Childhood feeding, chronic-degenerative disease in adults, and nutrigenomics Pediatr. Med. Chir. 29:309–320.Google Scholar
  16. Caramia G. (2008). Omega-3: from cod-liver oil to nutrigenomics. Minera. Pediatr. 60:443–455.Google Scholar
  17. Chajès V., and Bougnoux P. (2003). Omega-6/omega-3 polyunsaturated fatty acid ratio and cancer. World Rev. Nutr. Diet. 92:133–1351.PubMedCrossRefGoogle Scholar
  18. Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O'Keefe J.H., and Brand-Miller J. (2005). Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81:341–354.PubMedGoogle Scholar
  19. Das U.N. (2006). Essential Fatty acids – a review. Curr. Biotechnol. 7:467–482.CrossRefGoogle Scholar
  20. Das U.N. (2008). Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis. 7:37–39.PubMedCrossRefGoogle Scholar
  21. De Caterina R., and Massaro M. (2005). Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J. Membr. Biol. 206:103–116.PubMedCrossRefGoogle Scholar
  22. Deckelbaum R.J., Worgall T.S., and Seo T. (2006). n-3 Fatty acids and gene expression. Am. J. Clin. Nutr. 83:1520S–1525S.PubMedGoogle Scholar
  23. Fam S.S., and Morrow J.D. (2003). The isoprostanes: unique products of arachidonic acid oxidation-a review. Curr. Med. Chem. 10:1723–1740.PubMedCrossRefGoogle Scholar
  24. Farooqui A.A., Yang H.C., and Horrocks L.A. (1995). Plasmalogens, phospholipases A2 and signal transduction. Brain Res. Brain Res. Rev. 21:152–161.PubMedCrossRefGoogle Scholar
  25. Farooqui A.A., and Horrocks L.A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.PubMedCrossRefGoogle Scholar
  26. Farooqui A.A., Ong W.Y., and Horrocks L.A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutical importance for the treatment of neurological disorders. Pharmacol. Rev. 58:591–620.PubMedCrossRefGoogle Scholar
  27. Farooqui A.A. and Horrocks L.A. (2007). Glycerophospholipids in Brain: Phospholipases A2 in Neurological Disorders. Springer, New York.Google Scholar
  28. Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer, New York.CrossRefGoogle Scholar
  29. Farooqui T., and Farooqui A.A. (2009). Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech. Ageing Dev. 130:203–215.Google Scholar
  30. German J.B., Gillies L.A., Smilowitz J.T., Zivkovic A.M., and Watkins S.M. (2007). Lipidomics and lipid profiling in metabolomics. Curr. Opin. Lipidol. 18:66–71.PubMedGoogle Scholar
  31. Gollies P.J. (2007). Preemptive nutrition of pro-inflammatory states: a nutrigenomic model. Nutr. Rev. 65:S217–S220.CrossRefGoogle Scholar
  32. Heng B.C., and Cao T. (2004). Can RNA interference be used to expand the plasticity of autologous adult stem cells. J. Mol. Med. 82:784–786.PubMedCrossRefGoogle Scholar
  33. Horrocks L.A., and Farooqui A.A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.CrossRefGoogle Scholar
  34. Hudert C.A., Weylandt K.H., Lu Y., Wang J.D., Hong S., Dignass A., Serhan, C.N., and Kang J.X. (2006). Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proc. Natl. Acad. Sci. USA 103:11276–11281.PubMedCrossRefGoogle Scholar
  35. Jump D.B. (2004). Fatty acid regulation of gene transcription. Crit. Rev. Clin. Lab. Sci. 41:41–78.PubMedCrossRefGoogle Scholar
  36. Kalmijn S., Van Boxtel M.P.J., Ocké M., Verschuren W.M.M., Kromhout D., and Launer L.J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280.PubMedGoogle Scholar
  37. Kang Z.B., Ge Y., Chen Z., Cluette-Brown J., Laposata M., Leaf A., and Kang J.X. (2001). Adenoviral gene transfer of Caenorhabditis elegans n-3 fatty acid desaturase optimizes fatty acid composition in mammalian cells. Proc. Natl. Acad. Sci USA 98:4050–4054.PubMedCrossRefGoogle Scholar
  38. Kang J.X., Wang J., Wu L., and Kang Z.B. (2004). Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 427:504.PubMedCrossRefGoogle Scholar
  39. Kang J.X. (2007). Fat-1 transgenic mice: a new model for omega-3 research. Prostaglandins Leukot. Essent. Fatty Acids 77:263–267.CrossRefGoogle Scholar
  40. Kang J.X., and Weylandt K.H. (2008). Modulation of inflammatory cytokines by omega-3 fatty acids. Subcell. Biochem. 49:133–143.PubMedCrossRefGoogle Scholar
  41. Kato H. (2008). Nutrigenomics: the cutting edge and Asian perspectives. Asia Pac. J. Clin. Nutr. 17(Suppl. I):12–15.PubMedGoogle Scholar
  42. Kris-Etherton P.M., Taylor D.S., Yu-Poth S., Huth P., Moriarty K., Fishell V., Hargrove R.L., Zhao G., Etherton T.D. (2000). Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr. 71(1 Suppl.):179S–188S.PubMedGoogle Scholar
  43. Lu Y., Hong S., Gotlinger K., and Serhan C.N. (2006). Lipid mediator informatics and proteomics in inflammation-resolution. The Scientific World Journal 6:589–614.CrossRefGoogle Scholar
  44. Ma D.W.L., Ngo V., Huot P., and Kang, J.X. (2006). Omega-3 polyunsaturated fatty acids endogenously synthesized in fat-1 mice are enriched in the mammary gland. Lipids 41:35–39.PubMedCrossRefGoogle Scholar
  45. Mariman E.C. (2006). Nutrigenomics and nutrigenetics: the 'omics' revolution in nutritional science. Biotechnol. Appl. Biochem. 44:119–128.PubMedCrossRefGoogle Scholar
  46. Ménesi D., Kitajka K., Molnár E., Kis Z., Belleger J., Narce M., Kang J.X., Puskás L.G., and Das U.N. (2009). Gene and protein expression profiling of the fat-1 mouse brain. Prostaglandins Leukot. Essent. Fatty Acids 2009 Jan 8. [Epub ahead of print].Google Scholar
  47. Merendino N., Molinari R., Loppi B., Pessina G., D' Aquino M., Tomassi G., and Velottia F. (2003). Induction of apoptosis in human pancreatic cancer cells by docosahexaenoic acid. Ann N.Y. Acad. Sci. 1010:361–364.PubMedCrossRefGoogle Scholar
  48. Miggiano G.A., and De Sanctis R. (2006). Nutritional genomics: toward a personalized diet. Clin. Ter. 157:355–361.PubMedCrossRefGoogle Scholar
  49. Miggiano G.A., and Gagliardi L.(2006). Diabetes and diet revisited. Clin. Ter. 157:443–455.PubMedGoogle Scholar
  50. Mills S.C., Windsor A.C., and Knight S.C. (2005). The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes. Clin. Exp. Immunol. 142:216–228.PubMedCrossRefGoogle Scholar
  51. Milne S., Ivanova P., Forrester J., and Brown H.A. (2006). Lipidomics: An analysis of cellular lipids by ESI-MS. Methods 39:92–103.PubMedCrossRefGoogle Scholar
  52. Milner J.A. (2004). Molecular targets for bioactive food components. J. Nutr. 134:2492S–2498S.PubMedGoogle Scholar
  53. Milner J.A. (2007). Nutrition in the 'omics' era. Forum Nutr. 60:1–24.PubMedCrossRefGoogle Scholar
  54. Moghadasian M.H. (2008). Advances in dietary enrichment with n-3 fatty acids. Critical Rev. Food Sci. Nutr. 48:402–410.Google Scholar
  55. Montuschi P., Barnes P., and Roberts L.J. 2nd (2007). Insights into oxidative stress: the isoprostanes. Curr Med Chem. 14:703–717.PubMedCrossRefGoogle Scholar
  56. Morrow J.D. (2006). The isoprostanes – Unique products of arachidonate peroxidation: Their role as mediators of oxidant stress. Curr. Pharmaceut. Design 12:895–902.CrossRefGoogle Scholar
  57. Napier J.A. (2006). The production of n-3 long-chain polyunsaturated fatty acids in transgenic plants. Eur. J. Lipid Sci. Technol. 108:965–972.CrossRefGoogle Scholar
  58. Ordovas J.M., and Corella D. (2004). Nutritional genomics. Annu. Rev. Genomics Hum. Genet. 5:71–118.PubMedCrossRefGoogle Scholar
  59. Perluigi M., Poon H.F., Hensley K., Pierce W.M., Klein J.B., Calabrese V., De Marco C., and Butterfield D.A. (2005). Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice – a model of familial amyotrophic lateral sclerosis. Free Radical Biol. Med. 38:960–968.CrossRefGoogle Scholar
  60. Phillis J.W., Horrocks L.A., and Farooqui A.A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedCrossRefGoogle Scholar
  61. Pirollo K.F., Rait A., Sleer L.S., and Chang E.H. (2003). Antisense therapeutics: from theory to clinical practice. Pharmacol. Ther. 99:55–77.PubMedCrossRefGoogle Scholar
  62. Prather R.S. (2006). Cloned transgenic heart-healthy pork? Transgenic Res. 15:405–407.PubMedCrossRefGoogle Scholar
  63. Roberts II L.J., Montine T.J., Markesbery W.R., Tapper A.R., Hardy P., Chemtob S., Dettbarn W.D., and Morrow J.D. (1998). Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273:13605–13612.CrossRefGoogle Scholar
  64. Robert S.S. (2006). Production of eicosapentaenoic and docosahexaenoic acid-containing oils in transgenic land plants for human and aquaculture nutrition. Marine Biotechnol. 8:103–109.CrossRefGoogle Scholar
  65. Serhan C.N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedCrossRefGoogle Scholar
  66. Serhan C.N. (2006). Novel chemical mediators in the resolution of inflammation: resolvins and protectins. Anesthesiol. Clinics North Am. 24:341–364.CrossRefGoogle Scholar
  67. Serhan C.N., and Chiang N. (2008). Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br. J. Pharmacol. 153(Suppl. 1):S200–S215.PubMedGoogle Scholar
  68. Simopoulos A.P. (2000). Commentary on the workshop statement. Essentiality of and recommended dietary intakes for Omega-6 and Omega-3 fatty acids. Prostaglandins Leukot. Essent. Fatty Acids. 63:123–124.PubMedCrossRefGoogle Scholar
  69. Simopoulos A.P. (2002a). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother 56:365–379.PubMedCrossRefGoogle Scholar
  70. Simopoulos A.P. (2002b). Genetic variation and dietary response: Nutrigenetcs/nutrigenomics. Asia Pacific J. Clin. Nutr. 11:S117–S128.CrossRefGoogle Scholar
  71. Simopoulos A.P.(2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res 37:263–277.PubMedCrossRefGoogle Scholar
  72. Simopoulos A.P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother 60:502–507.PubMedCrossRefGoogle Scholar
  73. Simopoulos A.P. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 233:674–688.CrossRefGoogle Scholar
  74. Soule J., Messaoudi E., and Bramham C.R. (2006). Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem. Soc. Trans. 34:600–604.PubMedCrossRefGoogle Scholar
  75. Spychalla J.P., Kinney A.J., and Browse J. (1997). Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proc. Natl. Acad. Sci. USA 94:1142–1147.PubMedCrossRefGoogle Scholar
  76. Stover P.J., and Caudill M.A. (2008). Genetic and epigenetic contributions to human nutrition and health: managing genome-diet interactions. J. Am. Diet Assoc. 108:1480–1487.PubMedCrossRefGoogle Scholar
  77. Valenzuela A., and Nieto M.S. (2001). Docosahexaenoic acid (DHA) in fetal development and in infant nutrition Rev. Med. Chil. 129:1203–1211.Google Scholar
  78. Watson A.D. (2006). Lipidomics: a global approach to lipid analysis in biological systems. J. Lipid Res. 47:2101–2111.PubMedCrossRefGoogle Scholar
  79. Weylandt K.H., and Kang J.X. (2005). Rethinking lipid mediators. Lancet 366:618–620.PubMedCrossRefGoogle Scholar
  80. Wittwer J., and Hersberger M. (2007). The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot. Essent. Fatty Acids 77:67–77.PubMedCrossRefGoogle Scholar
  81. Xia S., Lu Y., Wang J., He C., Hong S., Serhan C.N., and Kang J.X. (2006). Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids. Proc. Natl. Acad. Sci. USA 103:12499–12504.PubMedCrossRefGoogle Scholar
  82. Yoshikawa T., Sakaeda T., Sugawara T., Hirano K., and Stella V.J. (1999). A novel chemical delivery system for brain targeting. Adv. Drug Deliv. Rev. 36:255–275.PubMedCrossRefGoogle Scholar
  83. Zeisel S.H. (2007). Nutrigenomics and metabolomics will change clinical nutrition and public health practice: insights from studies on dietary requirements for choline. Am. J. Clin. Nutri. 86:542–548.Google Scholar
  84. Zhu G., Chen H., Wu X., Zhou Y., Lu J., Chen H., and Deng J. (2008). A modified n-3 fatty acid desaturase gene from Caenorhabditis briggsae produced high proportion of DHA and DPA in transgenic mice. Transgenic Res. 17:717–725.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations