Distributed and Robust Rate Control for Communication Networks

Part of the Springer Optimization and Its Applications book series (SOIA, volume 46)


Contemporary networks are distributed, complex, and heterogeneous. Ensuring an efficient, fair, and incentive-compatible allocation of bandwidth among their users constitutes a challenging and multi-faceted research problem. This chapter presents three control and game-theoretic approaches that address rate control problems from different perspectives. First, a noncooperative rate control game focusing on incentive compatibility issues is formulated. Secondly, a primal-dual algorithm incorporating queue dynamics and maximizing a global objective is considered. Finally, a robust rate control framework is presented. For each scheme, the respective equilibrium, stability, and robustness properties are rigorously analyzed and discussed.


Nash Kelly 



The author thanks Tamer Başar and Jatinder Singh for their contributions and Çig˜dem Şengül for her insightful comments.


  1. 1.
    Alpcan T, Başar T (2000) A variable rate model with QoS guarantees for real-time internet traffic. In: Proceedings of the SPIE International Symposium on Information Technologies, Boston, MA, vol. 2411, pp 243–245Google Scholar
  2. 2.
    Alpcan T, Başar T (2002) A game-theoretic framework for congestion control in general topology networks. In: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, pp 1218–1224Google Scholar
  3. 3.
    Alpcan T, Başar T (2003) Global stability analysis of an end-to-end congestion control scheme for general topology networks with delay. In Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, pp 1092–1097Google Scholar
  4. 4.
    Alpcan T, Başar T (2004) Global stability analysis of an end-to-end congestion control scheme for general topology networks with delay. Elektrik 12(3):139–150. papers/Alpcan-Basar-Elektrik.pdfGoogle Scholar
  5. 5.
    Alpcan T, Başar T (2005) A utility-based congestion control scheme for Internet-style networks with delay. IEEE Trans Netw 13(6):1261–1274CrossRefGoogle Scholar
  6. 6.
    Alpcan T, Singh JP, Başar T (2009) Robust rate control for heterogeneous network access in multi-homed environments. IEEE Trans Mobile Comput 8(1):41–51. papers/alpcan-tmcfinal1.pdfCrossRefGoogle Scholar
  7. 7.
    Altman E, Başar T (1998) Multi-user rate-based flow control. IEEE Trans Commun 46(7):940–949CrossRefGoogle Scholar
  8. 8.
    Altman E, Başar T, Jimenez T, Shimkin N. (2002) Competitive routing in networks with polynomial costs. IEEE Trans Automat Contr 47(1):92–96CrossRefGoogle Scholar
  9. 9.
    Başar T, Bernhard P (1995) H\(^{\infty} \)-optimal control and related minimax design problems: A dynamic game approach, 2nd edn. Birkhäuser, Boston, MAGoogle Scholar
  10. 10.
    Başar T, Olsder GJ (1999) Dynamic noncooperative game theory, 2nd edn. SIAM, Philadelphia, PAMATHGoogle Scholar
  11. 11.
    Başar T, Srikant R (2002) Revenue-maximizing pricing and capacity expansion in a many-users regime. In: Proceedings of IEEE INFOCOM, New YorkGoogle Scholar
  12. 12.
    Bertsekas D, Gallager R (1992) Data networks, 2nd edn. Prentice Hall, Upper Saddle River, NJMATHGoogle Scholar
  13. 13.
    Brakmo LS, Peterson LL (1995) TCP vegas: End to end congestion avoidance on a global internet. IEEE J Select Area Commun 13(8):1465–1480. Available via citeseer.nj.nec.com/brakmo95tcp.htmlCrossRefGoogle Scholar
  14. 14.
    Deb S, Srikant R (2003) Global stability of congestion controllers for the internet. IEEE Trans Automat Contr 48(6):1055–1060CrossRefMathSciNetGoogle Scholar
  15. 15.
    Elwalid A (1995) Analysis of adaptive rate-based congestion control for high-speed wide-area networks. In: Proceedings of the IEEE International Conference on Communications (ICC), vol 3, Seattle, WA, pp 1948–1953Google Scholar
  16. 16.
    Floyd S, Fall K (1999) Promoting the use of end-to-end congestion control in the internet. IEEE/ACM Trans Netw 7(4):458–472. Available via citeseer.nj.nec.com/article/floyd99 promoting.htmlCrossRefGoogle Scholar
  17. 17.
    Hale JK, Lunel SMV (1993) Introduction to functional differential equations. Applied mathematical sciences, vol 99. Springer, New York, NYCrossRefGoogle Scholar
  18. 18.
    Jacobson V (1988) Congestion avoidance and control. In: Proceedings of the Symposium on Communications Architectures and Protocols (SIGCOMM), Stanford, CA, pp 314–329. Available via citeseer.ist.psu.edu/jacobson88congestion.htmlGoogle Scholar
  19. 19.
    Johari R, Tan D (2001) End-to-end congestion control for the Internet: Delays and stability. IEEE/ACM Trans Netw 9(6):818–832CrossRefGoogle Scholar
  20. 20.
    Kelly FP (1997) Charging and rate control for elastic traffic. Eur Trans Telecomm 8:33–37CrossRefGoogle Scholar
  21. 21.
    Kelly F, Maulloo A, Tan D (1998) Rate control in communication networks: Shadow prices, proportional fairness and stability. J Oper Res Soc 49:237–252CrossRefMATHGoogle Scholar
  22. 22.
    Khalil HK (1996) Nonlinear systems, 2nd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  23. 23.
    Kunniyur S, Srikant R (2002) A time-scale decomposition approach to adaptive explicit congestion notification (ECN) marking. IEEE Trans Automat Contr 47(6):882–894CrossRefMathSciNetGoogle Scholar
  24. 24.
    La RJ, Anantharam V (2000) Charge-sensitive TCP and rate control in the internet. In: Proceedings of IEEE INFOCOM, pp 1166–1175. Available via citeseer.nj.nec.com/320096.htmlGoogle Scholar
  25. 25.
    Liu S, Başar T, Srikant R (2003) Controlling the Internet: A survey and some new results. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HawaiiGoogle Scholar
  26. 26.
    Low SH, Lapsley DE (1999) Optimization flow control-i: Basic algorithm and convergence. IEEE/ACM Trans Netw 7(6):861–874CrossRefGoogle Scholar
  27. 27.
    Massoulie L (2002) Stability of distributed congestion control with heterogeneous feedback delays. IEEE Trans Automat Contr 47(6):895–902CrossRefMathSciNetGoogle Scholar
  28. 28.
    Mo J, La RJ, Anantharam V, Walrand JC (1999) Analysis and comparison of TCP reno and vegas. In: Proceedings of IEEE Infocom, pp 1556–1563. Available via citeseer.nj.nec.com/331728.htmlGoogle Scholar
  29. 29.
    Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans Netw 8:556–567CrossRefGoogle Scholar
  30. 30.
    Orda A, Rom R, Shimkin N (1993) Competitive routing in multiuser communication networks. IEEE/ACM Trans Netw 1:510–521CrossRefGoogle Scholar
  31. 31.
    Srikant R (2004) The mathematics of internet congestion control. Systems & Control: Foundations & Applications. Birkhauser, Boston, MACrossRefGoogle Scholar
  32. 32.
    Vinnicombe G (2002) On the stability of networks operating tcp-like congestion contro. In: Proceedings of the 15th IFAC World Congress on Automatic Control, Barcelona, SpainGoogle Scholar
  33. 33.
    Wen J, Arcak M (2003) A unifying passivity framework for network flow control. In: Proceedings of IEEE INFOCOM, San Francisco, CAGoogle Scholar
  34. 34.
    Yaiche H, Mazumdar RR, Rosenberg C (2000) A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Trans Netw 8:667–678CrossRefGoogle Scholar
  35. 35.
    Yorke JA (1970) Asymptotic stability for one dimensional differential-delay equations. J Differ Equ 7:189–202CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Deutsche Telekom LaboratoriesTechnical University of BerlinBerlinGermany

Personalised recommendations