Nanodiamonds pp 79-116 | Cite as

Detonation Nanodiamond Particles Processing, Modification and Bioapplications



This chapter will detail the requirements of modern detonation nanodiamonds (DNDs) intended for biomedical applications, beginning with DND material preparations and followed by bio-related applications developed at International Technology Center. DNDs are one of the most commercially promising nanodiamonds with a primary particle size of 4–5 nm, produced by detonation of carbon-containing explosives. The structural diversity of DNDs will be described, which depend upon synthesis conditions, postsynthesis processes, and modifications. Bioapplications reviewed include ballistic delivery of bio-functionalized DND into cells, photoluminescent biolabeling, biotarget capturing and collection by electrophoretic manipulation of DNDs, and health care applications. DNDs are advantageous when compared with the other types of nanoparticles due to DND large scale synthesis, small primary particle size, facile surface functionalization, stable photoluminescence as well as biocompatibility. Currently, biotechnology applications have shown that NDs can be used for bioanalytical purposes such as protein purification or fluorescent biolabeling, while research is in the developing stages for DNDs applied as diagnostic probes, delivery vehicles, enterosorbents and advanced medical device applications.


Surface Group Diamond Particle Bead Milling Positive Zeta Potential Nanodiamond Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the help of V. Kuznetsov and B. Palosz for providing illustrations for this chapter, as well as helpful discussions with Amanda Schrand and G. McGuire.


  1. 1.
    Shenderova O, Gruen D (2006) Ultrananocrystalline diamond. William-Andrew, New YorkGoogle Scholar
  2. 2.
    Danilenko VV (2004) Phys Solid State 46:595–599CrossRefGoogle Scholar
  3. 3.
    Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) J Am Chem Soc 127:17604–17605CrossRefGoogle Scholar
  4. 4.
    Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W (2007) Proc Natl Acad Sci U S A 104:727–732CrossRefGoogle Scholar
  5. 5.
    Sonnefraud Y, Cuche A, Faklaris O, Boudou JP, Sauvage T, Roch JF, Treussart F, Huant S (2008) Opt Lett 33:611–613CrossRefGoogle Scholar
  6. 6.
    Decarli PS, Jamieson JC (1961) Science 133:1821–1822CrossRefGoogle Scholar
  7. 7.
    Danilenko VV (in press) Solid State PhysGoogle Scholar
  8. 8.
    Huang H, Pierstorff E, Osawa E, Ho D (2007) Nano Lett 7:3305–3314CrossRefGoogle Scholar
  9. 9.
    Bondar VS, Pozdnyakova IO, Puzyr AP (2004) Phys Solid State 46:758–760CrossRefGoogle Scholar
  10. 10.
    Huang LC, Chang HC (2004) Langmuir 20:5879–5884CrossRefGoogle Scholar
  11. 11.
    Kong XL, Huang LC, Hsu CM, Chen WH, Han CC, Chang HC (2005) Anal Chem 77:259–265CrossRefGoogle Scholar
  12. 12.
    Kong X, Huang LC, Liau SC, Han CC, Chang HC (2005) Anal Chem 77:4273–4277CrossRefGoogle Scholar
  13. 13.
    Grichko V, Grishko V, Shenderova O (2007) Nanobiotechnology 2:37–42CrossRefGoogle Scholar
  14. 14.
    Gibson N, Shenderova O, Puzyr A, Purtov K, Grichko V, Luo TJM, Fitgerald Z, Bondar V, Brenner D (2007) For detoxification. In: Technical proceedings of the 2007 NSTI NanoTechnology Conference and Trade ShowGoogle Scholar
  15. 15.
    Puzyr AP, Purtov KV, Shenderova OA, Luo M, Brenner DW, Bondar VS (2007) Dokl BiochemBiophys 417:299–301CrossRefGoogle Scholar
  16. 16.
    Schwertfeger H, Fokin AA, Schreiner PR (2008) Angew Chem Int Ed Engl 47:1022–1036CrossRefGoogle Scholar
  17. 17.
    Dahl JE, Liu SG, Carlson RMK (2003) Science 299:96–99CrossRefGoogle Scholar
  18. 18.
    Carlson RMK, Dahl JEP, Liu SG (2005) Diamond molecules found in petroleum. In: Gruen DM, Vul A, Shenderova OA (eds) Synthesis, properties, and applications of ultrananocrystalline diamond. Dordrecht, The Netherlands, SpringerGoogle Scholar
  19. 19.
    Freitas RA (2003)Nanomedicine. vol IIA. Landes Bioscience: Texas, pp 348Google Scholar
  20. 20.
    Larionova I, Kuznetsov V, Frolov A, Shenderova O, Moseenkov S, Mazov I (2006) Diam Relat Mater 15:1804–1808CrossRefGoogle Scholar
  21. 21.
    Krueger A, Boedeker T (2008) Diam Relat Mater 17:1367–1370CrossRefGoogle Scholar
  22. 22.
    Neugart F, Zappe A, Jelezko F, Tietz C, Boudou JP, Krueger A, Wrachtrup J (2007) Nano Letters 7:2588–3591CrossRefGoogle Scholar
  23. 23.
    Krueger A, Stegk J, Liang YJ, Lu L, Jarre G (2008) Langmuir 24:4200–4204CrossRefGoogle Scholar
  24. 24.
    Dolmatov V (2003) Ultradispersed Diamonds of Detonation Synthesis. SPbGTU, Sank-PetersburgGoogle Scholar
  25. 25.
    Vereschagin AL (2001) Barnaul, Russian Federation, Altai State Technical University; Vereschagin AL (2005) Altay Region, Barnaul State Technical UniversityGoogle Scholar
  26. 26.
    Danilenko, V.V. (2003), ed. Energoatomizdat.Google Scholar
  27. 27.
    Gruen DM, Shenderova OA, Vul AY (2005) Synthesis, properties, and applications of ultrananocrystalline diamond. Springer, Dordrecht, NetherlandsCrossRefGoogle Scholar
  28. 28.
    Schrand AM, Hens SC, Shenderova OA (2009) Crit Rev Solid State Mater Sci vol 34, 18–74CrossRefGoogle Scholar
  29. 29.
    Shenderova OA, Zhirnov VV, Brenner DW (2002) Crit Rev Solid State Mater Sci 27:227–356CrossRefGoogle Scholar
  30. 30.
    Dolmatov VY (2001) Russ Chem Rev 70:607–626CrossRefGoogle Scholar
  31. 31.
    Holt KB (2007) Philos Transact A Math Phys Eng Sci 365:2845–2861CrossRefGoogle Scholar
  32. 32.
    Krueger A (2008) Adv Mater 20:2445CrossRefGoogle Scholar
  33. 33.
    Viecelli JA, Ree FH (2000) J Appl Phys 88:683–690CrossRefGoogle Scholar
  34. 34.
    Raty JY, Galli G, Bostedt C, Van Buuren TW, Terminello LJ (2003) Phys Rev Lett 90:037401CrossRefGoogle Scholar
  35. 35.
    Dolmatov V (2008) In: 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, RussiaGoogle Scholar
  36. 36.
    Rabeau JR, Stacey A, Rabeau A, Prawer S, Jelezko F, Mirza I, Wrachtrup J (2007) Nano Letters 7:3433–3437CrossRefGoogle Scholar
  37. 37.
    Smith BR, Inglis DW, Sandnes B, Rabeau JR, Zvyagin AV, Gruber D, Noble CJ, Vogel R, Οsawa E, Plakhotnik T vol 5, 1649–1653Google Scholar
  38. 38.
    Gubarevich (2008) 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, RussiaGoogle Scholar
  39. 39.
    Padalko V (private communication)Google Scholar
  40. 40.
    Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) J Am Chem Soc 128:11635–11642CrossRefGoogle Scholar
  41. 41.
    Petrov I, Shenderova O (2006) Chapter 16: history of Russian patents on detonation nanodiamonds. In: Shenderova O, Gruen D (eds) Ultrananocrystalline diamond. Norwich, UK, William-AndrewGoogle Scholar
  42. 42.
    Petrov I, Shenderova O, Grishko V, Grichko V, Tyler T, Cunningham G, Mcguire G (2007) Diam Relat Mater 16:2098–2103CrossRefGoogle Scholar
  43. 43.
    Chiganov AS (2004) Phys Solid State 46:620–621CrossRefGoogle Scholar
  44. 44.
    Dolmatov VY, Veretennikova MV, Marchukov VA, Sushchev VG (2004) Phys Solid State 46:611–615CrossRefGoogle Scholar
  45. 45.
    Gubarevich T, Larionova IS, Kostukova IN, Ryzko LS, Tyricuna VF, (1992) RU 1770272Google Scholar
  46. 46.
    Pavlov EV, Skrjabin JA (1994) Method for removal of impurities of non-diamond carbon and device for its realization. 1994: RussiaGoogle Scholar
  47. 47.
    Cunningham G, Panich AM, Shames AI, Petrov I, Shenderova O (2008) Diam Relat Mater 17:650–654CrossRefGoogle Scholar
  48. 48.
    Shenderova O (unpublished)Google Scholar
  49. 49.
    Mitev D, Dimitrova R, Spassova M, Minchev C, Stavrev S (2007) Diam Relat Mater 16:776–780CrossRefGoogle Scholar
  50. 50.
    Shenderova O, Petrov I, Walsh J, Grichko V, Grishko V, Tyler T, Cunningham G (2006) Diam Relat Mater 15:1799–1803CrossRefGoogle Scholar
  51. 51.
    Mochalin V, Behler K, Stravato A, Giammarco J, Gogotsi Y, Picardi C, Kalter M (2008) 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, RussiaGoogle Scholar
  52. 52.
    Larionova IS, Molostov IN, Kulagina LS, Komarov VF, RU 2168462.Google Scholar
  53. 53.
    Timofeev VT, Detkov PY (2005) Atom 4:1Google Scholar
  54. 54.
    Krueger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Vul AY, Osawa E (2005) Carbon 43:1722–1730CrossRefGoogle Scholar
  55. 55.
    Shenderova O, Larinova I, Petrov I, Hens S et al (in preparation)Google Scholar
  56. 56.
    Gordeev SK, Kruglikova S, Gordeev SK, Kruglikova S (2004) Superhard Mater 6:34Google Scholar
  57. 57.
    Xu XY, Yu ZM, Zhu YW, Wang BC (2005) J Solid State Chem 178:688–693CrossRefGoogle Scholar
  58. 58.
    Spitsyn B, Davidson J, Gradoboev M, Galushko T, Serebryakova N, Karpukhina T, Kulakova I, Melnik M (2006) Diam Relat Mater 15:296CrossRefGoogle Scholar
  59. 59.
    Yeganeh M, Coxon PR, Brieva AC, Dhanak VR, Siller L, Butenko YV (2007) Phys Rev B 75:155404CrossRefGoogle Scholar
  60. 60.
    Chukhaeva SI, Detkov P, Tkachenko A, Toropov A (1998) Sverkhtv Mater 4:29Google Scholar
  61. 61.
    Chukhaeva SI (2004) Phys Solid State 46:625–628CrossRefGoogle Scholar
  62. 62.
    Grichko V, Tyler T, Grishko VI, Shenderova O (2008) Nanotechnology 19:225201CrossRefGoogle Scholar
  63. 63.
    Iakoubovskii K, Mitsuishi K, Furuya K (2008) Nanotechnology 19:155705CrossRefGoogle Scholar
  64. 64.
    Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L (2007) Phys Status Solidi A 204:2881–2887CrossRefGoogle Scholar
  65. 65.
    Zhu YW, Xu F, Shen JL, Wang BC, Xu XY, Shao JB (2007) J Mater Sci Tech 23:599–603Google Scholar
  66. 66.
    Morita Y, Takimoto T, Yamanaka H, Kumekawa K, Morino S, Aonuma S, Kimura T, Komatsu N (2008) Small 12:2154–2157CrossRefGoogle Scholar
  67. 67.
    Ozawa M, Inaguma M, Takahashi M, Kataoka F, Kruger A, Osawa E (2007) Adv Mater 19:1201CrossRefGoogle Scholar
  68. 68.
    Ozerin A, Kurkin TS, Ozerina LA, Dolmatov VY (2008) Crystallogr Rep 53:60CrossRefGoogle Scholar
  69. 69.
    Titov VM, Tolochko BP, Ten KA, Lukyanchikov LA, Pruuel ER (2007) Diam Relat Mater 16:2009–2013CrossRefGoogle Scholar
  70. 70.
    Danilenko VV (2006) Superhard Mater N5:9Google Scholar
  71. 71.
    Osawa E (2007) Diam Relat Mater 16:2018–2022CrossRefGoogle Scholar
  72. 72.
    Huang HJ, Dai LM, Wang DH, Tan LS, Osawa E (2008) J Mater Chem 18:1347–1352CrossRefGoogle Scholar
  73. 73.
    Xu K, Xue QJ (2007) Diam Relat Mater 16:277–282CrossRefGoogle Scholar
  74. 74.
    Gibson N, Shenderova O, Luo TJM, Moseenkov S, Bondar V, Puzyr A, Purtov K, Fitzgerald Z, Brenner D (2008) Diam Relat Mater 2009 vol 18, 620–626CrossRefGoogle Scholar
  75. 75.
    Hens, S., Wallen, S., and Shenderova, O., (2007) U.S. Patent Application: Nanodiamond fractionation and products thereof.Google Scholar
  76. 76.
    Bondar VS, Puzyr AP (2004) Phys Solid State 46:716–719CrossRefGoogle Scholar
  77. 77.
    Puzyr AP, Bondar VS (2003) RU patent 2252192Google Scholar
  78. 78.
    Krueger A (2008) Chem Eur J 14:1382–1390CrossRefGoogle Scholar
  79. 79.
    Krueger A, Liang YJ, Jarre G, Stegk J (2006) J Mater Chem 16:2322–2328CrossRefGoogle Scholar
  80. 80.
    Hens SC, Cunningham G, Tyler T, Moseenkov S, Kuznetsov V, Shenderova O (2008) Diam Relat Mater 17:1858–1866CrossRefGoogle Scholar
  81. 81.
    Ray MA, Tyler T, Hook B, Martin A, Cunningham G, Shenderova O, Davidson JL, Howell M, Kang WP, Mcguire G (2007) Diam Relat Mater 16:2087–2089CrossRefGoogle Scholar
  82. 82.
    Chiganova GA (2000) Colloid Journal 62:238–243Google Scholar
  83. 83.
    Xu X, Yu Z, Zhu Y, Wang B (2005) Diam Relat Mater 14:206–212CrossRefGoogle Scholar
  84. 84.
    Boehm HP (2002) Carbon 40:145–149CrossRefGoogle Scholar
  85. 85.
    Fuente E, Menendez JA, Suarez D, Montes-Moran MA (2003) Langmuir 19:3505–3511CrossRefGoogle Scholar
  86. 86.
    Donnet JB, Boehm HP, Stoeckli F (2002) Carbon 40:145–149CrossRefGoogle Scholar
  87. 87.
    Montes-Moran MA, Suarez D, Menendez JA, Fuente E (2004) Carbon 42:1219–1225CrossRefGoogle Scholar
  88. 88.
    Shenderova O, Grichko V, Hens S, Walsh J (2007) Diam Relat Mater 16:2003–2008CrossRefGoogle Scholar
  89. 89.
    Aleksenskii AE, Baidakova MV, Vul AY, Siklitskii VI (1999) Phys Solid State 41:668–671CrossRefGoogle Scholar
  90. 90.
    Turner S, Lebedev OI, Shenderova O, Vasov II, Verbeeck J, Tendeloo GV (2009) Adv Funct Mater, 19:2116–2124CrossRefGoogle Scholar
  91. 91.
    Sque S, Jones R, Briddon P (2006) Phys Rev B 73:85313CrossRefGoogle Scholar
  92. 92.
    Petrini D, Larsson K (2007) J Phys Chem C 111:796–801Google Scholar
  93. 93.
    Petrini D, Larsson K (2008) J Phys Chem C 112:4811–4819Google Scholar
  94. 94.
    Kern G, Hafner J (1997) Phys Rev B 56:4203CrossRefGoogle Scholar
  95. 95.
    Barnard AS, Stenberg M (2007) J Mater Chem 17:4811–4819CrossRefGoogle Scholar
  96. 96.
    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, Vonborczyskowski C (1997) Science 276:2012–2014CrossRefGoogle Scholar
  97. 97.
    Chang YR, Lee HY, Chen K, Chang CC, Tsai DS, Fu CC, Lim TS, Tzeng YK, Fang CY, Han CC, Chang HC, Fann W (2008) Nat Nanotechnol 3:284–288CrossRefGoogle Scholar
  98. 98.
    Barnard AS, Sternberg M (2007) Diam Relat Mater 16:2078–2082CrossRefGoogle Scholar
  99. 99.
    Barnard AS, Sternberg M (2008) J Comput Theor Nanoscience 5:1–7CrossRefGoogle Scholar
  100. 100.
    Borjanovic V, Lawrence WG, Hens S, Jaksic M, Zamboni I, Edson C, Vlasov V, Vlasov V, Shenderova O, Mcguire G (2008) Nanotechnology 19(45):455701CrossRefGoogle Scholar
  101. 101.
    Kvit AV, Zhirnov VV, Tyler T, Hren JJ (2004) Compos B Eng 35:163–166CrossRefGoogle Scholar
  102. 102.
    Schrand AM (2007) Characterization and in vitro biocompatibility of engineered nanomaterials in The School of Engineering. 2007. University of Dayton, Dayton, p 276Google Scholar
  103. 103.
    Schrand A, Braydich-Stolle Laura K, Schlager John J, Hussain Saber M, Liming Dai (2008)Google Scholar
  104. 104.
    Hens SC, Cunningham G, Grichko V, Tyler T, Moseenkov S, Kuznetsov V, Shenderova GMO (2008) 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, RussiaGoogle Scholar
  105. 105.
    Hughes MP (2000) Nanotechnology 11:124–132CrossRefGoogle Scholar
  106. 106.
    Zhitomirsky I (2002) Adv Colloid Interface Sci 97:279–317CrossRefGoogle Scholar
  107. 107.
    Alimova AN, Chubun NN, Belobrov PI, Detkov PY, Zhirnov VV (1999) J Vac Sci Tech B 17:715–718CrossRefGoogle Scholar
  108. 108.
    Zhitomirsky I (1998) Mater Lett 37:72–78CrossRefGoogle Scholar
  109. 109.
    Wu VWK (2006) Chem Lett 35:1380–1381CrossRefGoogle Scholar
  110. 110.
    Yang WS, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi J, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN, Smith LM, Hamers RJ (2002) Nat Mater 1:253–257CrossRefGoogle Scholar
  111. 111.
    Nebel CE, Rezek B, Shin D, Uetsuka H, Yang N (2007) J Phys D Appl Phys 40:6443–6466CrossRefGoogle Scholar
  112. 112.
    Williams AC, Barry BW (2004) Adv Drug Deliv Rev 56:603–618CrossRefGoogle Scholar
  113. 113.
    Koo J, Kleinstreuer C (2005) Int Comm Heat Mass Tran 32:1111–1118CrossRefGoogle Scholar
  114. 114.
    Koo J, Kleinstreuer C (2005) Int J Heat Mass Tran 48:2652–2661MATHCrossRefGoogle Scholar
  115. 115.
    Winters MA, Knutson BL, Debenedetti PG, Sparks HG, Przybycien TM, Stevenson CL, Prestrelski SJ (1996) J Pharm Sci 85:586–594CrossRefGoogle Scholar
  116. 116.
    Freitas Ra J (2003) Nanomedicine Volume IIA: Biocompatibility 2003. Landes Bioscience, Georgetown, TXGoogle Scholar
  117. 117.
    Grichko V, Grishko V, Shenderova O (2006) Nanobiotechnology 2:37–42CrossRefGoogle Scholar
  118. 118.
    Perevedentseva E, Cheng CY, Chung PH, Tu JS, Hsieh YH, Cheng CL (2007) Nanotechnology 18:315102CrossRefGoogle Scholar
  119. 119.
    Phillips TD (1999) Toxicol Sci 52:118–126Google Scholar
  120. 120.
    Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T (2002) Chem Phys Lett 351:105–108CrossRefGoogle Scholar
  121. 121.
    Hauert R (2003) Diam Relat Mater 12:583–589CrossRefGoogle Scholar
  122. 122.
    Amaral M, Abreu CS (2007) Diam Relat Mater 16:790–795CrossRefGoogle Scholar
  123. 123.
    Mitura S, Mitura A, Niedzielski P, Couvrat P (1999) Chaos, Solitons Fractals 10:2165–2176CrossRefGoogle Scholar
  124. 124.
    Bakowicz-Mitura K, Bartosz G, Mitura S (2007) Surf Coating Techn 201:6131–6135CrossRefGoogle Scholar
  125. 125.
    Xiao XC, Wang J, Liu C, Carlisle JA, Mech B, Greenberg R, Guven D, Freda R, Humayun MS, Weiland J, Auciello O (2006) J Biomed Mater Res B 77B:273–281CrossRefGoogle Scholar
  126. 126.
    Daenen M, Williams OA, D’haen J, Haenen K, Nesladek M (2006) Phys Status Solidi A 203:3005–3010CrossRefGoogle Scholar
  127. 127.
    Williams OA, Douheret O, Daenen M, Haenen K, Osawa E, Takahashi M (2007) Chem Phys Lett 445:255–258CrossRefGoogle Scholar
  128. 128.
    Feygelson TI, Shenderova O, Hens S, Cunningham G, Hobart KD, Butler JE (2008) 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, RussiaGoogle Scholar
  129. 129.
    Chien-Min S, Michael S, Emily S, Patent US 7, 294, 340Google Scholar
  130. 130.
    Lunkin VV Patent RU 2 257 889Google Scholar
  131. 131.
    Dolmatov VY (2006) Application of detonation nanodiamond. In: Shenderova OA, Gruen DM (eds) Ultra nanocrystalline diamond: synthesis, properties, and applications. William Andrew, Norwich, NY, USA, pp 513–527Google Scholar
  132. 132.
    Environmental Working Group,
  133. 133.
    Gasparro FP, Mitchnick M, Nash JF (1998) Photochem Photobiol 68:243–256CrossRefGoogle Scholar
  134. 134.
    Cockell CS, Knowland J (1999) Biol Rev Cambridge Philosophical Soc 74:311–345CrossRefGoogle Scholar
  135. 135.
    Nash JF (2006) Dermatol Clin 24:35CrossRefGoogle Scholar
  136. 136.
    Zaitsev AM (2001) vol 348. SpringerGoogle Scholar
  137. 137.
    Sayes CM, Reed KL, Warheit DB (2007) Toxicol Sci 97:163–180CrossRefGoogle Scholar
  138. 138.
    Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J (2005) Biochem Biophys Res Commun 332:633–639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.International Technology CenterRaleighUSA

Personalised recommendations