Skip to main content

Opportunistic Scheduling with Deadline Constraints in Wireless Networks

  • Chapter
  • First Online:
Book cover Performance Models and Risk Management in Communications Systems

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 46))

  • 952 Accesses

Abstract

The main idea of opportunistic scheduling in wireless networks is to exploit the temporal and/or spatial variations of the wireless channel by transmitting more data when the channel between the sender and receiver is in a “good” state, and less data when the channel is in a “bad” state. Doing so increases system throughput and reduces total energy consumption. However, in such opportunistic transmission scheduling problems, it is often the case that the transmission scheduler has competing Quality of Service (QoS) interests. In this chapter, we focus on delay-sensitive applications. For example, in a multimedia streaming application, if packets do not arrive before a certain deadline, the end user may experience playout interruptions or poor playout quality. After a brief introduction to opportunistic scheduling in wireless networks, we examine stochastic modeling issues common to such applications, such as ways to model the wireless channel, the data, the system performance objectives, and the system resource constraints. We then review the formulations of a few key stochastic optimization problems featuring deadline constraints, and present the structures of their optimal transmission scheduling policies. We elucidate the role of the deadline constraints by comparing these problems in dierent ways. Finally, we relate these wireless communication problems to models from inventory theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal M, Borkar VS, Karandikar A (2008) Structural properties of optimal transmission policies over a randomly varying channel. IEEE Trans Autom Control 53(6):1476–1491

    Article  MathSciNet  Google Scholar 

  2. Andrews M, Kumaran K, Ramanan K, Stolyar A, Vijayakumar R, Whiting P (2004) Scheduling in a queueing system with asynchronously varying service rates, Probab Eng Inform Sci 18:191–217

    Article  MATH  MathSciNet  Google Scholar 

  3. Ata B (2005) Dynamic power control in a wireless static channel subject to a quality-of-service constraint. Oper Res 53(5):842–851

    Article  MATH  MathSciNet  Google Scholar 

  4. Bensoussan A, Crouhy M, Proth J-M (1983) Mathematical theory of production planning, Elsevier Science, Amsterdam

    MATH  Google Scholar 

  5. Berggren F, Jäntti R (2004) Asymptotically fair transmission scheduling over fading channels. IEEE Trans Wireless Commun 3(1):326–336

    Article  Google Scholar 

  6. Berry RA, Gallager RG (2002) Communication over fading channels with delay constraints, IEEE Trans Inform Theory 48(5):1135–1149

    Article  MathSciNet  Google Scholar 

  7. Berry RA, Yeh EM (2004) Cross-layer wireless resource allocation. IEEE Signal Process Mag 21(5):59–69

    Article  Google Scholar 

  8. Bertsekas DP, Shreve SE (1996) Stochastic optimal control: the discrete-time case. Athena Scientific

    Google Scholar 

  9. Bhorkar A, Karandikar A, Borkar VS (2006) Power optimal opportunistic scheduling. In: Proceedings of the IEEE global telecommunications conference (GLOBECOM), San Francisco, CA

    Google Scholar 

  10. Borst S, Whiting P (2003) Dynamic channel-sensitive scheduling algorithms for wireless data throughput optimization. IEEE Trans Veh Technol 52(3):569–586

    Article  Google Scholar 

  11. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  12. Chang N, Liu M (2007) Optimal channel probing and transmission scheduling for opportunistic spectrum access. In: Proceedings of the ACM international conference on mobile computing and networking (MobiCom’07), Montreal, Canada, pp. 27–38

    Google Scholar 

  13. Chang NB, Liu M (2009) Optimal channel probing and transmission scheduling for opportunistic spectrum access. IEEE/ACM Trans Netw 17(6):1805–1818

    Article  Google Scholar 

  14. Chaporkar A, Proutiere P (2008) Optimal joint probing and transmission strategy for maximizing throughput in wireless systems. IEEE J Select Areas Commun 26(8):1546–1555

    Article  Google Scholar 

  15. Chen SX (2004) The optimality of hedging point policies for stochastic two product flexible manufacturing systems. Oper Res 52(2):312–322

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen W, Mitra U, Neely MJ (2007) Energy-efficient scheduling with individual delay constraints over a fading channel. In: Proceedings of the international symposium on modeling and optimization in mobile, ad hoc, and wireless networks, Limassol, Cyprus

    Google Scholar 

  17. Chen W, Mitra U, Neely MJ (2009) Energy-efficient scheduling with individual delay constraints over a fading channel. Wireless Netw 15(5):601–618

    Article  Google Scholar 

  18. Collins BE, Cruz RL (1999) Transmission policies for time varying channels with average delay constraints. In: Proceedings of the Allerton conference on communication, control, and computing, Monticello, IL

    Google Scholar 

  19. DeCroix GA, Arreola-Risa A (1998) Optimal production and inventory policy for multiple products under resource constraints. Manage Sci 44(7):950–961

    Article  MATH  MathSciNet  Google Scholar 

  20. Djonin DV, Krishnamurthy V (2005) Structural results on the optimal transmission scheduling policies and costs for correlated sources and channels. In: Proceedings of the IEEE conference on decision and control, Seville, Spain, pp. 3231–3236

    Google Scholar 

  21. Evans R (1967) Inventory control of a multiproduct system with a limited production resource. Naval Res Logist Quart 14(2):173–184

    Article  MATH  Google Scholar 

  22. Fabian T, Fisher JL, Sasieni MW, Yardeni A (1959) Purchasing raw material on a fluctuating market. Oper Res 7(1):107–122

    Article  Google Scholar 

  23. Federgruen A, Zipkin P (1986) An inventory model with limited production capacity and uncertain demands II. The discounted-cost criterion. Math Oper Res 11(2):208–215

    Article  MATH  MathSciNet  Google Scholar 

  24. Fu A, Modiano E, Tsitsiklis J (2003) Optimal energy allocation for delay-constrained data transmission over a time-varying channel. In: Proceedings of the IEEE INFOCOM, San Francisco, CA, vol 2, pp. 1095–1105

    Google Scholar 

  25. Fu A, Modiano E, Tsitsiklis JN (2006) Optimal transmission scheduling over a fading channel with energy and deadline constraints. IEEE Trans Wireless Commun 5(3):630–641

    Article  Google Scholar 

  26. Gesbert D, Alouini M-S (2004) How much feedback is multi-user diversity really worth? In: Proceedings of the IEEE international conference on communications, Paris, France, vol 1, pp. 234–238

    Google Scholar 

  27. Golabi K (1982) A single-item inventory model with stochastic prices. In: Proceedings of the second international symposium on inventories, Budapest, Hungary, pp. 687–697

    Google Scholar 

  28. Golabi K (1985) Optimal inventory policies when ordering prices are random. Oper Res 33(3): 575–588

    Article  MATH  MathSciNet  Google Scholar 

  29. Gopalan A, Caramanis C, Shakkottai S (2007) On wireless scheduling with partial channel-state information. In: Proceedings of the 45th Allerton conference on communication, control, and computing, Urbana, IL

    Google Scholar 

  30. Goyal M, Kumar A, Sharma V (2003) Power constrained and delay optimal policies for scheduling transmission over a fading channel. In: Proceedings of the IEEE INFOCOM, San Francisco, CA, pp. 311–320

    Google Scholar 

  31. Goyal M, Kumar A, Sharma V (2008) Optimal cross-layer scheduling of transmissions over a fading multiaccess channel. IEEE Trans Inform Theory 54(8):3518–3537

    Article  MathSciNet  Google Scholar 

  32. Guha S, Munagala K, Sarkar S (2006) Jointly optimal transmission and probing strategies for multichannel wireless systems. In: Proceedings of the conference on information sciences and systems, Princeton, NJ

    Google Scholar 

  33. Guha S, Munagala K, Sarkar S (2006) Optimizing transmission rate in wireless channels using adaptive probes. In: Proceedings of the ACM sigmetrics/performance conference, Saint-Malo, France, June 2006

    Google Scholar 

  34. Hernández-Lerma O, Lasserre JB (1996) Discrete-time Markov control processes. Springer, New York, NY

    Google Scholar 

  35. Holtzman JM (2000) CDMA forward link waterfilling power control. In: Proceedings of the IEEE vehicular technology conference, Tokyo, Japan, vol 3, pp. 1663–1667

    Google Scholar 

  36. Janakiraman G, Nagarajan M, Veeraraghavan S (2009) Simple policies for managing flexible capacity. Manuscript

    Google Scholar 

  37. Ji Z, Yang Y, Zhou J, Takai M, Bagrodia R (2004) Exploiting medium access diversity in rate adaptive wireless LANs. In: Proceedings of MOBICOM, Philadelphia, PA, pp. 345–359

    Google Scholar 

  38. Kalymon B (1971) Stochastic prices in a single-item inventory purchasing model. Oper Res 19(6):1434–1458

    Article  MATH  MathSciNet  Google Scholar 

  39. Karlin S (1958) Optimal inventory policy for the Arrow-Harris-Marschak dynamic model. In: Arrow KJ, S. Karlin, H. Scarf (eds) Studies in the mathematical theory of inventory and production, Stanford University Press, Stanford, CA, pp. 135–154

    Google Scholar 

  40. Karush W (1959) A theorem in convex programming. Naval Res Logist Quart 6(3):245–260

    Article  MathSciNet  Google Scholar 

  41. Kingsman BG (1969) Commodity purchasing. Oper Res Quart 20:59–80

    Article  Google Scholar 

  42. Kingsman BG (1969) Commodity purchasing in uncertain fluctuating price markets. PhD thesis, University of Lancaster

    Google Scholar 

  43. Kittipiyakul S, Javidi T (2007) Resource allocation in OFDMA with time-varying channel and bursty arrivals. IEEE Commun Lett 11(9):1708–710

    Article  Google Scholar 

  44. Kittipiyakul S, Javidi T (2009) Delay-optimal server allocation in multiqueue multi-server systems with time-varying connectivities. IEEE Trans Inform Theory, vol. 55, May 2009, pp. 2319–2333

    Article  MathSciNet  Google Scholar 

  45. Knopp R, Humblet PA (1995) Information capacity and power control in single-cell multiuser communications. In: Proceedings of the international conference on communications, Seattle, WA, vol 1, pp. 331–335

    Google Scholar 

  46. Lee J, Jindal N (2008) Energy-efficient scheduling of delay constrained traffic over fading channels. In: Proceedings of the IEEE international symposium on information theory, Toronto, Canada

    Google Scholar 

  47. Lee J, Jindal N (2009) Energy-efficient scheduling of delay constrained traffic over fading channels. IEEE Trans Wireless Commun 8(4):1866–1875

    Article  Google Scholar 

  48. Lee J, Jindal N (2009) Delay constrained scheduling over fading channels: optimal policies for monomial energy-cost functions. In: Proceedings of the IEEE international conference on communications, Dresden, Germany

    Google Scholar 

  49. Lee J, Jindal N (2009) Asymptotically optimal policies for hard-deadline scheduling over fading channels. IEEE Trans Inform Theory, submitted

    Google Scholar 

  50. Liu X, Chong EKP, Shroff NB (2003) Optimal opportunistic scheduling in wireless networks. In: Proceedings of the vehicular technology conference, Orlando, FL, vol 3, pp. 1417–1421

    Google Scholar 

  51. Liu X, Chong EKP, Shroff NB (2003) A framework for opportunistic scheduling in wireless networks. Comput Netw 41(4):451–474

    Article  MATH  Google Scholar 

  52. Liu X, Shroff NB, Chong EKP (2004) Opportunistic scheduling: An illustration of cross-layer design. Telecommun Rev 14(6):947–959

    Google Scholar 

  53. Love DJ, Heath RW Jr, Lau VKN, Gesbert D, Rao BD, Andrews M (2008) An overview of limited feedback in wireless communication systems. IEEE J Select Areas Commun 26(8):1341–1365

    Article  Google Scholar 

  54. Luna CE, Eisenberg Y, Berry R, Pappas TN, Katsaggelos AK (2003) Joint source coding and data rate adaptation for energy efficient wireless video streaming. IEEE J Select Areas Commun 21(10):1710–1720

    Article  Google Scholar 

  55. Magirou VF (1982) Stockpiling under price uncertainty and storage capacity constraints. Eur J Oper Res 11:233–246

    Article  MATH  MathSciNet  Google Scholar 

  56. Magirou VF (1987) Comments on ‘On optimal inventory policies when ordering prices are random’ by Kamal Golabi. Oper Res 35(6):930–931

    Article  Google Scholar 

  57. Neely MJ (2009) Max weight learning algorithms with application to scheduling in unknown environments. In: Proceedings of the information theory and applications workshop, La Jolla, CA

    Google Scholar 

  58. Neely MJ, Modiano E, Rohrs CE (2003) Dynamic power allocation and routing for time varying wireless networks. In: Proceedings of the IEEE INFOCOM, San Francisco, CA, vol 1, pp. 745–755

    Google Scholar 

  59. Porteus EL (1990) Stochastic inventory theory. In: Heyman DP, Sobel MJ (eds) Stochastic models. Elsevier Science, Amsterdam, pp. 605–652

    Chapter  Google Scholar 

  60. Porteus EL (2002) Foundations of stochastic inventory theory. Stanford University Press, Stanford, CA

    Google Scholar 

  61. Rajan D, Sabharwal A, Aazhang B (2004) Delay-bounded packet scheduling of bursty traffic over wireless channels. IEEE Trans Inform Theory 50(1):125–144

    Article  MathSciNet  Google Scholar 

  62. Sabharwal A, Khoshnevis A, Knightly E (2007) Opportunistic spectral usage: Bounds and a multi-band CSMA/CA protocol. IEEE/ACM Trans Netw 15(3):533–545

    Article  Google Scholar 

  63. Sadeghi P, Kennedy RA, Rapajic PB, Shams R (2008) Finite-state Markov modeling of fading channels – a survey of principles and applications. IEEE Signal Process Mag 25(5):57–80

    Article  Google Scholar 

  64. Sanayei S, Nosratinia A (2007) Opportunistic beamforming with limited feedback. IEEE Trans Wireless Commun 6(8):2765–2771

    Article  Google Scholar 

  65. Shakkottai S, Srikant R, Stolyar A (2004) Pathwise optimality of the exponential scheduling rule for wireless channels. Adv Appl Probab 36(4):1021–1045

    Article  MATH  MathSciNet  Google Scholar 

  66. Shuman DI (2010) From sleeping to stockpiling: energy conservation via stochastic scheduling in wireless networks. PhD thesis, University of Michigan, Ann Arbor

    Google Scholar 

  67. Shuman DI, Liu M (2008) Energy-efficient transmission scheduling for wireless media streaming with strict underflow constraints. In: Proceedings of the international symposium on modeling and optimization in mobile, ad hoc, and wireless networks, Berlin, Germany, pp. 354–359

    Google Scholar 

  68. Shuman DI, Liu M, Wu OQ (2010) Energy-efficient transmission scheduling with strict underflow constraints. IEEE Trans Inform Theory, forthcoming

    Google Scholar 

  69. Sobel MJ (1970) Making short-run changes in production when the employment level is fixed. Oper Res 18(1):35–51

    Article  MATH  MathSciNet  Google Scholar 

  70. Srivastava R, Koksal CE (2010) Energy optimal transmission scheduling in wireless sensor networks. IEEE Trans Wireless Commun 9(5):1550–1560

    Article  Google Scholar 

  71. Tarello A, Sun J, Zafer M, Modiano E (2008) Minimum energy transmission scheduling subject to deadline constraints. ACM Wireless Netw 14(5):633–645

    Article  Google Scholar 

  72. Tassiulas A, Ephremides L (1993) Dynamic server allocation to parallel queues with randomly varying connectivity. IEEE Trans Inform Theory 39(2):466–478

    Article  MATH  MathSciNet  Google Scholar 

  73. Tayur S (1993) Computing the optimal policy for capacitated inventory models. Commun Statist Stochastic Models 9(4):585–598

    Article  MATH  MathSciNet  Google Scholar 

  74. Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  75. Uysal-Biyikoglu E, El Gamal A (2004) On adaptive transmission for energy efficiency in wireless data networks. IEEE Trans Inform Theory 50(12):3081–3094

    Article  MathSciNet  Google Scholar 

  76. Uysal-Biyikoglu E, Prabhakar B, El Gamal A (2002) Energy-efficient packet transmission over a wireless link. IEEE/ACM Trans Netw 10(4):487–499

    Article  Google Scholar 

  77. Viswanath P, Tse DNC, Laroia R (2002) Opportunistic beamforming using dumb antennas. IEEE Trans Inform Theory 48(6):1277–1294

    Article  MATH  MathSciNet  Google Scholar 

  78. Wang H (2003) Opportunistic transmission of wireless data over fading channels under energy and delay constraints. PhD thesis, Rutgers University

    Google Scholar 

  79. Zafer M, Modiano E (2005) Continuous-time optimal rate control for delay constrained data transmission. In: Proceedings of the 43rd Allerton conference on communication, control, and computing, Urbana, IL

    Google Scholar 

  80. Zafer M, Modiano E (2007) Delay-constrained energy efficient data transmission over a wireless fading channel. In: Proceedings of the information theory and applications workshop, La Jolla, CA

    Google Scholar 

  81. Zahrn FC (2009) Studies of inventory control and capacity planning with multiple sources. PhD thesis, Georgia Institute of Technology

    Google Scholar 

  82. Zhang D, Wasserman KM (2002) Transmission schemes for time-varying wireless channels with partial state observations. In: Proceedings of the IEEE INFOCOM, New York, NY, vol 2, pp. 467–476

    Google Scholar 

  83. Zipkin PH (2000) Foundations of Inventory Management. McGraw-Hill, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David I Shuman or Mingyan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shuman, D.I., Liu, M. (2011). Opportunistic Scheduling with Deadline Constraints in Wireless Networks. In: Gülpınar, N., Harrison, P., Rüstem, B. (eds) Performance Models and Risk Management in Communications Systems. Springer Optimization and Its Applications, vol 46. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0534-5_6

Download citation

Publish with us

Policies and ethics