Skip to main content

Intracrine Function from Angiotensin to Stem Cells

  • Conference paper
  • First Online:
The Local Cardiac Renin-Angiotensin Aldosterone System
  • 515 Accesses

Abstract

Intracrine action is increasingly being appreciated as a physiologically relevant signaling mechanism. Growing out of the study of angiotensin biology, intracrine physiology is becoming better understood and general principles of intracrine action have been proposed. Here the field will be briefly reviewed and some predictions of intracrine theory discussed to illustrate these principles of intracrine action. The potential relevance of these ideas to the working of the local renin–angiotensin systems and to diverse other biological processes such as differentiation and neoplasia is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Re R, Bryan SE. Functional intracellular renin-angiotensin systems may exist in multiple tissues. Clin Exp Hypertens A. 1984;6(10–11):1739–1742.

    Article  PubMed  CAS  Google Scholar 

  2. Re RN. The cellular biology of angiotensin: paracrine, autocrine and intracrine actions in cardiovascular tissues. J Mol Cell Cardiol. 1989;2(Suppl 5):63–69.

    Google Scholar 

  3. Re R. The nature of intracrine peptide hormone action. Hypertension. 1999;34(4 Pt 1):534–548.

    PubMed  CAS  Google Scholar 

  4. Re RN, Cook JL. An intracrine view of angiogenesis. Bioessays. 2006;28:943–953.

    Article  PubMed  CAS  Google Scholar 

  5. Re RN, Cook JL. Potential therapeutic implications of intracrine angiogenesis. Med Hypotheses. 2007;69:414–421.

    Article  PubMed  CAS  Google Scholar 

  6. Re RN, Cook JL. The physiological basis of intracrine stem cell regulation. Am J Physiol Heart Circ Physiol. 2008;295:H447–H453.

    Article  PubMed  CAS  Google Scholar 

  7. Re RN. The intracrine hypothesis and intracellular peptide hormone action. Bioessays. 2003;25:401–409.

    Article  PubMed  CAS  Google Scholar 

  8. Re RN, Cook JL. Mechanisms of disease: intracrine physiology in the cardiovascular system. Nat Clin Pract Cardiovasc Med. 2007;4:549–557.

    Article  PubMed  CAS  Google Scholar 

  9. Cook JL, Zhang Z, Re R. In vitro evidence for an intracellular site of angiotensin action. Circ Res. 2001;89:1138–1146.

    Article  PubMed  CAS  Google Scholar 

  10. Cook JL, Mills SJ, Naquin R, Alam J, Re RN. Nuclear accumulation of the AT1 receptor in a rat vascular smooth muscle cell line: effects upon signal transduction and cellular proliferation. J Mol Cell Cardiol. 2006;40:696–707.

    Article  PubMed  CAS  Google Scholar 

  11. Cook JL, Giardina JF, Zhang Z, Re RN. Intracellular angiotensin II increases the long isoform of PDGF mRNA in rat hepatoma cells. J Mol Cell Cardiol. 2002;34(11):1525–1537.

    Article  PubMed  CAS  Google Scholar 

  12. Kumar R, Singh VP, Baker KM. The intracellular renin–angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens. 2008;17:168–173.

    Article  PubMed  CAS  Google Scholar 

  13. Singh VP, Baker KM, Kumar R. Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol. 2008;294:H1675–H1684.

    Article  PubMed  CAS  Google Scholar 

  14. Singh VP, Le B, Bhat VB, Baker KM, Kumar R. High-glucose-induced regulation of intracellular ANG II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2007;293:H939–H948.

    Article  PubMed  CAS  Google Scholar 

  15. Cook JL, Re R, Alam J, Hart M, Zhang Z. Intracellular angiotensin II fusion protein alters AT1 receptor fusion protein distribution and activates CREB. J Mol Cell Cardiol. 2004;36:75–90.

    Article  PubMed  CAS  Google Scholar 

  16. De Mello WC, Gerena Y. Eplerenone inhibits the intracrine and extracellular actions of angiotensin II on the inward calcium current in the failing heart. On the presence of an intracrine renin angiotensin aldosterone system. Regul Pept Jun 8 2008; [Epub ahead of print].

    Google Scholar 

  17. De Mello WC. Influence of intracellular renin on heart cell communication. Hypertension. 1995;25:1172–1177.

    PubMed  CAS  Google Scholar 

  18. De Mello WC. Intracellular angiotensin II regulates the inward calcium current in cardiac myocytes. Hypertension. 1998;32:976–982.

    CAS  Google Scholar 

  19. De Mello WC. Cardiac arrhythmias: the possible role of the renin-angiotensin system. J Mol Med. 2001;79:103–108.

    Article  CAS  Google Scholar 

  20. Eto K, Ohya Y, Nakamura Y, Abe I, Iida M. Intracellular angiotensin II stimulates voltage-operated Ca(2+) channels in arterial myocytes. Hypertension. 2002;39(2 Pt 2):474–478.

    Article  PubMed  CAS  Google Scholar 

  21. Haller H, Lindschau C, Quass P, Luft FC. Intracellular actions of angiotensin II in vascular smooth muscle cells. J Am Soc Nephrol. 1999;10(Suppl 11):S75–S83.

    PubMed  CAS  Google Scholar 

  22. Re RN, MacPhee AA, Fallon JT. Specific nuclear binding of angiotensin II by rat liver and spleen nuclei. Clin Sci (Lond). 1981;61(Suppl 7):245s–247s.

    CAS  Google Scholar 

  23. Re RN. Changes in nuclear initiation sites after the treatment of isolated nuclei with angiotensin II. Clin Sci. 1982;63:191s–193s.

    Google Scholar 

  24. Re RN, LaBiche RA, Bryan SE. Nuclear-hormone mediated changes in chromatin solubility. Biochem Biophys Res Commun. 1983;110:61–68.

    Article  PubMed  CAS  Google Scholar 

  25. Re R, Parab M. Effect of angiotensin II on RNA synthesis by isolated nuclei. Life Sci. 1984;34:647–651.

    Article  PubMed  CAS  Google Scholar 

  26. Fiaschi-Taesch NM, Stewart AF. Minireview: parathyroid hormone-related protein as an intracrine factor – trafficking mechanisms and functional consequences. Endocrinology. 2003;144:407–411.

    Article  PubMed  CAS  Google Scholar 

  27. Ventura C, Guarnieri C, Vaona I, Campana G, Pintus G, Spampinato S. Dynorphin gene expression and release in the myocardial cell. J Biol Chem. 1994;269:5384–5386.

    PubMed  CAS  Google Scholar 

  28. Ventura C, Maioli M, Pintus G, Posadino AM, Tadolini B. Nuclear opioid receptors activate opioid peptide gene transcription in isolated myocardial nuclei. J Biol Chem. 1998;273:13383–13386.

    Article  PubMed  CAS  Google Scholar 

  29. Ventura C, Zinellu E, Maninchedda E, Fadda M, Maioli M. Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ Res. 2003;92:617–622.

    Article  PubMed  CAS  Google Scholar 

  30. Ventura C, Zinellu E, Maninchedda E, Maioli M. Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ Res. 2003;92:623–629.

    Article  PubMed  CAS  Google Scholar 

  31. Li W, Keller G. VEGF nuclear accumulation correlates with phenotypical changes in endothelial cells. J Cell Sci. 2000;113(Pt 9):1525–1534.

    PubMed  CAS  Google Scholar 

  32. Cobaleda C, Jochum W, Busslinger M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature. 2007;449:473–477.

    Article  PubMed  CAS  Google Scholar 

  33. Re RN. On the biological actions of intracellular angiotensin. Hypertension. 2000;35:1189–1190.

    PubMed  CAS  Google Scholar 

  34. Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417:954–958.

    Article  PubMed  CAS  Google Scholar 

  35. Gerber HP, Ferrara N. The role of VEGF in normal and neoplastic hematopoiesis. J Mol Med. 2003;81:20–31.

    PubMed  CAS  Google Scholar 

  36. Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene. 2005;24:445–456.

    Article  PubMed  CAS  Google Scholar 

  37. Prochiantz A, Joliot A. Can transcription factors function as cell-cell signalling molecules? Nat Rev Mol Cell Biol. 2003;4:814–819.

    PubMed  CAS  Google Scholar 

  38. Lesaffre B, Joliot A, Prochiantz A, Volovitch M. Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish. Neural Develop. 2007;2:2.

    Article  Google Scholar 

  39. Noguchi H, Kaneto H, Weir GC, Bonner-Weir S. PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes. 2003;52:1732–1737.

    Article  PubMed  CAS  Google Scholar 

  40. Re RN. Toward a theory of intracrine hormone action. Regul Pept. 2002;106:1–6.

    Article  PubMed  CAS  Google Scholar 

  41. Ritter CA, Perez-Torres M, Rinehart C, et al. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res. 2007;13:4909–4919.

    Article  PubMed  CAS  Google Scholar 

  42. Ferrer-Soler L, Vazquez-Martin A, Brunet J, Menendez JA, De Llorens R, Colomer R. An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer: gefitinib (Iressa)-induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands (review). Int J Mol Med. 2007;20:3–10.

    PubMed  CAS  Google Scholar 

  43. Re RN. The origins of intracrine hormone action. Am J Med Sci. 2002;323:43–48.

    Article  PubMed  Google Scholar 

  44. Shi H, Huang Y, Zhou H, et al. Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood. 2007;110:2899–2906.

    Article  PubMed  CAS  Google Scholar 

  45. Destouches D, El Khoury D, Hamma-Kourbali Y, et al. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS ONE. 2008;3:e2518.

    Article  PubMed  Google Scholar 

  46. Teng Y, Girvan AC, Casson LK, et al. AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res. 2007;67:10491–10500.

    Article  PubMed  CAS  Google Scholar 

  47. Re RN. Intracellular renin and the nature of intracrine enzymes. Hypertension. 2003;42: 117–122.

    Article  PubMed  CAS  Google Scholar 

  48. Robertson AL, Jr, Khairallah PA. Angiotensin II: rapid localization in nuclei of smooth and cardiac muscle. Science. 1971;172:1138–1139.

    Article  PubMed  CAS  Google Scholar 

  49. De Mello WC. Intracellular and extracellular renin have opposite effects on the regulation of heart cell volume. Implications for myocardial ischaemia. J Renin Angiotensin Aldosterone Syst. 2008;9:112–118.

    Article  CAS  Google Scholar 

  50. Messerli FH, Re RN. Do we need yet another blocker of the renin-angiotensin system? J Am Coll Cardiol. 2007;49:1164–1165.

    Article  PubMed  Google Scholar 

  51. Kurtz TW. Treating the metabolic syndrome: telmisartan as a peroxisome proliferator-activated receptor-gamma activator. Acta Diabetol. 2005;42(Suppl1):S9–S16.

    Article  PubMed  CAS  Google Scholar 

  52. Cook JL, Mills SJ, Naquin RT, Alam J, Re RN. Cleavage of the angiotensin II type 1 receptor and nuclear accumulation of the cytoplasmic carboxy-terminal fragment. Am J Physiol Cell Physiol. 2007;292:C1313–C1322.

    Article  PubMed  CAS  Google Scholar 

  53. Cook JL, Re RN, deHaro DL, Abadie JM, Peters M, Alam J. The trafficking protein GABARAP binds to and enhances plasma membrane expression and function of the angiotensin II type 1 receptor. Circ Res. 2008;102:1539–1547.

    Article  PubMed  CAS  Google Scholar 

  54. Re RN. Implications of intracrine hormone action for physiology and medicine. Am J Physiol Heart Circ Physiol. 2003;284:H751–H757.

    PubMed  CAS  Google Scholar 

  55. Sherrod M, Liu X, Zhang X, Sigmund CD. Nuclear localization of angiotensinogen in astrocytes. Am J Physiol Regul Integr Comp Physiol. 2005;288:R539–R546.

    PubMed  CAS  Google Scholar 

  56. Camargo de Andrade MC, Di Marco GS, de Paulo Castro Teixeira V, et al. Expression and localization of N-domain ANG I-converting enzymes in mesangial cells in culture from spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2006;290:F364–375. Erratum in: Am J Physiol Renal Physiol. 2006;291:F921.

    Article  PubMed  CAS  Google Scholar 

  57. Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109:1417–1427.

    PubMed  CAS  Google Scholar 

  58. Nguyen G, Delarue F, Berrou J, Rondeau E, Sraer JD. Specific receptor binding of renin on human mesangial cells in culture increases plasminogen activator inhibitor-1 antigen. Kidney Int. 1996;50:1897–1903.

    Article  PubMed  CAS  Google Scholar 

  59. Saris JJ, van den Eijnden MM, Lamers JM, Saxena PR, Schalekamp MA, Danser AH. Prorenin-induced myocyte proliferation: no role for intracellular angiotensin II. Hypertension. 2002;39(2 Pt 2):573–577.

    Article  PubMed  CAS  Google Scholar 

  60. Peters J, Farrenkopf R, Clausmeyer S, et al. Functional significance of prorenin internalization in the rat heart. Circ Res. 2002;90:1135–1141.

    Article  PubMed  CAS  Google Scholar 

  61. Campbell DJ. Critical review of prorenin and (pro)renin receptor research. Hypertension. 2008;51:1259–1264.

    Article  PubMed  CAS  Google Scholar 

  62. Re RN, Cook JL. The basis of an intracrine pharmacology. J Clin Pharmacol. 2008;48: 344–350.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Re, R.N., Cook, J.L. (2009). Intracrine Function from Angiotensin to Stem Cells. In: Frohlich, E., Re, R. (eds) The Local Cardiac Renin-Angiotensin Aldosterone System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0528-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0528-4_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0527-7

  • Online ISBN: 978-1-4419-0528-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics